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This paper is concerned with linear quantum networks of N nondegenerate optical para-
metric amplifiers (NOPAs), with N up to 6, which are interconnected in a coherent

feedback chain. Each network connects two communicating parties (Alice and Bob)
over two transmission channels. In previous work we have shown that a dual-NOPA co-
herent feedback network generates better Einstein-Podolsky-Rosen (EPR) entanglement
(i.e., more two-mode squeezing) between its two outgoing Gaussian fields than a single
NOPA, when the same total pump power is consumed and the systems undergo the
same transmission losses over the same distance. This paper aims to analyze stability,
EPR entanglement between two outgoing fields of interest, and bipartite entanglement of
two-mode Gaussian states of cavity modes of the N -NOPA networks under the effect of

transmission and amplification losses, as well as the effect of time delays on the outgoing
fields. It is numerically shown that, in the absence of losses and delays, the network with
more NOPAs in the chain requires less total pump power to generate the same degree of

EPR entanglement. Moreover, we report on the internal entanglement synchronization
that occurs in the steady state between certain pairs of Gaussian oscillator modes inside
the NOPA cavities of the networks.
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1 Introduction

Entanglement is a key factor in certain quantum information processing tasks, such as quan-

tum teleportation [1, 2]. Continuous-variable quantum information is highly motivated, as

preparation of continuous-variable entangled states is efficient and mathematical description

of a continuous variable system is adapted to various physical systems (e.g., quadrature op-

erators of light and total angular momentum operators of an ensemble of atoms satisfy the

canonical commutation relations) [3, 4, 5]. In particular, Gaussian states play an impor-

tant role in continuous-variable quantum information ascribable to 1) physically, the ground

state of a quantized electromagnetic field is a Gaussian state; 2) mathematically, though an

arbitrary Gaussian state lives in an infinite Hilbert space, it is simply and completely charac-

terized by the mean and (symmetrized) covariance of field operators, which are represented
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1142 Entanglement in a linear coherent feedback chain of nondegenerate optical parametric amplifiers

by a vector and a matrix with finite dimensions, respectively; 3) experimentally, entanglement

in Gaussian states is easily obtained [5, 6, 7, 8]. For instance, Gaussian entangled beams can

be generated by employing a strong coherent pump beam to shine a nonlinear χ(2) crystal

inside the cavity of a nondegenerate optical parametric amplifier (NOPA). Interactions be-

tween the pump beam and two modes in the cavity produce a pair of entangled outgoing

fields in Gaussian states which have strong correlations in quadrature-phase amplitudes [8].

Such entanglement is called Einstein-Podolsky-Rosen (EPR) entanglement.

In this paper, we investigate EPR entanglement between two propagating continuous-

mode light fields and bipartite entanglement of two-mode Gaussian states. The former one,

namely, the two-mode squeezing of the two continuous-mode fields, is characterized by a two-

mode squeezing spectrum V (ıω), which can be obtained via an associated quantum Langevin

equation. Strong EPR entanglement is indicated by a high degree of two-mode squeezing over

a wide frequency range. The sufficient condition of EPR entanglement existing at a certain

frequency for a pair of quadrature-phase amplitudes is that the value of the corresponding

V (ıω) satisfies a sum criterion [8, 9]. On the other hand, entanglement of two-mode Gaussian

states can be measured by the logarithmic negativity E(t) in the time domain. The logarith-

mic negativity is calculated based on the covariance matrix of the position and momentum

operators corresponding to the two modes. For strong entanglement, E(t) has a high positive

value [7, 10]. More details of the two quantities of entanglement are given in Section 4.

In reality, a quantum system is dissipative due to interactions between the system and its

environment. Such inevitable losses degrade entanglement. Thus, transmission distance and

communication quality are limited. Failure of the communication may even happen [1, 11].

Consequently, reliable generation and distribution of entanglement in the presence of losses

in transmission channels is a central issue in quantum communications.

Our previous work [12] has investigated EPR entanglement prepared by a dual-NOPA

coherent feedback network where the two NOPAs are distributed separately at two distant

communicating ends (Alice and Bob), as shown in Fig. 1 (b). The degree of EPR entan-

glement is influenced by the total pump power applied to the system, values of the damping

rates of the NOPAs, amplification losses induced by unwanted interactions between a NOPA

and its environment, as well as transmission losses caused by leakage of photons along the

transmission channels. Moreover, time delays in the process of transmission narrow the band-

width of suppressed two-mode squeezing. Compared to a single NOPA placed in between the

two ends (at Charlie’s) over the same transmission distance as indicated in Fig. 1 (a), the

coherent feedback configuration consumes less total pump power to achieve the same degree

of EPR entanglement when amplification losses are ignored and the damping rates of the sys-

tems are identical; on the other hand, the dual-NOPA system proposed in [12] achieves higher

level of EPR entanglement against transmission losses under the same total pump power and

damping rates. More precisely, for sufficiently high transmission rates one would employ a

distributed version of the scheme, while for low transmission rates a centralised architecture

would be employed to give enhanced entanglement under the same pump power and damping

rates.

This paper studies a coherent feedback configuration of up to six NOPAs that are evenly

deployed between two ends (Alice and Bob) and connected in a linear coherent feedback in-

terconnection, as shown in Fig. 1 (c). Descriptions of optical components employed in the
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Fig. 1. (a) Entangled pairs (blue circles) generated by a single NOPA which is placed in between

Alice (A) and Bob (B), say at Charlie’s (C). (b) Entangled pairs generated by a dual-NOPA
coherent feedback system, in which two NOPAs are deployed at Alice’s and Bob’s separately. (c)
Entangled pairs generated by an N -NOPA coherent feedback system, in which N NOPAs are evenly
distributed in a linear fashion between Alice and Bob. Transmission losses of the three systems
are denoted by beamsplitters (BS) with transmission rates

√
αN−1, αN−1 and α, respectively.

(Calculations of transmission rates are given in Section 2.)

system as well as the dynamics of the system under the effects of losses and time delays are

given in Section 2. Section 3 gives an analysis of stability conditions in systems without and

with losses. We prove a theorem showing that the stability thresholds can be obtained by

solving certain polynomials. Section 4 is devoted to investigating and comparing degrees of

end-to-end EPR entanglement of the N -NOPA systems in absence of time delays but with

losses considered. We give the ideal values of θa and θb as shown in Fig 2 for N -NOPA systems

with the even number and the odd number of NOPAs. Moreover, we look into entanglement

of two-mode Gaussian states related to pairs of optical cavity modes. In this section, there

are some qualitative findings such as in the absence of losses, the degree of end-to-end entan-

glement increases as the amplitude of pump beam for each NOPA approaches the value at

which the system just loses stability; in the presence of losses, there exists an optimal value of

pump amplitude of NOPAs for the end-to-end entanglement; the entanglement generated be-

tween collective modes is different between systems with an even and odd number of NOPAs;

with the same pump power and without losses, increasing the number of NOPAs improves
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the end-to-end entanglement but not the entanglement of internal two-mode Gaussian states.

The interesting qualitative observations described above are not straightforward to analyze

quantitatively, so their quantitative analyses are left as topics for future research. Section 5

explores effects of time delays on the stability and entanglement of the systems. Finally, we

restate the main results of this paper as a conclusion in Section 6.

The following notations are adopted in this paper: ı denotes
√
−1, the transpose of a

matrix of numbers or operators is denoted by (·)T , and (·)∗ denotes (i) the complex conjugate

of a number, (ii) the conjugate transpose of a matrix, as well as (iii) the adjoint of an operator.

In denotes an n by n identity matrix, Om×n is an m by n zero matrix (we simply write Om,

if m = n), trace operator is represented by Tr[·], δij denotes the Kronecker delta and δ(t)

denotes the Dirac delta function. 〈·〉 denotes quantum expectation and σ(·) denotes the largest
singular value of a matrix.

Fig. 2. An N -NOPA coherent feedback system undergoing losses and time delays.

2 System Model

In this section, a brief introduction of quantum optical devices and dynamics of the system

is given. Fig. 2 shows a detailed system model of our N -NOPA coherent feedback network.

We take account of the system undergoing losses and time delays. The first NOPA (G1) and

the N -th NOPA (GN ) are placed at Alice’s and Bob’s, respectively; the other NOPAs are

deployed in a linear line in between Alice and Bob. The length of the path between every two

neighbouring NOPAs is identical. Transmission losses are modelled by beamsplitters. The

time delay in each path is denoted by a constant τ . Two adjustable phase shifters with phase

shifts θa and θb, respectively, are placed at two outputs separately in order to obtain the best

two-mode squeezing between fields ξout,a and ξout,b.

2.1 Quantum optical components

2.1.1 NOPA

Fig. 3 (a) gives a block diagram representation of a NOPA (Gi). Four ingoing boson fields are

in the vacuum state, among which ξloss,a,i and ξloss,b,i are unwanted amplification losses. The

field operators comply with the commutation relations, that is, for a boson field operator ξi,

we have [ξi(t), ξj(s)
∗] = δijδ(t−s). The main component of NOPA is a two-ended cavity with

two orthogonally polarized boson modes ai and bi, which obey the commutation relations



Z. Shi and H. I. Nurdin 1145

[ai, a
∗
j ] = δij , [bi, b

∗
j ] = δij , [ai, b

∗
j ] = 0 and [ai, bj ] = 0. The fields ξin,a,i, ξin,b,i, ξloss,a,i and

ξloss,b,i interact with the modes via coupling operators L1 =
√
γai, L2 =

√
γbi, L3 =

√
κai

and L4 =
√
κbi, respectively, where γ and κ are damping rates. To yield EPR entanglement

between outgoing Gaussian fields ξout,a,i and ξout,b,i, a strong pump beam in a coherent state

is employed to shine the nonlinear χ(2) crystal inside the cavity. The modes are coupled with

the beam via the system Hamiltonian Hsys = ı
2ǫ (a

∗
i b

∗
i − aibi), where ǫ is a real parameter

related to the effective amplitude of the pumping field [8, 13].

The time-varying interaction Hamiltonian between the system and its environment is

Hint(t) = ı(ξin(t)
∗L − L∗ξin(t)), where ξin(t) = [ξin,a,i(t), ξin,b,i(t), ξloss,a,i(t), ξloss,b,i(t)]

T

and L = [L1, L2, L3, L4]
T [14]. The time evolution of the mode and field operators in the

Heisenberg picture are given by [13]

ai(t) = U(t)∗aiU(t),

bi(t) = U(t)∗biU(t),

ξout,a,i(t) = U(t)∗ξin,a,i(t)U(t),

ξout,a,i(t) = U(t)∗ξin,b,i(t)U(t),

where U(t) = exp−→ (−i
∫ t

0
Hint(s)ds) is a unitary process satisfying the quantum white noise

equation U̇(t) = −ıHint(t)U(t). Using the rules of quantum stochastic calculus, the dynamics

of the NOPA Gi is described by the quantum Langevin equations [8, 13, 15, 16]

ȧi (t) = −
(

γ+κ
2

)

ai (t) +
ǫ
2b

∗
i (t)−

√
γξin,a,i (t)−

√
κξloss,a,i (t) ,

ḃi (t) = −
(

γ+κ
2

)

bi (t) +
ǫ
2a

∗
i (t)−

√
γξin,b,i (t)−

√
κξloss,b,i (t) , (1)

and the output fields are

ξout,a,i (t) =
√
γai (t) + ξin,a,i (t) ,

ξout,b,i (t) =
√
γbi (t) + ξin,b,i (t) . (2)

Fig. 3. (a) A NOPA. (b) A beamsplitter

2.1.2 Beamsplitter

The transmission loss in a path between two adjacent NOPAs is caused by loss of photons.

It is modelled by a beamsplitter with transmission rate α and reflection rate β =
√
1− α2

[13, 17]. As shown in Fig. 3 (b), output signal ξBS,out of the beamsplitter is the combination

of the two ingoing fields, that is, ξBS,out = αξBS,in+βξBS,i. In our case, ξBS,i is a white-noise

field operator in the ground state and ξBS,in is an outgoing Gaussian field of a NOPA.



1146 Entanglement in a linear coherent feedback chain of nondegenerate optical parametric amplifiers

Assume the total transmission distance between Alice and Bob is d kilometres. There-

fore, the length of each path between every two adjacent NOPAs is d
N−1 km. Based on the

assumption of that there exists around 0.2 dB per kilometre transmission loss in optical fibre

[18], we obtain that the transmission rate of each beamsplitter is α = 10−
0.01d
N−1 .

2.2 The N-NOPA coherent feedback network

Based on the dynamics of a NOPA and the transformation of a beamsplitter as given above,
an N -NOPA coherent feedback system undergoing transmission losses and time delays as
depicted in Fig. 2 has the following dynamics at time t > (N − 1)τ , when all the nodes of
the network are connected,

ȧ1 (t) = −
(γ + κ

2

)

a1 (t) +
ǫ

2
b
∗
1 (t)−

√
γξin,a,1 (t)−

√
κξloss,a,1 (t) ,

ȧi (t) = −
(γ + κ

2

)

ai (t) +
ǫ

2
b
∗
i (t)−

√
κξloss,a,i (t)

−γ

i−1
∑

k=1

α
k
ai−k(t− kτ)− α

i−1√
γξin,a,1(t− (i− 1)τ)

−β
√
γ

i−1
∑

k=1

α
k−1

ξBS,a,i−k(t− kτ),

˙bN (t) = −
(γ + κ

2

)

bN (t) +
ǫ

2
a
∗
N (t)−√

γξin,b,N (t)−
√
κξloss,b,N (t) ,

ḃj (t) = −
(γ + κ

2

)

bj (t) +
ǫ

2
a
∗
j (t)−

√
κξloss,b,j (t)

−γ

N−j
∑

k=1

α
k
bj+k(t− kτ)− α

N−j√
γξin,b,N (t− (N − j)τ)

−β
√
γ

N−j
∑

k=0

α
k−1

ξBS,b,j+k(t− kτ), (3)

with outputs

ξout,b (t) = e
ıθb

(

√
γ

N
∑

k=1

α
k−1

bk(t− (k − 1)τ) + α
N−1

ξin,b,N (t− (N − 1)τ)

+β

N−1
∑

k=1

α
k−1

ξBS,b,k+1(t− kτ)

)

,

ξout,a (t) = e
ıθa

(

√
γ

N
∑

k=1

α
N−k

ak(t− (N − k)τ) + α
N−1

ξin,a,1 (t− (N − 1)τ)

+β

N−1
∑

k=1

α
k−1

ξBS,a,N−k(t− kτ)

)

, (4)

where 1 < i ≤ N and 1 ≤ j < N .

As a linear stochastic model, the dynamics of the system can be described by a linear
quantum stochastic differential equation in the quadrature operators of the system [19, 20].
Note that quadratures of a bosonic mode, say ai, are aqi = ai + a∗i and api = −ıai + ıa∗i .
Similarly, the quadratures of a field operator, say ξi, are ξqi = ξi + ξ∗i and ξpi = −ıξi + ıξ∗i .
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Define the vectors of quadratures corresponding to the N -NOPA system as

z = [aq
1, a

p
1, b

q
1, b

p
1, a

q
2, a

p
2, b

q
2, b

p
2, · · · , aq

N , a
p
N , b

q
N , b

p
N ]T ,

ξ = [ξqin,a,1, ξ
p
in,a,1, ξ

q

in,b,N , ξ
p

in,b,N , ξ
q

loss,a,1, ξ
p

loss,a,1,

ξ
q

loss,b,1, ξ
p

loss,b,1, ξ
q

loss,a,2, ξ
p

loss,a,2, ξ
q

loss,b,2, ξ
p

loss,b,2, · · · ,
ξ
q

loss,a,N , ξ
p

loss,a,N , ξ
q

loss,b,N , ξ
p

loss,b,N , ξ
q
BS,a,1, ξ

p
BS,a,1,

ξ
q
BS,a,2, ξ

p
BS,a,2, ξ

q

BS,b,2, ξ
p

BS,b,2, · · · , ξ
q
BS,a,N−1, ξ

p
BS,a,N−1,

ξ
q

BS,b,N−1, ξ
p

BS,b,N−1, ξ
q

BS,b,N , ξ
p

BS,b,N ]T ,

ξout = [ξqout,a, ξ
p
out,a, ξ

q

out,b, ξ
p

out,b]
T
. (5)

In the absence of time delays, the system dynamics is of the form

ż (t) = ANz (t) +BNξ (t) , (6)

ξout (t) = CNz (t) +DNξ (t) . (7)

For the N -NOPA system, the covariance matrix of its 2N -mode Gaussian state is

PN (t) =
1

2
Tr

(

ρ(0)
(

z(t)z(t)T +
(

z(t)z(t)T
)T

))

, PN (0) = P0, (8)

where ρ(0) is the initial density operator of the system. Furthermore, when time delays are
neglected, PN (t) satisfies the Lyapunov matrix differential equation

dPN (t)

dt
= ANPN (t) + PN (t)AT

N +BNBT
N . (9)

Specially, the steady-state covariance matrix PN = limt→∞ PN (t) satisfies the Lyapunov
equation [11, 23]

ANPN + PNAT
N +BNBT

N = 0. (10)

Define the parameters of the system as follows. For each NOPA, we set ǫ = xγr Hz and
γ = γr

y
Hz, where x (0 < x ≤ 1) and y (0 < y ≤ 1) are real parameters, and γr = 7.2×107 Hz

is a reference value for the transmissivity mirrors of the NOPA. Following [12, 21], we assume

that κ = 3×106√
2

when ǫ = 0.6γr and the value of κ is proportional to the absolute value of ǫ, so

we set κ = 3×106√
2×0.6

x [12, 21]. Suppose that the total transmission distance is 1 km, then the

transmission rate of each beamsplitter is α = 10−
0.01
N−1 and time delay τ in the path between

any two adjacent NOPAs is around 10−5

3(N−1) . The range of the adjustable phase shifts θa and

θb is (−π, π].

3 Stability analysis

This section is devoted to the stability analysis of our N -NOPA system. If the system is
unstable, the mean total photon number in the cavity modes is continuously growing, which
is undesirable. By stability, we mean that the mean of the quadrature vector z(t) becomes a
zero vector as time approaches infinity, namely, 〈z(∞)〉 = 0, and Eq. (10) has a unique solution
[24]. The system is stable when AN in Eq. (6) is Hurwitz, that is, all the eigenvalues of AN

have real negative parts. We are interested in the range of x over which stability is assured.
However, unlike the dual-NOPA system studied in our previous work [12], it is infeasible to
obtain an explicit expression for the stability threshold xth at which the system just loses
stability by checking the Hurwitz property of AN . Here, by regarding x as an uncertainty, we
employ the µ-analysis method from H∞ control theory [22] to obtain the following lemma.
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Lemma 1 In the absence of time delays, an N -NOPA coherent feedback system is stable if

and only if det(ıωI −AN (x)) 6= 0 ∀ω ∈ R and ∀x ∈ [0, xth), where 0 < xth ≤ 1.

Proof: First, for convenience, let us define the following matrices,

A0 = −γ + κ

2
I4N ,∆0(x) = γr









0 0 x
2 0

0 0 0 −x
2

x
2 0 0 0
0 −x

2 0 0









,

Ab =









0 0 0 0
0 0 0 0
0 0 −γ 0
0 0 0 −γ









, Aa =









−γ 0 0 0
0 −γ 0 0
0 0 0 0
0 0 0 0









. (11)

Recall that ǫ = xγr, then from Eq. (3) and Eq. (6) the matrix AN (x) of an N -NOPA system
is a 4N × 4N real matrix given by

AN (x) =















A0 αAb α2Ab · · · αN−1Ab

αAa A0 αAb · · · αN−2Ab

...
...

. . .
...

...
αN−2Aa · · · αAa A0 αAb

αN−1Aa · · · α2Aa αAa A0















+∆N (x), (12)

where ∆N (x) = IN ⊗∆0(x). To proceed, we now investigate the robust stability condition of
a certain feedback system, as shown in Fig.4. The state space of the system is given by

˙̃z = ÃN z̃ + u,

y = z̃, (13)

where ÃN = AN (x) − ∆N (x) and z̃ is the state vector. Hence, the transfer function of the
system is G(s) = (sI − ÃN )−1. As long as the stability condition of this system holds, our
N -NOPA coherent feedback system is stable.

Fig. 4. A feedback system with transfer function G(s) and uncertainty ∆N (x).

According to Theorem 11.8 in [22], if the system (13) with transfer function G(s) is
stable, then the closed-loop system in Fig. 4 with structured uncertainty ∆N (x) satisfying
‖∆N (x)‖∞ ≤ 1

η
(η > 0) is internally stable if and only if

sup
ω∈R

µ(G(ıω)) < η, (14)
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where

µ(G(ıω)) =

{ 1
min{σ(∆N (x))} for det(I −G(ıω)∆N (x)) = 0, ∀x ∈ (0, xth)

0, for det(I −G(ıω)∆N (x)) 6= 0, ∀x ∈ (0, xth).

(15)

First, we check the stability of the system (13). Using (11) and (12), we obtain that
det(λI − ÃN ) = (λ+ γ+κ

2 )4N . Hence G is stable because det(λI − ÃN ) has all its zeros in the
left half plane by virtue of the fact that γ > 0 and κ ≥ 0. Noting that 0 < x ≤ 1, we have

‖∆N (x)‖∞ = max
1≤i≤4N

4N
∑

j=1

|∆N (x)ij | = ǫ
2 ≤ γr

2 , therefore, η = 2
γr
. Since 1

σ(∆N (x)) = 2
ǫ
≥ η

∀ω ∈ R, for (14) to be fulfilled we must have that det(I−G(ıω)∆N (x)) 6= 0 ∀x ∈ (0, xth). Since
det(I − G(ıω)∆N (x)) = det(G(ıω)) det(ıωI − AN (x)) and det(G(ıω)) = (ıω + γ+κ

2 )4N 6= 0,
we obtain Lemma 1.

Lemma 1 shows that the system is stable as long as AN (x) does not have any purely
imaginary eigenvalues. In fact, we shall prove that AN (x) has no eigenvalues on the imaginary
axis, which leads to the following theorem.

Theorem 1 In the absence of time delays, an N -NOPA coherent feedback system is stable

if and only if 0 ≤ x < xth, where 0 < xth ≤ 1 is the smallest positive root of the polynomial

det (AN (x)).

Proof: For convenience, we define m = γ+κ
2 , n(x) = xγr

2 and an invertible matrix

L =









IN ⊗ [ 1 0 0 0 ]
IN ⊗ [ 0 0 1 0 ]
IN ⊗ [ 0 1 0 0 ]
IN ⊗ [ 0 0 0 1 ]









. (16)

Exploiting (12), the characteristic polynomial of AN (x) is

pc(λ, x) = det (λI4N −AN (x))

= det
(

L (λI4N −AN (x))L−1
)

= det









Au(λ) −n(x)IN ON ON

−n(x)IN Al(λ) ON ON

ON ON Au(λ) n(x)IN
ON ON n(x)IN Al(λ)









, (17)

where Au(λ) and Al(λ) are N ×N matrices given by

Au(λ) =















λ+m 0 0 · · · 0
αγ λ+m 0 · · · 0
...

...
. . .

...
...

αN−2γ · · · αγ λ+m 0
αN−1γ · · · α2γ αγ λ+m















,

Al(λ) =















λ+m αγ α2γ · · · αN−1γ
0 λ+m αγ · · · αN−2γ
...

...
. . .

...
...

0 · · · 0 λ+m αγ
0 · · · 0 0 λ+m















. (18)
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Since det

[

A B
C D

]

= det(AC−BD) for any square matrices A,B,C,D such that CD = DC

and D is invertible, we obtain

pc(λ, x) =
(

det
(

Au(λ)Al(λ)− n(x)2IN
))2

, (19)

and Au(λ)Al(λ)− n(x)2IN is a symmetric matrix given by

Au(λ)Al(λ) − n(x)
2
IN

=































(λ + m)2 − n(x)2 αγ(λ + m) α2γ(λ + m) · · · αN−1γ(λ + m)

αγ(λ + m) (λ + m)2 − n(x)2 + l2,2 α
(

αγ(λ + m) + l2,2

)

· · · αN−2
(

αγ(λ + m) + l2,2

)

α2γ(λ + m) α
(

αγ(λ + m) + l2,2

)

(λ + m)2 − n(x)2 + l3,3 · · · αN−3
(

αγ(λ + m) + l3,3

)

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

αN−2γ(λ + m) αN−3
(

αγ(λ + m) + l2,2

)

αN−4
(

αγ(λ + m) + l3,3

)

· · · α
(

αγ(λ + m) + lN−1,N−1

)

αN−1γ(λ + m) αN−2
(

αγ(λ + m) + l2,2

)

αN−3
(

αγ(λ + m) + l3,3

)

· · · (λ + m)2 − n(x)2 + lN,N































,

(20)

where lj,j = γ2
j−1
∑

k=1

α2k. Let us define the ith column of (20) as ci. Let λ = ıω for any

non-zero ω ∈ R and apply the following elementary column operations: c1 − 2m
αN−1γ

cN → c1

and cj − 1
αN−jγ

cN → cj for 1 < j < N . Thus, the matrix (20) is reduced to a matrix F given

by

F =



















−m2 − n(x)2 − ω2 0 0 · · · 0 αN−1γ(ıω +m)
f2,1 f 0 · · · 0 αN−2 (αγ(ıω +m) + l2,2)
f3,1 f3,2 f · · · 0 αN−3 (αγ(ıω +m) + l3,3)
...

...
...

. . .
...

...
fN−1,1 fN−1,2 fN−1,3 · · · f α (αγ(ıω +m) + lN−1,N−1)
fN,1 fN,2 fN,3 · · · fN,N−1 (ıω +m)2 − n(x)2 + lN,N



















, (21)

where f = m2 − n(x)2 − ω2 − γm + ıω(2m − γ) and fi,j (1 < i < N, 1 ≤ j < i) is a
complex number. As ω 6= 0, f 6= 0 and −m2 − n(x)2 − ω2 is a negative real number, it can
be found that the columns of the matrix F are linearly independent, that is, for a vector
[v1, v2, · · · , vN ] ∈ RN , the equality

F











v1
v2
...
vN











= 0, (22)

is true if and only if v1 = v2 = · · · = vN = 0. Thus, the matrix Au(λ)Al(λ) − n(x)2IN
has full rank, which leads to det

(

Au(λ)Al(λ)− n(x)2IN
)

6= 0 when ω 6= 0. Consequently,
det(ıωI −AN ) 6= 0 ∀ non-zero ω ∈ R. Following Lemma 1, we obtain the theorem.

In the rest of paper, we shall numerically analyze stability and entanglement performance
of the N -NOPA coherent feedback system. To this end, we now set y = 1, that is, γ = γr.
Based on Theorem 1, with the help of Mathematica, we get Fig. 5 that plots the values
of the stability threshold xth of our N -NOPA systems (2 ≤ N ≤ 20) in the absence of
losses (black circles), with transmission losses only (blue crosses) and with both transmission
and amplification losses (red plus signs). The values of xth of the N -NOPA systems (2 ≤
N ≤ 6) are listed in Table 1. It is indicated that the value of the stability threshold xth
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decreases as more NOPAs are added to the network. The rate of decrease becomes smaller
as the number of NOPAs grows. Moreover, existence of amplification and transmission losses
broadens the range of x over which stability is guaranteed. Notice from the figure that the
effect of transmission and amplification losses on xth diminishes for higher values of N .

Fig. 5. Values of xth of N -NOPA systems (2 ≤ N ≤ 20) in the absence of losses (α = 1, κ = 0)

(black circles), with transmission losses only (α = 10
−0.01
N−1 , κ = 0) (blue crosses) and with both

transmission and amplification losses (α = 10
−0.01
N−1 , κ =

(

3×106

0.6×
√
2

)

xth) (red plus signs), with

y = 1 and d = 1.

Table 1. Values of stability threshold xth of the N -NOPA coherent feedback system (2 ≤ N ≤ 6)
without losses, with transmission losses only and with both transmission and amplification losses,

y = 1 and d = 1.

N xth xth xth

(α = 1, κ = 0) (α = 10
−0.01
N−1 , κ = 0) (α = 10

−0.01
N−1 , κ =

(

3×106

0.6×
√
2

)

xth)

2 0.4142 0.4209 0.4363
3 0.2679 0.2715 0.2808
4 0.1989 0.2013 0.2080
5 0.1583 0.1602 0.1655
6 0.1316 0.1331 0.1375

Note that when values of all system parameters except for x are given, we can also use
the mussv function in the Robust Control Toolbox of MATLAB to estimate the stability
threshold. Details are given in Appendix A.

4 Entanglement

In this section, entanglement performances are compared among the systems with number
of NOPAs varying from 2 to 6, in the absence of time delays. First, we study the EPR en-
tanglement, namely, the two-mode squeezing, between the two outgoing fields when systems
are in an ideal case where no losses are present. After that, the effect of transmission and
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amplification losses on the two-mode squeezing is taken into account. In the end, we ana-
lyze the entanglement between pairs of optical cavity modes in the system using logarithmic
negativity as an entanglement measure.

4.1 End-to-end EPR entanglement

Strong correlation between quadrature-phase amplitudes of two fields is a manifestation of
EPR entanglement [8]. The EPR entanglement between two continuous-mode fields is quanti-
fied in frequency domain. To this end, we define the Fourier transforms of ξout,b(t) and ξout,a(t)
in Eq. (4) as Ξout,b(ıω) =

1√
2π

∫∞
−∞ ξout,b(t)e

−ıωtdt and Ξout,a(ıω) =
1√
2π

∫∞
−∞ ξout,a(t)e

−ıωtdt.

The two-mode amplitude spectrum V+(ıω) and the two-mode phase spectrum V−(ıω) are de-
fined as [8]

〈(Ξ̃q
out,a(ıω) + Ξ̃q

out,b(ıω))
∗(Ξ̃q

out,a(ıω
′) + Ξ̃q

out,b(ıω
′))〉 = V+(ıω)δ(ω − ω

′),

〈(Ξ̃p
out,a(ıω)− Ξ̃p

out,b(ıω))
∗(Ξ̃p

out,a(ıω
′)− Ξ̃p

out,b(ıω
′))〉 = V−(ıω)δ(ω − ω

′).

Furthermore, based on (3) and (4), the two-mode squeezing spectra are obtained by [25, 26]

V+(ıω) = Tr [H1(ıω)
∗H1(ıω)] , (23)

V−(ıω) = Tr [H2(ıω)
∗H2(ıω)] , (24)

whereH1(ıω) = [1 0 1 0]H(ıω),H2(ıω) = [0 1 0−1]H(ıω), andH(ıω) = CN (ıωI −AN )
−1

BN+
DN is the transfer function of the N -NOPA system. Note that V±(ıω) ≥ 0 for all ω.

Define the two-mode squeezing spectrum V (ıω) as

V (ıω) = V+(ıω) + V−(ıω). (25)

The fields ξout,a and ξout,b in the system shown in Fig. 2 are EPR entangled at the frequency
ω rad/s if ∃θa, θb ∈ (−π, π] such that V (ıω, θa, θb) satisfies the sum criterion [9],

V (ıω, θa, θb) = V+(ıω, θa, θb) + V−(ıω, θa, θb) < 4. (26)

Perfect two-mode squeezing has the feature that V (ıω, θa, θb) = V±(ıω, θa, θb) = 0 [8].
Of course, perfect squeezing cannot be achieved in practice. Therefore, one aims instead
to have a small value V±(ıω, θa, θb) over a wide frequency range [9]. According to [12, 25],
V±(iω, θa, θb) ≈ V±(0, θa, θb) holds at low frequencies. Thanks to this, we can simply focus
on the two-mode spectra V (0, θa, θb) and V±(0, θa, θb) at ω = 0 for the rest of the paper.

In this paper, plots of the two-mode spectra are presented in dB unit, that is, V±(ıω)(dB) =
10 log10 V±(ıω) and V (ıω)(dB) = 10 log10 V (ıω). In this case, perfect EPR entanglement at
frequency ω corresponds to V±(ıω) = −∞ (dB). Better two-mode squeezing is indicated by
a more negative value of V (ıω)(dB).

4.1.1 An ideal case.

Now we examine the two-mode spectra when the N -NOPA system is lossless. First, we aim
to find values of θa and θb at which the cost function V (0, θa, θb) at ω = 0 is minimized.
Based on (23), (24) and via Mathematica, we obtain Table 2 which presents the formulas of
the two-mode squeezing spectra of N -NOPA systems in the ideal case.

For any value of x in the interval (0, xth), we have −1 + x2 < 0 for the 2-NOPA system,
3− 10x2 +3x4 > 0 for the 3-NOPA system, −1+7x2 − 7x4 +x6 < 0 for the 4-NOPA system,
5− 60x2 +126x4 − 60x6 +5x8 > 0 for the 5-NOPA system, and −3+55x2 − 198x4 +198x6 −
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Table 2. Two mode squeezing spectra of the N -NOPA coherent feedback system (2 ≤ N ≤ 6)
without losses, y = 1.

N V±(0)

2 2
(1+x2)4+16x2(−1+x2)2+8x(1+x2)2(−1+x2) cos(θa+θb)

(1−6x2+x4)2

3 2
(1+x2)6+4x2(3−10x2+3x4)2+4x(1+x2)3(3−10x2+3x4) cos(θa+θb)

(−1+15x2−15x4+x6)2

4 2
(1+x2)8+64x2(−1+7x2−7x4+x6)2+16x(1+x2)4(−1+7x2−7x4+x6) cos(θa+θb)

(1−28x2+70x4−28x6+x8)2

5 2
(1+x2)10+4x2(5−60x2+126x4−60x6+5x8)2+4x(1+x2)5(5−60x2+126x4−60x6+5x8) cos(θa+θb)

(−1+45x2−210x4+210x6−45x8+x10)2

6 2
(1+x2)12+16x2(−3+55x2−198x4+198x6−55x8+3x10)2+8x(1+x2)6(−3+55x2−198x4+198x6−55x8+3x10) cos(θa+θb)

(1−66x2+495x4−924x6+495x8−66x10+x12)2

55x8 +3x10 < 0 for the 6-NOPA system. Recall that the values of the stability threshold xth

are listed in Table 1. Thus, for systems with an even number of NOPAs, the best two-mode
squeezing is obtained if θa + θb = 0 or θa = θb = π; for systems with an odd number of
NOPAs, the best two-mode squeezing is achieved when |θa + θb| = π. In this regard, we set

(θa, θb) =

{

(0, 0), for N is even,
(π, 0), for N is odd.

(27)

In the rest of paper, V (ıω) and V±(ıω) are defined as the two-mode spectra at the fixed values
of θa and θb as given in (27).

Now we check the two-mode spectra V±(0, k) as a function of k at ω = 0, where x = kxth

as the value of k varies from 0.5 to 1. As shown in Fig. 6, the two-mode squeezing spectra
decrease as the value of x approaches the stability threshold. Moreover, the rates of the
decreases are similar.

Fig. 6. Log-log plots of V (0, k) (dB) with respect to N -NOPA systems (2 ≤ N ≤ 6) with k varying
from 0.5 to 1, x = kxth, y = 1, α = 1 and κ = 0.

One of our interests is the power consumption of the systems to generate the same level
of EPR entanglement, say, V (0) = −25 dB. We denote the corresponding x as x−25 dB. Here
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the power of pump beam employed by each NOPA is x2γ2
r . Hence, the total pump power of

an N -NOPA system is Nx2γ2
r . Since γr is a fixed reference, to compare pump consumption

between different values of N , it is enough to consider only the quantity Nx2. As the third
column of Table 3 indicates, a system with more NOPAs consumes less power to yield the
same degree of two-mode squeezing.

4.1.2 Effects of losses.

The effect of losses on the two-mode squeezing of the systems is indicated in Table 3. All
the systems have the same value of V (0) (V (0) = −25 dB) when losses are neglected. EPR
entanglement of each system is degraded by around 15 dB under the effect of transmission
losses, and the reduction is more than 20 dB if both transmission and amplification losses are
present. Generally, a system employing more NOPAs provides a slight improvement in EPR
entanglement when transmission losses are present, in the absence of amplification losses.
This merit disappears in the presence of both transmission and amplification losses. In this
case, the system with more NOPAs yields less EPR entanglement.

Table 3. Power consumptions (Nx2), values of V±(0), and values V (0) of N -NOPA systems
(2 ≤ N ≤ 6) under effect of losses, with x = x−25 dB, y = 1 and d = 1.

N x−25 dB Nx2
−25 dB V±(0) V (0) V±(0) V (0)

(α = 1, (α = 10
−0.01
N−1 , (α = 10

−0.01
N−1 , (α = 10

−0.01
N−1 , (α = 10

−0.01
N−1 ,

κ = 0) κ = 0) κ = 0) κ =
(

3×106

0.6×
√
2

)

x) κ =
(

3×106

0.6×
√
2

)

x)

2 0.3978 0.3165 -13.3150 -10.3047 -7.5838 -4.5735
3 0.2579 0.1995 -13.3286 -10.3183 -7.4114 -4.4011
4 0.1916 0.1468 -13.3302 -10.3199 -7.3510 -4.3407
5 0.1526 0.1164 -13.3295 -10.3192 -7.3236 -4.3133
6 0.1269 0.0966 -13.3306 -10.3203 -7.3078 -4.2975

Table 4. Approximate optimal two-mode squeezing under the effect of transmission losses and
the corresponding power consumption for the N -NOPA systems (2 ≤ N ≤ 6) with y = 1, d = 1,

α = 10
−0.01
N−1 and κ = 0.

N xopt Nx2
opt V±(0) V (0)

2 0.4074 0.3319 -13.3683 -10.3580
3 0.2644 0.2097 -13.3928 -10.3825
4 0.1965 0.1544 -13.3991 -10.3888
5 0.1565 0.1225 -13.4018 -10.3915
6 0.1302 0.1017 -13.4033 -10.3930

Now we compare the two-mode squeezing levels when the systems are consuming the same
total pump power. From now on, we use xN to denote x of the system with N NOPAs. In this
case, we set x6 = 0.13, hence xi = (

√

6/i)x6 (i = 2, 3, 4, 5). The two-mode squeezing spectra
in the (ideal) lossless case, in the presence of transmission losses only, as well as under effect of
both transmission and amplification losses are plotted in Fig. 7. With the same total power, a
system consisting of more NOPAs yields stronger EPR entanglement, except that when both
transmission and amplification losses are present, the 6-NOPA system has a slightly lower
degree of EPR entanglement than the 5-NOPA one. Moreover, the EPR entanglement of the
system with less NOPAs has smaller change under the influence of losses.
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Fig. 7. Log-log plots of V±(ıω) (left) and V+(ıω)+V−(ıω) (right) of N -NOPA systems (2 ≤ N ≤ 6)

without losses (top, α = 1, κ = 0), with transmission losses only (middle, α = 10
−0.01
N−1 , κ = 0) and

with both transmission and amplification losses (bottom, α = 10
−0.01
N−1 , κ =

(

3×106

0.6×
√
2

)

x), under

the same total pump power, with x6 = 0.13, xi = (
√

6/i)x6 (i = {2, 3, 4, 5}), y = 1 and d = 1.
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Table 5. Approximate optimal two-mode squeezing under effects of both transmission and ampli-
fication losses and the corresponding power consumption for the N -NOPA systems (2 ≤ N ≤ 6)

with y = 1, d = 1, α = 10
−0.01
N−1 and κ =

(

3×106

0.6×
√
2

)

x.

N xopt Nx2
opt V±(0) V (0)

2 0.3770 0.2843 -7.6545 -4.6442
3 0.2435 0.1779 -7.4982 -4.4879
4 0.1805 0.1303 -7.4435 -4.4332
5 0.1438 0.1034 -7.4182 -4.4079
6 0.1195 0.0857 -7.4044 -4.3941

To find the approximate value of xopt at which the system achieves the highest degree
of two-mode squeezing at ω = 0 under the effect of losses, we pick the smallest one among
the values of V±(0) corresponding to a thousand samples of x evenly spread through the
range [0.001, 1]xth. Tables 4 and 5 illustrate the values of xopt, the corresponding two-mode
squeezing degrees, and the total power consumptions of the N -NOPA systems in the scenarios
with only transmission losses as well as when both transmission and amplification losses are
present, respectively. As the tables indicate, the best two-mode squeezing degrees of all the
systems are similar, however, the system with more NOPAs consumes less total pump power.
For instance, a 6-NOPA system needs less than a third of power used by the dual-NOPA
system. Thus, the system should employ more NOPAs in the presence of losses for efficient
use of pump power, while only losing a small amount of EPR entanglement.

4.2 Entanglement of two-mode Gaussian states

In this sub-section, we study the entanglement of two-mode Gaussian states with respect to
the cavity mode operators when the N -NOPA system is lossless. To this end, we first calculate
the covariance matrix PN (t) and steady-state covariance matrix PN of the 2N -mode Gaussian
state of the system. Based on Eq. (8), (9) and (10), we employ the Matlab functions ode45

with the sampling time 10−10 sec and lyap to compute PN (t) and PN , respectively. Here, we
take P0 = I corresponding to that the system starts in a vacuum state.

The covariance matrix P̃N,ai,bj (t) of the modes ai and bj (i, j = {1, 2, · · · , N}) is a cor-
responding 4× 4 sub-matrix of PN (t). For instance, the covariance matrix of a1 and b6 in a
6-NOPA system is

P̃6,a1,b6 =









(P6)1,1 (P6)1,2 (P6)1,23 (P6)1,24
(P6)2,1 (P6)2,2 (P6)2,23 (P6)2,24
(P6)23,1 (P6)23,2 (P6)23,23 (P6)23,24
(P6)24,1 (P6)24,2 (P6)24,23 (P6)24,24









. (28)

Entanglement of two-mode Gaussian states with corresponding covariance matrix P̃N,ai,bj (t)

is measured by the logarithmic negativity EN,ai,bj (t) [10, 23]. Write P̃N,ai,bj (t) in a 2×2 block
matrix form given by

P̃N,ai,bj (t) =

[

P̃N,ai,bj ,1(t) P̃N,ai,bj ,2(t)

P̃N,ai,bj ,2(t)
T P̃N,ai,bj ,3(t)

]

, (29)
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where P̃N,ai,bj ,k(t) (k = {1, 2, 3}) is a 2× 2 matrix. Define

∆̃N,ai,bj (t) = det(P̃N,ai,bj ,1(t)) + det(P̃N,ai,bj ,3(t))− 2 det(P̃N,ai,bj ,2(t)), (30)

νN,ai,bj (t) =

√

√

√

√
∆̃N,ai,bj (t)−

√

∆̃N,ai,bj (t)
2 − 4 det(P̃N,ai,bj (t))

2
. (31)

Then EN,ai,bj (t) is a nonnegative real number given by

EN,ai,bj (t) = max[0,− log2 νN,ai,bj (t)]. (32)

EN,ai,bj (t) = 0 represents that the modes ai and bj are separable at time t, that is, there
is no entanglement between the modes. Strong entanglement between modes ai and bj is
represented by a high value of EN,ai,bj (t).

What is of interest to us are the time evolution and steady-state values of logarithmic
negativities EN,ai,bi(t), EN,ai,bi+1

(t), EN,ai+1,bi(t), EN,a1,bN (t) as well as EN,aN ,b1(t) of an
N -NOPA (2 ≤ N ≤ 6) coherent feedback network. Besides, the logarithmic negativity of

ac =
1√
N

N
∑

i=1

ai and bc =
1√
N

N
∑

i=1

bi is also looked into. The reason is that, as (2) indicates, when

losses and delays are neglected, the outputs ξout,a and ξout,b contain ac and bc, respectively.
Notice that ac and bc can be viewed as collective single mode annihilation operators as they
satisfy the commutation relations [ac, a

∗
c ] = 1, [bc, b

∗
c ] = 1, [ac, bc] = 0 and [ac, b

∗
c ] = 0. The

covariance matrix of ac and bc is PN,ac,bc(t) = MNPN (t)MT
N , with MN = 1√

N
[I · · · I].

Fig. 8. Time evolution of EN,ac,bc (2 ≤ N ≤ 6), in the absence of losses and delays, under the

same total pump power, with x6 = 0.13, xi = (
√

6/i)x6 (i = {2, 3, 4, 5}), y = 1 α = 1, and κ = 0.

In the absence of losses and delays, Table 6 shows the values of steady-state logarithmic
negativities of the N -NOPA systems, Fig. 8 indicates the time evolution of EN,ac,bc , and Fig. 9
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Fig. 9. Time evolution of logarithmic negativities of the 6-NOPA system in the absence of losses
and delays, under the same total pump power, with x6 = 0.13, y = 1 α = 1, and κ = 0.
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Table 6. The steady-state logarithmic negativities of N -NOPA systems (2 ≤ N ≤ 6) in the
absence of losses and delays, under the same total pump power, with x6 = 0.13, xi = (

√

6/i)x6

(i = {2, 3, 4, 5}), y = 1 α = 1, and κ = 0.

N E2,ac,bc E2,a1,b2 E2,a2,b1 E2,a1,b1 E2,a2,b2

2 0 0 0.4850 0.1921 0.1921
N E3,ac,bc E3,a1,b2 E3,a2,b3 E3,a3,b1

3 0.0561 0 0 0.2865
E3,a2,b1 E3,a3,b2 E3,a1,b3

0.3645 0.3645 0
E3,a1,b1 E3,a2,b2 E3,a3,b3

0.1144 0.1144 0.1144
N E4,ac,bc E4,a1,b2 E4,a2,b3 E4,a3,b4 E4,a4,b1

4 0 0 0 0 0.1843
E4,a2,b1 E4,a3,b2 E4,a4,b3 E4,a1,b4

0.2803 0.3021 0.2803 0
E4,a1,b1 E4,a2,b2 E4,a3,b3 E4,a4,b4

0.0722 0.0722 0.0722 0.0722
N E5,ac,bc E5,a1,b2 E5,a2,b3 E5,a3,b4 E5,a4,b5 E5,a5,b1

5 0.0223 0 0 0 0 0.1207
E5,a2,b1 E5,a3,b2 E5,a4,b3 E5,a5,b4 E5,a1,b5

0.2134 0.2500 0.2500 0.2134 0
E5,a1,b1 E5,a2,b2 E5,a3,b3 E5,a4,b4 E5,a5,b5

0.0451 0.0451 0.0451 0.0451 0.0451
N E6,ac,bc E6,a1,b2 E6,a2,b3 E6,a3,b4 E6,a4,b5 E6,a5,b6 E6,a6,b1

6 0 0 0 0 0 0 0.0767
E6,a2,b1 E6,a3,b2 E6,a4,b3 E6,a5,b4 E6,a6,b5 E6,a1,b6

0.1552 0.2033 0.2195 0.2033 0.1552 0
E6,a1,b1 E6,a2,b2 E6,a3,b3 E6,a4,b4 E6,a5,b5 E6,a6,b6

0.0260 0.0260 0.0260 0.0260 0.0260 0.0260

plots the evolution of logarithmic negativities of a 6-NOPA coherent feedback network. As
indicated, ai and bi+1 remain separable for all time, and the same happens to a1 and bN . At
steady state, entanglement exists between modes bi and ai+1, ai and bi, as well as aN and b1.
In particular, it can be observed that internal entanglement synchronization occurs at steady
state, that is, the degree of entanglement between the oscillator modes ai and bi in the cavity of
each NOPA in the N -NOPA coherent feedback network is the same. For systems with an odd
number of NOPAs, there is slight entanglement between the collective modes ac and bc, while
in systems containing an even number of NOPAs, ac and bc are entangled at the beginning
for a very short time. After that, the entanglement rapidly vanishes. Moreover, with the
same total pump power, entanglement of two-mode Gaussian states in the system with more
NOPAs is weaker. It is an interesting result that even though the two-mode entanglement
of the internal cavity modes does not improve for systems carrying more NOPAs, its EPR
entanglement between the two outgoing fields does improve.

5 Effect of Time Delays

In this section, we investigate stability and entanglement of the N -NOPA systems in the
presence of losses and time delays. For a d km transmission distance, the time delay τ of
each path between two neighbouring NOPAs is τ = d

3×10−5(N−1) . To check stability of our

time-delayed N -NOPA systems, we employ the DDE-BIFTOOL toolbox [27, 28], which is a
Matlab package used to plot the eigenvalues of a linear delay differential system. A system is
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Fig. 10. Log-log plots of V±(ıω) (left) and V (ıω) (right) with respect to a 2-NOPA system
(top), a 3-NOPA system (middle) and a 4-NOPA system (bottom), without time delays (blue

solid line) and with time delays (magenta dashed line), under the same total pump power, in the

presence of losses, with x6 = 0.13, xi = (
√

6/i)x6 (i = {2, 3, 4}), α = 10
−0.01
N−1 , κ =

(

3×106

0.6×
√
2

)

x,

τ = 1
3×10−5(N−1)

, y = 1 and d = 1.
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stable if all real parts of the eigenvalues are negative. Based on the above fact, we find that
stability of the N -NOPA systems for N up to six is guaranteed in the case where the systems
are given the same total pump power, x6 = 0.13 and both losses and delays are present.

Fig. 11. Log-log plots of V±(ıω) (left) and V (ıω) (right) with respect to a 5-NOPA system
(top) and a 6-NOPA system (bottom), without time delays (blue solid line) and with time delays
(magenta dashed line), under the same total pump power, in the presence of losses, with x6 = 0.13,

x5 = (
√

6/5)x6, α = 10
−0.01
N−1 , κ =

(

3×106

0.6×
√
2

)

x, τ = 1
3×10−5(N−1)

, y = 1 and d = 1.

As a linear quantum system, the N -NOPA network with time delays can be built in Matlab
via commands connect and delayss in the Matlab Control System Toolbox. The non-rational
transfer functions (due to the time delays)H1(s) andH2(s) in (23) and (24) can be numerically
computed with the built-in Matlab frequency response command freqresp. Therefore, the two
mode squeezing spectra V±(iω) are obtained via (23) and (24). The effect of time delays on
EPR entanglement between the outgoing fields of our N -NOPA system is indicated in Fig. 10
and Fig. 11, where all the systems are given the same total pump power and undergoing
both transmission and amplification losses. Compared with the two-mode squeezing of the
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systems in the absence of delays, the presence of time delays reduces the bandwidth over
which the EPR entanglement exists, but does not impact the EPR entanglement degrees at
low frequencies. The phenomenon of the sharp peaks and dips at high frequencies is a common
feature of the frequency response of systems under the effect of internal time delays, see, e.g,
[29, p. 182]. In our case, the bandwidth of EPR entanglement under influence of time delays
is similar for all the systems with a different N .

6 Conclusion

This paper has studied the stability condition and entanglement performance of an N -NOPA
coherent feedback network with N up to six, where the NOPAs are evenly distributed in a
line between two distant parties, Alice and Bob. The system undergoes transmission losses,
amplification losses and time delays. Moreover, two adjustable phase shifts θa and θb are
placed at Alice and Bob for achieving the best two-mode squeezing between the two outgoing
fields by selecting appropriate quadratures of the output fields.

In the absence of time delays, we have derived a necessary and sufficient stability condition
with the aid of µ-analysis method from H∞ control theory [22] by regarding x, the parameter
related to the amplitude of pump beam, as an uncertainty. We have shown that, the value
of stability threshold xth is the smallest positive root of the polynomial det (AN (x)). It is
observed that the existence of losses broadens the range of x over which stability is guaranteed,
and the value of xth decreases as more NOPAs are added to the system.

Strong EPR entanglement is represented by strong attenuation of two-mode output squeez-
ing spectra below the sum criterion. In the ideal case, we have found the values of θa and θb at
which the system achieves the best two-mode squeezing. Moreover, the two-mode squeezing
increases rapidly as the value of x approaches the stability threshold xth.

We have compared the two-mode squeezing generated by systems with different numbers
of NOPAs. It is shown that, to achieve the same squeezing level in the ideal case, the system
employing more NOPAs requires less total pump power. When losses are present, all the
systems have a large and similar decrease in EPR entanglement. Given the same total pump
power, the system carrying more NOPAs has improvement in the two-mode squeezing in
the ideal case and when only transmission losses are present. However, this is no longer
assured when amplification losses are also taken into account. Furthermore, the best two-
mode squeezing degrees of the systems with losses are similar. However, the system with
more NOPAs requires less pump power to achieve the best two-mode squeezing.

We have also investigated the entanglement of two-mode Gaussian states of the internal
cavity modes. Steady-state values and time evolution of logarithmic negativities have been
studied. It is shown that entanglement exists between the modes ai and bi, bi and ai+1 as
well as b1 and aN . Moreover, we have observed an internal entanglement synchronization
that occurs between the modes ai and bi for i = 2, 3, 4, 5, 6 at steady state. In the ideal case,
given the same pump power, though the system with more NOPAs has improved two-mode
squeezing in the output fields, it does not have better internal entanglement between cavity
modes as measured by logarithmic negativity.

Stability and entanglement under the effect of time delays has been studied as well. With
time delays, stability is checked with the DDE-BIFTOOL toolbox [27, 28]. It is shown that,
with transmission and amplification losses, time delays narrow the bandwidth over which the
EPR entanglement exists.

This work gives several qualitative findings on entanglement in the N -NOPA network
when N > 2, which have not been quantitatively analyzed and are topics suitable for future
investigations. It is observed that the two-mode squeezing spectra decreases as the value
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of x approaches xth when the system is lossless, and there exists an optimal value of x
for the two-mode squeezing when the system is under losses. These phenomena are not
surprising and to some extent predictable as they were proved for the 2-NOPA system in
our previous work, see Theorem 2 and Theorem 3 in [12]. In addition, future work is still
required to quantitatively analyze the observation that entanglement between collective modes
behaves differently between systems with an even and the odd number of NOPAs; also, adding
more NOPAs into the system improves the end-to-end entanglement between continuous-
mode output fields but not the entanglement of internal two-mode Gaussian states when the
system is lossless and consumes the same pump power. Moreover, it would be of interest to
quantitatively analyze the behaviour of the linear coherent feedback chain in the asymptotic
limit of N → ∞.
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Appendix A

When values of all parameters except for x of an N -NOPA coherent feedback system are
given, we can employ the mussv function in the Robust Control Toolbox of MATLAB to ap-
proximate the stability threshold. The approximated stability threshold, say x̂th, approaches
the stability threshold xth from the left. That is, the system is robustly stable when the value
of x belongs to the range (0, x̂th] and x̂th approximates the threshold value xth. The value of
x̂th is found by the following bisection algorithm.

Step 1. Start from x̂th = 1. If the system is not stable over the range x ∈ (0, x̂th], set
xh = x̂th and xl = 0; otherwise stop.

Step 2. Set x̂th = xh+xl

2 . If the system is not stable over the range x ∈ (0, x̂th], set
xh = x̂th; otherwise set xl = x̂th.

Step 3. If the value of xh − xl > ε for a prespecified error tolerance ε > 0 (here, we take
ε = 10−10), go back to Step 2; otherwise set x̂th = xl, stop.


