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Laboratório Nacional de Computação Cient́ıfica, Av. Getúlio Vargas 333,
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We study quantum algorithms for spatial search on finite dimensional grids. Patel et

al. and Falk have proposed algorithms based on a quantum walk without a coin, with
different operators applied at even and odd steps. Until now, such algorithms have been
studied only using numerical simulations. In this paper, we present the first rigorous
analysis for an algorithm of this type, showing that the optimal number of steps is

O(
√
N logN) and the success probability is O(1/ logN), where N is the number of

vertices. This matches the performance achieved by algorithms that use other forms of
quantum walks.
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1 Introduction

The quantum spatial search problem can be stated as follows. Suppose that one has a graph

with N vertices that represent the places that a quantum robot can be and the edges represent

the directions that the robot can move among the vertices. Suppose also that one or a subset

of vertices is marked. The goal is to find one marked vertex taking the least number of steps,

assuming that the robot can move only to neighboring vertices, and each step takes one time

unit.

Benioff [1] pointed out that a direct application of Grover’s search algorithm [2] to the

quantum spatial search problem on two-dimensional grids of size
√
N×

√
N does not provide a

speedup compared to a search performed by a classical random walk, which takes O(N logN)

steps. Aaronson and Ambainis [3] showed that most of quantum speedup can be recovered by

using Grover’s search together with a “divide-and-conquer” strategy that splits the grid into

several subgrids and searches each of them. Using this method, the problem can be solved in

O(
√
N log2N) steps.
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The use of coined quantum walks [4] to the quantum spatial search problem was intro-

duced by Shenvi et al. [5], which developed a quantum search algorithm for the hypercube

taking O(
√
N) steps providing a quadratic speedup over classical method using random walk.

Ambainis et al. (AKR) [6] used a similar method to build a quantum search algorithm on

two-dimensional grids taking O(
√
N logN) steps using the method of amplitude amplifica-

tion. By introducing an extra qubit into the system, Tulsi [7] was able to improve the time

complexity of AKR’s algorithm avoiding the use of amplitude amplification. Ambainis et

al. (ABNOR) [8] also showed how to eliminate the method of amplitude amplification using

the AKR’s algorithm and performing a post-processing classical search.

Coinless (or staggered) quantum walks for hypercubic lattices were analyzed by Patel et

al. [9] by discretizing the Dirac equation used in the staggered lattice fermion formalism. The

evolution operator is the product of two unitary operators, which are called even and odd,

and can be obtained from shifted bases via a process of graph tessellation showed in Fig. 1

for the two dimensional case, which was pointed out by Falk [10]. Refs. [11, 12] also described

the use of coinless quantum walks for searching on two-dimensional grids and concluded,

using numerical implementations, that the search algorithm takes O(
√
N logN) steps without

using Tulsi’s method and O(
√
N logN) with Tulsi’s method. Using a similar algorithm and

numerical implementations, Falk inferred that the search algorithm takes O(
√
N) steps with

constant success probability.

In this paper we analytically prove that a coinless quantum walk using the simplest tes-

sellation (the same one used by Falk) takes O(
√
N logN) steps to maximize the success

probability, which depends on the grid size as O(1/ logN) when there is only one marked

vertex. This corrects Falk’s inference. If we use the method of amplitude amplification, the

total number of steps is O(
√
N logN) in order to achieve a constant success probability. If

we use Tulsi’s generalized method [13, 14], the total number of steps is O(
√
N logN) with

constant success probability Θ(1).

The structure of this paper is the following: Sec. 2 describes the coinless quantum walk

model on two-dimensional grids. Sec. 3 describes the general structure of the search algorithm,

states two claims, and describes the algebraic manipulation necessary to prove the claims and

to find the number of steps. Sec. 4 describe the calculation of the number of steps that

optimize the success probability. Sec. 5 describes the calculation of the norm of the main

eigenvector of the evolution operator, which is used in the analysis of the algorithm. Secs. 6

and 7 prove the claims. In Sec. 8, we draw our conclusions and discuss possible extensions of

this work.

2 Coinless Quantum Walks on Two-Dimensional Grids

Consider a two-dimensional grid with N vertices having a torus-like boundary conditions and

the associated Hilbert space HN . We assume that N is a perfect square and
√
N is even.

Define the set of orthonormal vectors

∣

∣uevenxy

〉

=

1
∑

x′,y′=0

ax′,y′ |2x+ x′, 2y + y′〉, (1)

∣

∣uoddxy

〉

=

1
∑

x′,y′=0

bx′,y′ |2x+ x′ + 1, 2y + y′ + 1〉, (2)
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Fig. 1. Grid tessellation using 2 × 2 cells. Blue squares (continuous line) represent the even
tessellation and red squares (dotted line) represent the odd tessellation.

which are based in Fig. 1. We address the case ax′,y′ = bx′,y′ = 1/2. The projectors that

project into the subspace spanned by
∣

∣uexy
〉

and
∣

∣uoxy
〉

respectively are

Πe =

1
2

√
N−1
∑

x,y=0

|uexy〉〈uexy|, (3)

Πo =

1
2

√
N−1
∑

x,y=0

|uoxy〉〈uoxy|. (4)

Define the reflection operators

Ue = 2Πe − I, (5)

Uo = 2Πo − I. (6)

Define the reflection around the marked vertex

Uw = 2 |w〉〈w| − I. (7)

One step of the quantum walk is driven by the real unitary operator

U = UoUwUeUw (8)

and the initial state is

|ψ0〉 =
1√
N

√
N−1
∑

x,y=0

|x, y〉. (9)

The algorithm consists in obtaining state
∣

∣ψtf

〉

= U tf |ψ0〉, where tf is the number of steps,

and performing a measurement in the computational basis. The result of the measurement is

expected to be the marked vertex.
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3 Analysis of the Algorithm

The eigenvalues of U have the form exp(±iθ), 0 ≤ θ ≤ π. Among all eigenvalues different from

1, select the eigenvalue with the smallest positive argument. Let us denote this eigenvalue

by exp(iα) and the associated eigenvector by |ψ〉. Because U is real, exp(−iα) is also an

eigenvalue and associated with eigenvector |ψ〉∗. Eigenvectors |ψ〉 and |ψ〉∗ are orthogonal

and complex conjugates (the entries of |ψ〉∗ are the complex conjugate of the entries of |ψ〉).
Define the vectors

∣

∣β+
〉

=
1√

2‖|ψ〉‖
(

|ψ〉+ |ψ〉∗
)

, (10)

∣

∣β−〉 =
1√

2‖|ψ〉‖
(

|ψ〉 − |ψ〉∗
)

, (11)

which are orthonormal. We claim that they define a plane in the Hilbert space HN , in which

the state of algorithm approximately evolves. This statement is based in the following claims:

Claim 1 The overlap |〈ψ0|β−〉| between the initial state and |β−〉 is Θ (1).

Claim 2 The success probability p is O
(

1
logN

)

.

Claim 1 says that if we replace the initial condition |ψ0〉 by |β−〉, the error will not increase
when we increase N . The calculation of the evolution of the algorithm is simpler when we

take |β−〉 as the intial condition, because |β−〉 is a linear combination of only two eigenvectors

of the evolution operator, while |ψ0〉 has overlap with all eigenvectors.

Suppose that tf is the number of steps fo the algorithm and take |β−〉 as the initial state,

the final state will be

|ψf 〉 =
1√
2

(

eiαtf |ψ〉 − e−iαtf |ψ〉∗
)

.

If we take tf = π/2α, then |ψf 〉 = i|β+〉, which is orthogonal to |β−〉. The success probability
is

p =
∣

∣〈w|β+〉
∣

∣

2
. (12)

The success probability decreases when we increase N , but Claim 2 states that the functional

dependence is logarithmic. If one uses the method of amplitude amplification, the overhead

to obtain a constant success probability is O(
√
logN).

Let us define

U1 = UeUwUeUw,

U2 = UoUe.

Using that U2
e = I, we have U = U2U1 with U1 acting as follows: U1|ψ1〉 = e2πi/3|ψ1〉,

U1|ψ2〉 = e−2πi/3|ψ2〉 and U1|ψ〉 = |ψ〉 if |ψ〉 ⊥ |ψ1〉, |ψ〉 ⊥ |ψ2〉 (see the appendix for details).

In our particular case, the vector |ψ2〉 is the complex conjugate of |ψ1〉 (i.e., all coefficients

of |ψ2〉 are complex conjugates of the corresponding coefficients of |ψ1〉) and we will use this

fact.
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Let |vj,+〉 and |vj,−〉 (for j = 1, 2, . . .) be the pairs of eigenvectors of U2 with eigenvalues

eiθj and e−iθj for θj 6= 0 (and |vj,+〉 is a complex conjugate of |vj,−〉). We express

|ψ1〉 = a|ψ′
1〉+

∑

j

(aj,+|vj,+〉+ aj,−|vj,−〉) (13)

where |ψ′
1〉 is an eigenvector of U2 with eigenvalue 1. By taking complex conjugates of all

coefficients of vectors on both sides of the equation, we get

|ψ2〉 = a∗|ψ′
2〉+

∑

j

(

a∗j,+|vj,−〉+ a∗j,−|vj,+〉
)

(14)

where |ψ′
2〉 is the complex conjugate of |ψ′

1〉. The above equations are valid when
√
N/2 is

odd, because U2 has no eigenvalue -1 in this case. Let |ψ〉 be the eigenvector of U = U2U1

with the eigenvalue eiα with the smallest positive α. We multiply |ψ〉 by a constant so that

|〈ψ1|ψ〉|2 + |〈ψ2|ψ〉|2 = 1. Then, we can express

|ψ〉 = cosβ|ψ1〉+ x sinβ|ψ2〉+ |ψ′〉

where |ψ′〉 ⊥ |ψ1〉, |ψ′〉 ⊥ |ψ2〉 and |x| = 1. To simplify the next expressions, we multiply |ψ〉
by a constant and x by another constant so that

|ψ〉 = e−iπ/3 cosβ|ψ1〉+ eiπ/3x sinβ|ψ2〉+ |ψ′〉. (15)

Then,

U1|ψ〉 = eiπ/3 cosβ|ψ1〉+ e−iπ/3x sinβ|ψ2〉+ |ψ′〉.

Let

|ϕ〉 = U1|ψ〉 − |ψ〉 = (eiπ/3 − e−iπ/3) cosβ|ψ1〉+ (e−iπ/3 − eiπ/3)x sinβ|ψ2〉

=
√
3i cosβ|ψ1〉 −

√
3xi sinβ|ψ2〉. (16)

By writing out |ψ1〉 and |ψ2〉 in terms of eigenvectors of U2, we get

|ϕ〉 =
√
3i (cosβ|ψ1〉 − x sinβ|ψ2〉) =

√
3i
(

a cosβ|ψ′
1〉 − a∗x sinβ|ψ′

2〉

+
∑

j

(

(aj,+ cosβ − a∗j,−x sinβ)|vj,+〉+ (aj,− cosβ − a∗j,+x sinβ)|vj,−〉
))

. (17)

Let |ϕ′〉 = U1|ψ〉+ |ψ〉. Then, we have

|ψ〉 = 1

2
|ϕ′〉 − 1

2
|ϕ〉, U1|ψ〉 =

1

2
|ϕ′〉+ 1

2
|ϕ〉. (18)

To get U2U1|ψ〉 = eiα|ψ〉, we must have

|ϕ′〉 =
√
3 cot

α

2
(a cosβ|ψ′

1〉 − a∗x sinβ|ψ′
2〉)

+
√
3
∑

j

cot
α− θj

2
(aj,+ cosβ − a∗j,−x sinβ)|vj,+〉
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+
√
3
∑

j

cot
α+ θj

2
(aj,− cosβ − a∗j,+x sinβ)|vj,−〉. (19)

Because of equation (15), we have

〈ψ1|ψ〉 = e−iπ/3 cosβ =

(

1

2
−

√
3

2
i

)

cosβ.

By combining this with the first part of (18) and (16), we get that 〈ψ1|ϕ′〉 = cosβ. Similarly,

〈ψ2|ϕ′〉 = x sinβ. By writing out |ψ1〉, |ψ2〉 and |ϕ′〉 in terms of eigenvectors of U2, we get

〈ψ1|ϕ′〉 =
√
3 cot

α

2
(|a|2 cosβ − (a∗)2x sinβ〈ψ′

1|ψ′
2〉)

+
√
3
∑

j

cot
α− θj

2

(

|aj,+|2 cosβ − a∗j,+a
∗
j,−x sinβ

)

+
√
3
∑

j

cot
α+ θj

2

(

|aj,−|2 cosβ − a∗j,−a
∗
j,+x sinβ

)

= cosβ (20)

and

〈ψ2|ϕ′〉 =
√
3 cot

α

2
(−|a|2x sinβ + a2 cosβ〈ψ′

2|ψ′
1〉)

+
√
3
∑

j

cot
α− θj

2

(

aj,−aj,+ cosβ − |aj,−|2x sinβ
)

+
√
3
∑

j

cot
α+ θj

2

(

aj,+aj,− cosβ − |aj,+|2x sinβ
)

= x sinβ. (21)

4 Number of Steps

As described in Sec. 3, the number of steps of the algorithm is π/2α. The determination of

the asymptotic (large N) value of parameter α is the main part to describe the algorithm

efficiency. We address this issue in this section.

We take the complex conjugate of both sides of (20) and rewrite the resulting equation as
√
3A11 cosβ +

√
3A12x

∗ sinβ = cosβ, (22)

and using that |x| = 1 we can also rewrite (21) as

−
√
3A11 sinβ −

√
3A12x

∗ cosβ = sinβ, (23)

where

A11 = |a|2 cot α
2
+
∑

j

|aj,+|2 cot
α− θj

2
+
∑

j

|aj,−|2 cot
α+ θj

2
,

A12 = −a2〈ψ′
2|ψ′

1〉 cot
α

2
−
∑

j

aj,+aj,−

(

cot
α− θj

2
+ cot

α+ θj
2

)

.

The expression of A11 is equivalent to

A11 = |a|2 cot α
2
+

1

2

∑

j

(

|aj,+|2 + |aj,−|2
)

(

cot
α− θj

2
+ cot

α+ θj
2

)

+
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∑

j

sin θj
(

|aj,+|2 − |aj,−|2
)

cos θj − cosα
.

Using the approximation cosα ≈ 1 and the results of the appendix, the last term of the above

equation simplifies to

2√
3N

√
N
2

−1
∑

k,l=0
(k,l) 6=(0,0)

cos k̃ cos l̃ sin k̃ sin l̃

1− cos2 k̃ cos2 l̃
,

where k̃ = 2πk/
√
N and l̃ = 2πl/

√
N . It is straightfoward to show that this term is zero.

For α close to 0, we can use the approximations cotx ≈ 1
x for cot α

2 and

cot
α− θj

2
+ cot

α+ θj
2

≈ − α

sin2(θj/2)
.

Notice that using Eq. (A.3) from the appendix we conclude that the minimum positive value

of θj is 4π/
√
N . We are going to show that α≪ θj for large N . Under those approximations,

we obtain

A11 ≈ 2|a|2
α

− αB,

A12 ≈ −2a2〈ψ′
2|ψ′

1〉
α

+ αC.

where

B =
∑

j

1

2 sin2(θj/2)
(|aj,+|2 + |aj,−|2),

C =
∑

j

1

sin2(θj/2)
aj,−aj,+.

By eliminating A12x
∗ from Eqs. (22) and (23), we obtain

cosβ =
1√
2

(

1 +
1√
3A11

)
1
2

.

By multiplying (− sinβ) to Eq. (22) and adding to Eq. (23) times cosβ, we obtain

A11 sin 2β +A12x
∗ = 0.

Using the last expressions we have obtained for A11 and A12, we get

α2 =
2|a|2 sin 2β − 2a2〈ψ′

2|ψ′
1〉x∗

B sin 2β − Cx∗
. (24)

Using the eigenvectors and eigenvalues of U2 given in the appendix (see details at the end of

the appendix), we obtain

|a|2 =
1

3
+

8

3N
+O

(

1

N2

)

(25)

and

a2〈ψ′
2|ψ′

1〉 = e
2πi
3

(

1

3
− 4

3N

)

+O

(

1

N2

)

. (26)
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Near the end of this section we obtain an approximate expression for the denominator of

Eq. (24), which shows that this denominator is O (logN). If the zeroth order term in the

numerator were a constant (does not depend on N), the number of steps of the algorithm

would be O
(√

logN
)

. Such prescription would be poor because the probability of finding the

marked vertex would be irretrievably small. The way out is to choose x so that the leading

term (zeroth order in N) in the numerator of α2 is zero. Then, x must be the leading term

of |a|2/a∗ 2〈ψ′
1|ψ′

2〉. Using Eqs. (25) and (26), we obtain x = e2πi/3.

Using that α2B ≪ |a|2 for large N , we can consider A11 ≈ 2|a|2/α and

cosβ ≈ 1√
2

(

1 +

√
3α

4

)

. (27)

Similarly, using that sin 2β ≈ 1, the first order approximation for α when N is large is

α2 ≈ 8

N(B − Cx∗)
. (28)

Using the eigenvectors and eigenvalues of U2, we obtain

B − Cx∗ =
2

N

√
N
2

−1
∑

k,l=0
(k,l) 6=(0,0)

1

1− cos2 k̃ cos2 l̃
,

where k̃ = 2πk/
√
N and l̃ = 2πl/

√
N . Converting the double sum to a double integral and

using residues (the expression inside the double sum taken as a function of k̃ and l̃ in the

domain (0, π) has four positive poles and can be calculated using the methods described in

Chap. 7.1 of Ref. [15]), we obtain B − Cx∗ = O (logN). Using this result, we conclude that

α = O

(

1√
N logN

)

.

5 The Norm of |ψ〉
Using Eqs. (17) and (19), we obtain

|ψ〉 =
√
3

2

(

cot
α

2
− i
)

(a cosβ|ψ′
1〉 − a∗x sinβ|ψ′

2〉)

+

√
3

2

∑

j

(

cot
α− θj

2
− i

)

(aj,+ cosβ − a∗j,−x sinβ)|vj,+〉

+

√
3

2

∑

j

(

cot
α+ θj

2
− i

)

(aj,− cosβ − a∗j,+x sinβ)|vj,−〉. (29)

By employing the approximation for small α

cot2
α± θj

2
+ 1 ≈ 1

sin2
θj
2

∓ 2 sin θj α

(1− cos θj)
2 .
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we obtain

〈ψ|ψ〉 ≈ 3

4

(

|a|2 − a2〈ψ′
2|ψ′

1〉x∗ sin 2β
)

(

cot2
α

2
+ 1
)

+
3

4

∑

j

1

sin2
θj
2

(

|aj,+|2 + |aj,−|2 − 2ℜ(aj,−aj,+x∗) sin 2β
)

.

Using that sin 2β ≈ 1, Eqs. (25) and (26), we obtain

〈ψ|ψ〉 ≈ 12

Nα2
+

3

2
(B − Cx∗) .

Using Eq. (28), we get

〈ψ|ψ〉 ≈ 24

Nα2
. (30)

Therefore, ‖|ψ〉‖ = O
(√

logN
)

.

6 Proof of Claim 1

Let |ψ0〉 be the normalized uniform vector (initial condition of the algorithm). We know that

〈ψ0|vj,±〉 = 0, then for small α

〈ψ0|ψ〉 ≈
√
3√
2α

(a〈ψ0|ψ′
1〉 − a∗〈ψ0|ψ′

2〉x) .

Using Eqs. (13) and (14) we conclude that a〈ψ0|ψ′
1〉 = 〈ψ0|ψ1〉 and a∗〈ψ0|ψ′

2〉 = 〈ψ0|ψ2〉.
By replacing those values into the last equation, using that x = e2πi/3, and employing the

expression for |ψ1〉 given in the appendix, we obtain

〈ψ0|ψ〉 ≈
√
3√
Nα

(√
3− i

)

.

Using Eq. (30), we conclude that the overlap between the initial condition and the normalized

vector |ψ〉 − |ψ〉∗ is
|〈ψ0|ψ〉 − 〈ψ0|ψ〉∗|√

2‖|ψ〉‖
= Θ(1).

The asymptotic overlap in this case is 1/2. This overlap can be improved by changing the

global phase of |ψ〉. In fact, if we take e−πi/3|ψ〉, the asymptotic overlap is 1.

7 Proof of Claim 2

Let |00〉 be the marked vertex. From Eq. (13), we obtain

a〈00|ψ′
1〉 = 〈00|ψ1〉 −

∑

j

(aj,+〈00|vj,+〉+ aj,−〈00|vj,−〉).

A similar equation can be obtained for a〈00|ψ′
2〉 using Eq. (14). By employing those results,

the overlap between the marked vertex and vector |ψ〉 can be written as

〈00|ψ〉 =
√
3

2

((

cot
α

2
− i
)

(cosβ 〈00|ψ1〉 − x sinβ 〈00|ψ2〉)
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+
∑

j

(

cot
α− θj

2
− cot

α

2

)

(aj,+ cosβ − a∗j,−x sinβ)〈00|vj,+〉

+
∑

j

(

cot
α+ θj

2
− cot

α

2

)

(aj,− cosβ − a∗j,+x sinβ)〈00|vj,−〉
)

.

By Taylor expanding cot
α±θj

2 around α = 0; using cot α
2 ≈ 2

α ; Eqs. (27) and (A.1); and

discarding terms proportional to α; we obtain

〈00|ψ〉 ≈ 5
√
3x∗

8
+

√
3√
2α

(

i x∗√
2
− E−

)

− 3

4
√
2
E+ −

√
3

2
√
2
F, (31)

where

E± =
∑

j

(

(aj,+ ± a∗j,−x)〈00|vj,+〉+ (aj,− ± a∗j,+x)〈00|vj,−〉
)

and

F =
∑

j

cot
θj
2

(

(aj,+ − a∗j,−x)〈00|vj,+〉 − (aj,− − a∗j,+x)〈00|vj,−〉
)

.

By employing the expressions for aj,± and |vj,±〉 given in the appendix, it is straightforward

to show that

E− =

√
2 (

√
3− i)

N

√
N
2

−1
∑

k,l=0
(k,l) 6=(0,0)

(

1− ǫ sin(k̃ + l̃)
√

1− cos2 k̃ cos2 l̃

)

,

E+ = − i√
3
E− − 1 + i

√
3

N
√
6

√
N
2

−1
∑

k,l=0
(k,l) 6=(0,0)

sin 2k̃ sin 2l̃

1− cos2 k̃ cos2 l̃
,

F =

√
2 (1 + i

√
3)

N

√
N
2

−1
∑

k,l=0
(k,l) 6=(0,0)

ǫ sin k̃ sin l̃

1− cos2 k̃ cos2 l̃
,

where ǫ is the sign of cos k̃ cos l̃. Calculating the double sums and using symmetry properties,

we obtain

E− =

√
3− i

2
√
2

(

1− 4

N

)

,

E+ = −1 + i
√
3

2
√
6

(

1− 4

N

)

,

and F = 0. By replacing those results into Eq. (31), we obtain

〈00|ψ〉 ≈ −
√
3 (1 + i

√
3)

4

(

1 +
1

N

)

+

√
3 (

√
3− i)

Nα
. (32)

For large N , the real part of the overlap 〈00|ψ〉 tends to −
√
3/4. This overlap changes

by introducing a global phase to |ψ〉 similar to the discussion at the end of the previous
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section. If we take e−πi/3|ψ〉, the asymptotic overlap is −
√
3/2. By using the fact that

‖|ψ〉‖ = O
(√

logN
)

, we conclude that the modulus of the overlap between the marked vertex

and the normalized vector |ψ〉+ |ψ〉∗ is

|〈00|ψ〉+ 〈00|ψ〉∗|√
2‖|ψ〉‖

= O

(

1√
logN

)

.

8 Conclusions and Discussions

We have analyzed the spatial search problem on two-dimensional grids using the coinless (or

staggered) quantum walk model introduced by Patel et al. [9]. We obtain the asymptotic

(large N) number of step of the algorithm and the asymptotic success probability. We have

used the simplest grid tessellation. As described in Fig. 1, we divide the the grid in 2 × 2

cells having the even-even points in the lowest left corner of the cells, which provides the

even tessellation. The odd tessellation is obtained by displacing the even tessellation along

the diagonal, so that odd-odd points are in the lowest left corner. Each cell in the even

tessellation is associated with a normalized uniform vector in Hilbert space HN , which span

a Hilbert subspace of dimension N/4. Non-uniform basis vectors can be used paying a high

price in terms of algebraic manipulations. The unitary operator Ue is a reflection around

this Hilbert subspace. Operator Uo is defined likewise. The product of those two reflections

generates a non trivial unitary operator which defines one step of the coinless quantum walk.

The spatial search is driven by a unitary operator that interlaces the reflection around the

marked vertex Uw and operators Uo and Ue. Patel et al.’ choice [11] is (UoUe)
3Uw while Falk’s

choice [10] is UoUwUeUw. Our analytical calculations use the latter one. It is interesting to

analyze Patel et al.’s model in order to check their numerical results. Patel et al. briefly

discuss the use of the unitary operator (UoUe)
t1Uw for t1 smaller than 3.

We have analytically shown that the optimal number of steps of the search algorithm is

O(
√
N logN) with a success probability O(1/logN) when there is only one marked vertex.

We also assumed that
√
N/2 is odd to simplify the algebraic manipulations. A straightfor-

ward application of the method of amplitude amplification provides an algorithm that takes

O(
√
N logN) steps with success probability Θ(1). Alternative methods can be explored, such

as, classical post-processing search similar to the one proposed by ABNOR [8]. It is also in-

teresting to use of Tulsi’s generalized method [13], which preserves the total number of steps

as O
(√
N logN

)

and enhances the success probability to Θ(1).

The abstract search algorithm and the coinless search algorithm approximately take place

in a two dimensional subspace of the Hilbert space spanned by the initial condition and the

marked vertex. It is this fact that is used for obtaining the analytical results of the algorithms.

The results were also checked by numeric implementations.
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Appendix A

In this appendix we calculate the eigenvectors and eigenvalues of U1 = UeUwUeUw and U2 =

UoUe, which play an essential role in the determination of the special eigenvector of U = U2U1

associated with the eigenvalue with smallest positive argument.

If we suppose that the marked vertex is the origin |w〉 = |00〉, the characteristic polynomial

of U1 is
(

λ2 + λ+ 1
)

(λ− 1)
N−2

.

In fact, U3
1 = I, which shows that the eigenvalues are 1, e±2πi/3. The eigenvector associated

with e2πi/3 is

|ψ1〉 =
1√
6

(

−i
√
3 |00〉+ |01〉+ |10〉+ |11〉

)

, (A.1)

and |ψ2〉 = |ψ1〉∗ is associated with e−2πi/3. U1 can be expressed as

U1 = I +
√
3
(

e
5πi
6 |ψ1〉〈ψ1|+ e−

5πi
6 |ψ2〉〈ψ2|

)

.

To obtain the eigenvectors and eigenvalues of U2 we use a staggered Fourier transform,

which can be introduced in the following form. Define vectors

|Ψk l〉 = a
∣

∣

∣
ψ
(0)
k l

〉

+ b
∣

∣

∣
ψ
(1)
k l

〉

+ c
∣

∣

∣
ψ
(2)
k l

〉

+ d
∣

∣

∣
ψ
(3)
k l

〉

,
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where

∣

∣

∣
ψ
(0)
k l

〉

=
2√
N

√
N
2

−1
∑

i,j=0

ω2ik+2jl|2i, 2j〉,

∣

∣

∣
ψ
(1)
k l

〉

=
2√
N

√
N
2

−1
∑

i,j=0

ω2ik+(2j+1)l|2i, 2j + 1〉,

∣

∣

∣
ψ
(2)
k l

〉

=
2√
N

√
N
2

−1
∑

i,j=0

ω(2i+1)k+2jl|2i+ 1, 2j〉,

∣

∣

∣
ψ
(3)
k l

〉

=
2√
N

√
N
2

−1
∑

i,j=0

ω(2i+1)k+(2j+1)l|2i+ 1, 2j + 1〉,

and ω = e2πi/
√
N and a, b, c, d are complex numbers. For each k and l, |Ψk l〉 span a Hilbert

space Hk l that is invariant under the action of U2. U2 can be expressed as a reduced 4× 4–

matrix,

U red
2 =

















cos k̃ cos l̃
ωk+l

sin k̃ cos l̃
i ωk

cos k̃ sin l̃
i ωl sin k̃ sin l̃

sin k̃ cos l̃
i ωk

ωl cos k̃ cos l̃
ωk − sin k̃ sin l̃ i ωl cos k̃ sin l̃

cos k̃ sin l̃
i ωl − sin k̃ sin l̃ ωk cos k̃ cos l̃

ωl i ωk sin k̃ cos l̃

sin k̃ sin l̃ i ωl cos k̃ sin l̃ i ωk sin k̃ cos l̃ ωk+l cos k̃ cos l̃

















, (A.2)

where k̃ = 2πk√
N

and l̃ = 2πl√
N
. U red

2 can be diagonalized and the eigenvalues and eigenvectors

of this reduced matrix can be used to obtain the eigenvalues and eigenvectors of U2 in the

original Hilbert space. The eigenvalues of U red
2 are 1 and e±i θ, where

cos θ = 2 cos2 k̃ cos2 l̃ − 1. (A.3)

Note that θ depends on k, l, and N . The normalized eigenvectors associated with eigenvalue

1 are

∣

∣

∣
w

(0)
k l

〉

=
1

2 c+















sin(k̃ − l̃)

sin l̃ − sin k̃

sin l̃ − sin k̃

sin(k̃ − l̃)















,
∣

∣

∣
w

(1)
k l

〉

=
1

2 c−















sin(l̃ − k̃)

sin k̃ + sin l̃

− sin k̃ − sin l̃

sin(k̃ − l̃)















, (A.4)

where (c±)2 = (1± cos k̃ cos l̃)(1∓ cos(k̃ − l̃)). When k = l, the first eigenvector reduces to

∣

∣

∣
w

(0)
k k

〉

=
1

√
2
√

1 + cos2 k̃









1

− cos k̃

− cos k̃
1








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and the second eigenvector reduces to
∣

∣

∣
w

(1)
k k

〉

= [0, 1/
√
2,−1/

√
2, 0]. Using the fact that

〈ψ0|ψ(j)
k l 〉 = 1

2δk,0δl,0 for j = 0, ...3, it is straightforward to show that the inner products

between the initial condition and eigenvectors (A.4) are zero. Using the fact that 〈00|ψ(0)
k l 〉 =

2√
N

and 〈00|ψ(1)
k l 〉 = 〈00|ψ(2)

k l 〉 = 〈00|ψ(3)
k l 〉 = 0, it is straightforward to calculate the inner

products between the target state |00〉 and eigenvectors (A.4), which are

〈00|w(0)
k l 〉 =

sin(k̃ − l̃)

c+
√
N

〈00|w(1)
k l 〉 =

sin(l̃ − k̃)

c−
√
N

When k = l the inner product between the target and eigenvectors (A.4) are 〈00|w(0)
k k〉 =√

2/(
√
N
√

1 + cos2 k̃) and 〈00|w(1)
k k〉 = 0.

The normalized eigenvectors associated with eigenvalue eiθ are

∣

∣

∣
w

(2)
k l

〉

=
1

2 c

















−ǫ
√

c− ǫ sin k̃ cos l̃
√

c− ǫ cos k̃ sin l̃
√

c− ǫ sin k̃ cos l̃
√

c+ ǫ cos k̃ sin l̃
√

c+ ǫ sin k̃ cos l̃
√

c− ǫ cos k̃ sin l̃

ǫ
√

c+ ǫ sin k̃ cos l̃
√

c+ ǫ cos k̃ sin l̃

















, (A.5)

where c2 = 1 − cos2 k̃ cos2 l̃ and ǫ is the sign of cos k̃ cos l̃. Note that c ≥ sin k̃ cos l̃. When

k = l, they reduce to

∣

∣

∣
w

(2)
k k

〉

=
1

2
√

1 + cos2 k̃

















cos k̃ − ǫ
√

1 + cos2 k̃

1

1

cos k̃ + ǫ
√

1 + cos2 k̃

















.

Using the fact that the entries of
∣

∣

∣
w

(2)
k l

〉

are real and (U red
2 )∗ =MU red

2 M , where

M =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









,

we show that the eigenvectors associated with eigenvalue e−iθ are obtained by inverting the

lines of the eigenvectors associated with eiθ. Instead of inverting the entries of eigenvector,

one can invert the sign of ǫ. Notice that eigenvalues e±iθ can be −1 only if
√
N/2 is even.

The eigenvectors of the full matrix are

∣

∣

∣
v
(β)
k l

〉

=

3
∑

β′=0

〈β′|w(β)
k l 〉

∣

∣

∣
ψ
(β′)
k l

〉

, (A.6)
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for β = 0, ..., 3 and 0 ≤ k, l <
√
N/2, and the eigenvalues are w

(0)
k l = w

(1)
k l = 1, w

(2)
k l = eiθ, and

w
(3)
k l = e−iθ. The entries of

∣

∣

∣
w

(β)
k l

〉

are represented by 〈γ|w(β)
k l 〉, 0 ≤ γ ≤ 3, to avoid confusion

with the notation of the eigenvalues. Notice that
∣

∣

∣
v
(2)
k l

〉

and
∣

∣

∣
v
(3)
k l

〉

are not complex conjugate.

In order to check the results that depend on Eqs. (13) and (14), we cannot use eigenvectors
∣

∣

∣
v
(3)
k l

〉

because they are not the complex conjugate of
∣

∣

∣
v
(2)
k l

〉

. Since U2 is real, the complex

conjugate of
∣

∣

∣
v
(2)
k l

〉

are eigenvectors of U2 associated with eigenvalues e−iθ and they have to

replace
∣

∣

∣
v
(3)
k l

〉

.

We can decompose |ψ1〉 in the eigenbasis of U2 as

|ψ1〉 =

√
N
2

−1
∑

k,l=0

3
∑

β=0

a
(β)
k l

∣

∣

∣
v
(β)
k l

〉

, (A.7)

where

a
(β)
k l = 〈v(β)k l |ψ1〉. (A.8)

The details of the calculation of |a|2, which can be obtained from Eq. (13), are

|a|2 =

√
N
2

−1
∑

k,l=0

(

∣

∣

∣
a
(0)
k l

∣

∣

∣

2

+
∣

∣

∣
a
(1)
k l

∣

∣

∣

2
)

+
∣

∣

∣
a
(2)
0 0

∣

∣

∣

2

+
∣

∣

∣
a
(3)
0 0

∣

∣

∣

2

=
1

3
+

10

3N
− 4

3N

√
N
2

−1
∑

k,l=0

cos k̃ sin k̃ cos l̃ sin l̃

1− cos2 k̃ cos2 l̃

=
1

3
+

8

3N
+O

(

1

N2

)

.

The details of the calculation of a2〈ψ′
2|ψ′

1〉 are

a2〈ψ′
2|ψ′

1〉 =

√
N
2

−1
∑

k,l=0

(

(

a
(0)
k l

)2

+
(

a
(1)
k l

)2
)

+
(

a
(2)
0 0

)2

+
(

a
(3)
0 0

)2

= −1

6
+

i

2
√
3
+

1− i
√
3

3N
+

2− 2i
√
3

3N

√
N
2

−1
∑

k,l=0

cos k̃ sin k̃ cos l̃ sin l̃

1− cos2 k̃ cos2 l̃

= e
2πi
3

(

1

3
− 4

3N

)

+O

(

1

N2

)

.


