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It has been recently shown, that some of the tripartite boxes admitting bilocal decom-
position, lead to non-locality under wiring operation applied to two of the subsystems

[R. Gallego et al. Physical Review Letters 109, 070401 (2012)]. In the following, we
study this phenomenon quantitatively. Basing on the known classes of boxes closed un-
der wirings, we introduce multipartite monotones which are counterparts of bipartite

ones - the non-locality cost and robustness of non-locality. We then provide analytical
lower bounds on both the monotones in terms of the Maximal Non-locality which can be
obtained by Wirings (MWN). We prove also upper bounds for the MWN of a given box,
based on the weight of boxes signaling in a particular direction, that appear in its fully

bilocal decomposition. We study different classes of partially local boxes (i.e. having
local variable model with respect to some grouping of the parties). For each class the
MWN is found, using the Linear Programming. The wirings which lead to the MWN
and exhibit that some of them can serve as a witness of the certain classes are also iden-

tified. We conclude with example of partially local boxes being analogue of quantum
states that allow to distribute entanglement in separable manner.
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1 Introduction

The non-locality is one of the most intriguing characteristics of the quantum theory. Since

seminal papers by Bell [1], where non-locality was referred as the non-local causality, as well

as by Popescu and Rohrlich [2], it has been treated as a resource [3] for the tasks such as

communication complexity [4], device independent cryptography [5, 6, 7, 8, 9] or estimation

of some properties of the system, like dimension [10] (see [11] for a recent review).

The central notion considered in the context of the non-locality is a conditional probability

distribution, called a box. In the bipartite setting, the box determines the probability of

obtaining results a and b, provided that measurement settings x and y were chosen. We are
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interested in the non-signaling boxes for which the change of measurement of one part does

not change statistics of the other one. The box is (casually) local if it can be written as:

P (ab|xy) =

∫

Λ

dλq(λ)P (a|x, λ)P (b|y, λ), (1)

where q(λ) is a distribution of a hidden variable λ [11]. While the bipartite boxes have been

studied deeply in recent years, the multipartite ones still deserve much attention. Due to

the complicated and rich structure of the multipartite correlations some interesting results

concerning the multipartite non-locality have been recently presented, opening an area for

a further investigation. The conventional definition of the multipartite non-locality, due to

Svetlichny [12], states that if P (a1, a2, a3|x1, x2, x3) can be written in the following way:

P (a1, a2, a3|x1, x2, x3) = (2)
∑

λ

pλPλ(a1|x1)Pλ(a2, a3|x2, x3) +

∑

µ

pµPµ(a2|x2)Pµ(a1, a3|x1, x3) +

∑

ν

pνPν(a3|x3)Pν(a1, a2|x1, x2),

where
∑

λ pλ +
∑

µ pµ +
∑

ν pν = 1 and ∀λpλ ≥ 0, ∀µpµ ≥ 0, ∀νpν ≥ 0, then it does not

contain any tripartite non-locality, namely, it is local. In this paper the boxes admitting

decomposition (2) would be called the boxes with bilocal decomposition. It has been found

that this definition has serious drawbacks [13, 14]. Namely, some of the boxes that are

local according to this definition can entile signaling bipartite boxes in the decomposition (2)

which may lead to the so called grandfather type paradoxes [13]. In turn, a new definition

of multipartite (non-)locality has been proposed which eliminates the paradox. In parallel

[14], another problem with the original definition has been found. Namely, when some of

the parties that have an access to a multipartite box form a group, then they can create

non-locality between the group as well as the rest of the parties by applying some processing

of inputs and outputs called a wiring [15]. To avoid this phenomenon, which should not occur

in case of local boxes, regardless what is their definition, an operational framework has been

developed, as well as a new definition of multipartite non-locality has been proposed [14].

The both concepts of wiring and classes of non-local correlations have confirmed indepen-

dently to be important in the context of non-locality. The wiring applied to many copies of

a bipartite box, allow for an amplification of the weak correlations [16, 17], what is known

as a distillation of non-locality. Introduction of the time ordered correlation classes allowed

to confirm that the quantum correlations require multipartite information principles [18]. In

what follows, it is aimed to find a new phenomena as well as applications connected with this

subject.

In this paper the phenomenon of the non-locality emerging via wiring on 3-party boxes

with binary inputs and binary outputs is studied. Definitions of the locality proposed in [13]

and [14] differ in general. In [14] a particular class of boxes closed under wiring is found.

This class is called the time ordered bilocal one (TOBL). The property of closeness under

wiring is crucial for the results presented here, thus we focus on the definition of multipartite
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non-locality from [14]. Basing on the TOBL class, we introduce the counterparts of non-

locality measures known for bipartite boxes - the non-locality cost and the robustness of

non-locality. Subsequently, the analytical lower bounds on these measures in terms of the

MWN are provided, namely, the maximum violation of the appropriate CHSH-like inequality

[19] after application of the best wiring to some two of the three subsystems. This quantity,

although may appear to be similar to the concept of N-copy distillable non-locality introduced

in [20], captures different properties of a box. The N-copy distillable non-locality quantifies

how much non-locality can be obtained from the N-copies of a box using wiring transforming

the N-boxes to a single box. The Maximal Wireable Non-locality is defined for a single copy

of a multipartite box and wiring acting on some parties forming a group.

We focus on the particular classes of boxes - the ones that admit the particular model of a

locality/non-locality, according to some grouping of the parties. Subsequently, we apply the

Linear Programming to find the MWN for the considered classes. An explicit example is the

class of boxes which cannot be mapped to a non-local bipartite box by wiring applied to the

two partitions (Bob and Charlie together, as well as Alice and Charlie together), while it can

be mapped to a non-local bipartite box by some wiring applied to the third partition - Alice

and Bob together. If a quantum box with the analogous properties were found, it would serve

as a resource for distributing non-locality in a local-like manner in analogy to distributing

entanglement in separable manner [21] (see [22, 23] for the quantitative description of this

effect).

The original definition of locality by Svetlichny fails to fit into an operational framework

of wiring, because the bipartite boxes which appear in the bilocal decomposition (2) of a

considered box are in a general signaling. The appearance of the signaling boxes is the reason

for the non-locality emerging via wiring from such a box. In what follows, a subclass of boxes

with bilocal decomposition (2) is mostly considered. Namely, we focus on the particular cut:

for example 3:12, when Alice (subsystem 1) and Bob (subsystem 2) are considered together

and Charlie (subsystem 3) is at a distance. A box is fully bilocal in this cut if it can be

expressed in a following way:

P (a1, a2, a3|x1, x2, x3) =
∑

ν

pνPν(a3|x3)Pν(a1, a2|x1, x2), (3)

where
∑

ν pν = 1. An upper bound on the MWN is given in terms of the weight of boxes

signaling in the opposite direction to wiring which appear in fully bilocal decomposition.

The paper is organized as follows. The section 2 introduces the basic notions and useful

parametrization of the tripartite non-signaling boxes, the CHSH values as well as wiring. The

section 3 begins with the comparison of known definitions of the local boxes, demonstrating

explicitly that they are inequivalent and introduces classes of different partially local multi-

partite boxes, that is boxes which are fully bilocal in all the cuts as well as those that at

least in one cut cannot be wired to a bipartite non-local box. The basic notions of the study

are presented: the WN and the MWN. In Section 3.2 an upper bound on the MWN for a

particular box in terms of the weight of signaling boxes in its description according to fully

bilocal decomposition (3) is provided. The section 4.1 collects some known, useful facts about

the non-locality cost for bipartite boxes with two binary inputs and two binary outputs. In
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4.2 we introduce 3-partite counterpart of non-locality cost, and show that linear function of

the MWN places a lower bound on the 3-partite non-locality cost. Then an analogous result

for 3-partite robustness of non-locality in section 4.3 is demonstarted. Finally, the problem of

finding the MWN for a given class of partially local boxes using the Linear Programming is

studied. The particular boxes that allow to distribute the non-locality in a local-like manner

(section 4.2) are found, as well as wiring with respect to its strength in creation of non-locality

for different classes are classified.

2 Tripartite non-signaling boxes and bipartite wiring

Any probability distribution belonging to the set of tripartite non-signaling correlations, with

binary inputs (xi) and outputs (ai) for each party, fulfils the following constraints:

∀ a1, a2, a3, x1, x2, x3, P (a1, a2, a3|x1, x2, x3) ≥ 0 (4)

∀x1, x2, x3,
∑

a1,a2,a3

P (a1, a2, a3|x1, x2, x3) = 1 (5)

∀a2, a3, x2, x3, x1, x
′

1,
∑

a1

P (a1, a2, a3|x1, x2, x3) =
∑

a1

P (a1, a2, a3|x′

1, x2, x3), (6)

∀a1, a3, x1, x3, x2, x
′

2,
∑

a2

P (a1, a2, a3|x1, x2, x3) =
∑

a2

P (a1, a2, a3|x1, x
′

2, x3), (7)

∀a1, a2, x1, x2, x3, x
′

3,
∑

a3

P (a1, a2, a3|x1, x2, x3) =
∑

a3

P (a1, a2, a3|x1, x2, x
′

3). (8)

The set of tripartite boxes with the binary inputs and outputs, which satisfy these conditions,

will be denoted as NS3. The conditions presented above define a non-signaling polytope.

It has been demonstrated [24] that this polytope has 53 856 extremal points belonging to

46 different classes. All the deterministic extremal points form a single class, the remaining

45 classes consist of non-local extremal points. Due to the non-signaling and normalization

constraints an arbitrary 3-partite box with binary inputs and outputs P (a1, a2, a3|x1, x2, x3)

can be written using the 26 parameters in the following way [24]:

P (a1, a2, a3|x1, x2, x3) =
1

8
[1 + a1 〈Ax1

〉 + a2 〈Bx2
〉 + a3 〈Cx3

〉 + a1a2 〈Ax1
Bx2

〉
+ a1a3 〈Ax1

Cx3
〉 + a2a3 〈Bx2

Cx3
〉 + a1a2a3 〈Ax1

Bx2
Cx3

〉] ,(9)

where e.g. 〈Ax1
〉 = P (a1 = 1|x1)−P (a1 = −1|x1) is an expectation value of outcome for the

input x1. The notation where outputs (ã, b̃, c̃) take values in {0, 1} will be used. The relation

between ã, b̃, c̃ and a, b, c is given by a = (−1)ã, b = (−1)b̃, c = (−1)c̃ [24]. For the details of

conversion of the expectation values to this notation see Appendix 1. From now on, for the

sake of clarity, the a would be written instead of ã.

In what follows, the effect of wiring which maps tripartite boxes into bipartite ones will

be studied. For this reason, the notion of non-signaling bipartite boxes is also required. The
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latter boxes fulfil the following conditions:

∀ a1, a2, x1, x2 P (a1, a2|x1, x2) ≥ 0

∀x1, x2

∑

a1,a2

P (a1, a2|x1, x2) = 1

∀ a2, x2, x1, x
′

1

∑

a1

P (a1, a2|x1, x2) =
∑

a1

P (a1, a2|x′

1, x2)

∀ a1, x1, x2, x
′

2

∑

a2

P (a1, a2|x1, x2) =
∑

a2

P (a1, a2|x1, x
′

2)

(10)

The set of the non-signaling bipartite boxes with 2 binary inputs and 2 binary outputs will

be denoted as NS2.

Having the important sets of boxes introduced, we will focus on the wirings. It is possible to

map a tripartite non-signaling box P (a1, a2, a3|x1, x2, x3) into a bipartite one P (a′1, a3|x′

1, x3),

having the bipartition as well as wiring set. Let us consider wiring presented in Figure 1.

According to this wiring, the input of the first subsystem of the bipartite box - x1 depends on

x′

1 while the input of the second subsystem - x2 can depend on x′

1 and on the output of the

first subsystem - a1. The effective output - a′1 can depend on outputs a1, a2 and the effective

input x′

1. A particular parametrization of wiring will be used, in which an input of the first

Fig. 1. Depiction of wiring defined by vectors of binary coefficients γ and η. An effective input

bit is denoted as x′

1
. This bit is equal to an input x1 of the first party in a bipartition. An input

x2 of the party, which measures as the second one, is determined by the effective input bit x′

1
as

well as an output of the first party a1. An effective output bit depends on x1’, a2 and an output
of the second party a2.
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party in the bipartition will be a x1 = x′

1. The second party chooses:

x2 = ⊕ijγija
i
1x

j
1 (11)

as an input, where ⊕ is addition modulo 2, γij are binary constants and i, j are also binary.

Similarly, the output of the box is defined as a polynomial of the form:

a′1 = ⊕ijkηijka
i
1x

j
1a

k
2 , (12)

where ηijk, i, j, k are binary. For a particular choice of γ = (γ00, . . . , γ11) and η =

(η000, . . . , η111) wiring will be denoted as Wγ,η or by specifying inputs and outputs (x2 =

⊕ijγij(a
i
1x

j
1), a′1 = ⊕ijηijk(ai1x

j
1a

k
2)). To denote on which subsystem wiring is applied the

following notation is used: WX
γ,η means that Wγ,η is applied to systems 2 and 3, WY

γ,η to

systems 1 and 3 and finally WZ
γ,η to systems 1 and 2. It is also important to denote the order

of measurements in particular wiring: for instance, on Fig. 1, the system 1 is measured prior

to the system 2. Therefore by WX→

γ,η we denote that the second observer measures first and

can send its results to the third observer. The parametrization (11),(12) is valid for WZ→

γ,η . In

general, (11),(12) should be modified accordingly to other choices of parties and/or ordering

of measurements. In Section 5 it is argued that the number of the considered wiring can be

restricted.

In order to verify if after the application of wiring effective probability distribution becomes

non-local the value of one of the CHSH expressions [3] is calculated:

βrst(P (a1, a2|x1, x2)) = (−1)t 〈00〉 + (−1)t+s 〈01〉 + (−1)t+r 〈10〉 + (−1)t+s+r+1 〈11〉 , (13)

where 〈ij〉 = P (a1 = a2|ij) − P (a1 6= a2|ij) and r, s, t take values either 0 or 1. Corre-

spondingly, the CHSH inequalities have a form:

−2 ≤ βrst(P (a1, a2|x1, x2)) ≤ 2 (14)

for binary r, s, t. It is sufficient to consider the inequities (14) equivalent to the CHSH, as the

effective box after application of wiring to a tripartite box with all binary inputs and outputs

is a box with two binary inputs and outputs. For more than binary inputs or outputs of a

tripartite box it would be required to consider other Bell inequalities.

3 Definitions of partially local multipartite boxes and the wire-emerging non-

locality

In this section, we present definitions of multipartite local boxes and justify the choice of the

TOBL class. As mentioned in the introduction, according to Svetlichny, no temporal order

is imposed on bilocal terms in decomposition (2), that is, signaling bipartite boxes can also

appear in this decomposition. It has been recently noticed that signaling boxes may cause

serious problems, since wired signaling probability distributions may lead to the grandfather-

style paradoxes [13]. This fact has motivated the authors of [13] to introduce the following

definition of the partially mutipartite locality.

aOther possibilities are either bit negation (x1 = x′

1
⊕ 1) or choosing as an input constant bit (for example

x1 = 0)
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Definition 1 Correlations are T2 local if P (a1, a2, a3|x1, x2, x3) can be written in the form:

P (a1, a2, a3|x1, x2, x3) =
∑

λ

pλPλ(a1|x1)P 2→3
λ (a2, a3|x2, x3) +

∑

µ

pµPµ(a2|x2)P 1→3
µ (a1, a3|x1, x3) +

∑

ν

pνPν(a3|x3)P 1→2
ν (a1, a2|x1, x2), (15)

where P i→j
λ,µ,ν(ai, aj |xi, xj) denotes probability distribution signaling at most in one direction,

that is
∑

aj
P i→j
λ,µ,ν(ai, aj |xi, xj) = P i→j

λ,µ,ν(ai|xi) and
∑

ai
P j→i
λ,µ,ν(ai, aj |xi, xj) = P j→i

λ,µ,ν(aj |xj),

terms P i→j
λ,µ,ν(ai, aj |xi, xj) can be replaced by P j→i

λ,µ,ν(ai, aj |xi, xj) independently,
∑

λ pλ ≥
0,
∑

µ pµ ≥ 0,
∑

ν pν ≥ 0 and
∑

λ pλ +
∑

µ pµ +
∑

ν pν = 1.

The above definition solves the problem of the time ordering. However, there is another

definition that has been introduced from a different perspective. Namely, as it has been

demonstrated in [14], if no time ordering of correlations is imposed, the ”creation” of non-

locality among N parties by means of local operations as well as classical communication is

possible when N-1 parties collaborate. To avoid this type of misunderstanding the following

definition has been proposed in [14].

Definition 2 Correlations admit the TOBL model in cut 1 : 23, when they can be written in

a form:

P (a1, a2, a3|x1, x2, x3) =
∑

λ

pλP
1
λ(a1|x1)P 2→3

λ (a2, a3|x2, x3) =
∑

λ

pλP
1
λ(a1|x1)P 3→2

λ (a2, a3|x2, x3), (16)

where P i→j
λ (ai, aj |xi, xj) denotes probability distribution signaling at most in one direction.

From the above definitions it can be seen that if a given box admits the TOBL model,

it admits necessarily T2 model. However, the converse is not true. One could, for instance,

consider a box given in Table 1. Following the procedure described in [13] one can verify

that it belongs to T2 class. Wiring Wγ,η with γ = (0, 0, 1, 0) and η = (0, 1, 0, 0, 0, 0, 0, 0)

applied to subsystems 1 and 2 with (x2 = a1, a
′

1 = a2) results in P (a2, a3|x1, x3) for which

β000(P (a2, a3|x1, x3)) = 7

2
and it cannot belong to the TOBL.

In order to lower bound possible non-locality obtained by wirings in Sec. 4 we introduce

non-locality monotones. Their monotonicity is assured by the fact that certain sets involved

in definitions of the monotones are closed under wirings. Due to this fact, we will use the

TOBL model. In what follows we will focus on the three classes: the most general class of

boxes with fully bilocal decomposition referred to as the S class, as it may include two-way

signaling terms (3), the TOBL (T ) class and the NSBL class (N), defined that in (16) only

no signaling terms are allowed. It is known that [14]

NSBL ⊂ TOBL ⊂ S. (17)

3.1 Studied quantities and notation

In what follows a box which in cut 1:23 and 2:13 belongs to the TOBL class and in cut

3:12 admits fully bilocal decomposition is considered (in general including signaling terms).
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Table 1. An example of a box belonging to T2 and not to the TOBL class. Definitions of the
classes are presented in Sec. 3. For the details of the box parametrization see (9) and (A.1).

〈Ax1
〉 〈Bx2

〉 〈Cx3
〉

0 1 0 1 0 1
− 17783

135743

23193

135743
− 195747

542972

212995

542972

35041

542972

19229

542972

〈Ax1
Bx2

〉 〈Ax1
Cx3

〉
00 01 10 11 00 01 10 11

− 7097

542972
− 10691

542972
− 19295

542972
− 8725

542972

291895

542972
− 224737

542972
− 252767

542972
− 211635

542972

〈Bx2
Cx3

〉 〈Ax1
Bx2

Cx3
〉

00 01 10 11 000 001 010 011
25612

135743

51024

135743
− 29459

135743

106063

271486
− 110539

135743

65946

135743

115319

135743
− 189937

271486

〈Ax1
Bx2

Cx3
〉

100 101 110 111
101225

135743

89089

135743
− 108359

135743
− 113289

271486

Fig. 2. A TTS box for which quantities in the main text are defined. The blue dashed lines
denote cuts in which the box admits the TOBL model (16). The red line indicates fully bilocal

decomposition (3) in cut 3:12. Wiring acting on subsystems 1 and 2 in direction from a subsystem
1 to 2 is also depicted.

This class of boxes will be denoted as TTS. Moreover, the article handles wiring acting on a

subsystem 12 and also fixes the direction of wiring - from a subsystem 1 to 2.

Using wiring two quantities could be defined: the WN and the MWN. The first one

quantifies the violation of one of the CHSH inequalities (14) that can be obtained using given

wiring and the TTS class of correlations, whereas the second one gives the maximal violation

of one of the CHSH inequalities that can be obtained using any wiring for the TTS class [3].

Formally, the WN for the given wiring Wγ,η specified by some functions as in Eq. (11) and

(12) is defined as follows:

WN(Wγ,η) =







maxP β000(Wγ,η(P )) :
if maxP β000(Wγ,η(P )) > 2
0 : otherwise

subjected to P ∈ TTS,

where P is a box from the TTS class. Only the violation of β000 inequality is required to be

considered, since the formula entails maximization over only the 2 × 2 × 2 boxes. Indeed, if

there is a box for which |β000| > 2 then the same box after an appropriate local relabelling
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violates any other CHSH inequality (14), as the latter equals the scalar product with a linear

combination of the locally equivalent boxes [25]. In order to compute the WN, it would be

tempting to follow [26], restricting the search to extremal vertices only, however the structure

of different classes considered here is not yet known. The MWN for the the TTS class is:

MWN = max
γ,η

WN(Wγ,η). (18)

Moreover, considering a single box P instead of the complete class of boxes, by means of

the MWN for a given box, the maximal violation of one of the CHSH inequalities (14) can be

quantified. That can be obtained for a given cut of P using any wiring with mentioned order

time of measurements. Formally, we write:

MWN(P ) = max
γ,η,r,s,t

βrst(Wγ,η(P )). (19)

To simplify the notation, maxγ,η Wγ,η(.) ≡ maxW W (.) and maxr,s,t βrst(.) ≡ maxβ β(.) could

be denoted.

3.2 Upper bound on Maximal Wireable Non-locality from fully bilocal decompo-

sition

In this section, the discussion centers on special boxes, namely the ones which are fully bilocal

in cut 3:12 having form (3) and do not belong to the TOBL class (16) in this cut. It is also

assumed that fully bilocal decomposition is explicitly known for the boxes under consideration,

as it will be used to the upper bound MWN for these boxes.

Due to the fact that the non-zero non-locality after wiring involving systems 1 and 2

is caused by the signaling terms, it appears that the lower is the weight of such boxes in

decomposition, the lower should be the MWN.

Here we follow this intuition and derive a bound on the MWN for a given box P de-

scribed above in terms of the weight of boxes signaling in the opposite to wiring direction

(in these considerations from subsystem 2 to subsystem 1) that appear in the fully bilocal

decomposition.

Prior to demonstrating bound on the WN, we show that mere tracing out of the system

cannot lead to a non-locality in case of the boxes with decomposition (3).

Observation 1 Consider a box P (a1, a2, a3|x1, x2, x3) admitting decomposition (3). For any

r, s, t ∈ {0, 1}, and for any value of x2 ∈ {0, 1}

|βrst(
∑

a2

P (a1, a2, a3|x1, x2, x3))| ≤ 2.

Proof: Because P (a1, a2, a3|x1, x2, x3) is a legitimate box, the marginal distribution P (a1, a3|x1, x3) =
∑

a2
P (a1, a2, a3|x1, x2, x3) is well defined. It is sufficient to demonstrate that the reduced box

is local for fully bilocal decomposition. Therefore the attention can be focused on a particular

input for the second party, for instance, the assumption that x2 = 0. Then:

P (a1, a3|x1, x3) =
∑

a2

P (a1, a2, a3|x1, 0, x3) =

∑

a2,ν

Pν(a3|x3)Pν(a1, a2|x1, x2) =
∑

ν

Pν(a3|x3)P ′

ν,x2=0(a1|x1).
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The above Equation demonstrates that the reduced box remains local. (Note that for x2 = 1

terms P ′

ν,x2=1(a1|x1) may be different, however LHS of (20) will not change and the product

form of RHS of (20) will be preserved).

As a result, it is impossible to map a box admitting decomposition (3) into a non-local

one by a partial trace. However, it is not the case when one considers wiring as described in

Eq. (11), (12).

Theorem 1 : Let P (a1, a2, a3|x1, x2, x3) be a tripartite box with binary inputs and outputs

admitting the fully bilocal decomposition:

P (a1, a2, a3|x1, x2, x3) =
∑

ν

pνPν(a3|x3)Pν(a1, a2|x1, x2). (20)

The MWN of the box P (a1, a2, a3|x1, x2, x3) satisfies the following bound:

MWN(P ) = max
W,β

β(W (P )) ≤ inf
pνs

2
∑

νs

pνs + 2, (21)

where the maximum is taken over wiring W with direction from subsystem 1 to 2 and pνs are

weights of bipartite boxes signaling opposite to direction, that is from a subsystem 2 to 1.

Proof: The wirings W acting on subsystems 12 are again considered:

MWN(P ) =

max
W,β

β(W (P (a1, a2, a3|x1, x2, x3)) = max
W,β

β(
∑

ν

pνPν(a3|x3)W (Pν(a1, a2|x1, x2)).(22)

The MWN is independent of the particular decomposition of the form (20) which may not

be unique. For any decomposition, which is split into the two terms: the one signaling in

direction of wiring and the one which does not, it leads to the following bound:

max
W,β

[

∑

νgs

pνgsβ(Pνgs(a3|x3)W (Pνgs(a1, a2|x1, x2)) +
∑

νs

pνsβ(Pνs(a3|x3)W (Pνs(a1, a2|x1, x2))

]

≤ 2
∑

νgs

pνgs + 4
∑

νs

pνs = 2
∑

νs

pνs + 2,

where
∑

νgs pνgs is the weight of boxes which are either non-signaling or singaling in the

direction of the wiring. The fact that these boxes are mapped into local ones by wiring

and
∑

νs pνs = 1 − ∑

νgs pνgs was used. Hence, for each νgs, β on the bipartite box

Pνgs(a3|x3)W (Pνgs(a1, a2|x1, x2)) emerging from wiring is bounded by 2. Since the above

inequality holds for any decomposition the one which leads to the tightest bound can be

chosen, obtaining:

MWN(P ) = max
W,β

β(W (P )) ≤ inf
pνs

2
∑

νs

pνs + 2, (23)

where infimum is taken over decomposition (20) such that
∑

νs pνs is the weight of boxes

which are signaling in the direction opposite to wiring.

Despite the fact that for signaling boxes the value of β was replaced by its algebraic

maximum, the bound (21) is tight.
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Table 2. The exemplary box P for which bound (21) on the MWN(P ) is tight. The bound yields
infpνs 2

∑
νs pνs + 2 = 3. This value equals the MWN(P ) = 3 which is achieved for the wiring

acting on subsystems 1 and 2 (x2 = a1, a
′

1
= a2). For the details of the box parametrization see

(9) and (A.1).

〈Ax1
〉 〈Bx2

〉 〈Cx3
〉

0 1 0 1 0 1
0 0 − 1

20

1

20
0 0

〈Ax1
Bx2

〉 〈Ax1
Cx3

〉
00 01 10 11 00 01 10 11
0 0 0 0 1

20
− 1

20

1

20
− 1

20

〈Bx2
Cx3

〉 〈Ax1
Bx2

Cx3
〉

00 01 10 11 000 001 010 011
0 1

2
0 1

2
− 1

2

1

2

1

2
− 1

2

〈Ax1
Bx2

Cx3
〉

100 101 110 111
1

2

1

2
− 1

2
− 1

2

In Table 2 an example of the box for which the bound is tight is presented (MWN(P ) =

infpνs 2
∑

νs pνs + 2 = 3, for wiring acting on subsystems 1 and 2 (x2 = a1, a
′

1 = a2)).

Generalization of the notation. The quantities and the bound obtained in this section

can be straightforwardly generalized as follows. A tripartite box can have different kinds

of correlations according to the different set of subsystems. A box BXY Z with X,Y, Z ∈
{S, T,N} meaning that in partition where 23 are together, it belongs to X class, in partition

where 13 are together to Y class and in partition where 12 are together to Z class. The set

of all boxes with subindex XY Z is called the XY Z-class. The class with some pattern of

letters T (or N) includes as a subset a class with another pattern of letters T (or N), provided

the latter can be obtained from the former by changing a single letter T (or N) into S. For

instance:

TTT ⊂ TST ⊂ SST

NNN ⊂ NST ⊂ SST. (24)

By transitivity, sometimes even differing by two letters, it assures inclusion. Other notation

will be also required, namely B1:23 ∈ TOBL means that the box B, when 2 and 3 are

considered together, belongs to the TOBL class. Then B ∈ XY Z if B1:23 ∈ X, B2:13 ∈ Y

and B3:12 ∈ Z is written. Wiring acting on different groups of a given box in arbitrary

direction can be also considered. For instance, WZ→ denotes wiring acting on subsystems 12,

from a subsystem 1 to 2.

Taking into account the above notation one immediately generalizes all the introduced

quantities. As an example, we give definition of the MWN for an arbitrary class and direction

of wiring:

MWNXY Z = max
γ,η,q→

WNXY Z(W q→
γ,η ), (25)

where q denotes subsystems on which wring acts and → takes into account direction of wiring.
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4 Non-locality monotones and wiring

Having considered the classes of partially local boxes, associated monotones, which measure

multipartite non-locality with respect to a given class, can be defined. There will be two

kinds of them: these that are counterpart of the (bipartite) cost of non-locality, and these

that are counterpart of the bipartite (anti)robustness. Then it is demonstrated that each of

these multipartite monotones is lower bounded by the maximal violation of the appropriate

CHSH-like inequality of the effective 2× 2 box [3]. To derive the bound for multipartite case,

the known results for 2 × 2 bipartite boxes are first collected.

4.1 Known properties of non-locality cost and twirlings for a 2 × 2 case

The non-locality cost in a 2 × 2 case has the following definition:

Definition 3 [27] The non-locality cost for a box P is defined as:

C(P ) = inf{ p|P = pA + (1 − p)L,A ∈ NS2, L ∈ LRns, p ∈ [0, 1]},
(26)

where P is a 2 × 2 box, A denotes an arbitrary but no-signaling bipartite 2 × 2 box and LRns

is the set of local non-signaling bipartite 2 × 2 boxes.

The non-locality cost is monotonous under local operations. In particular, it is monotonous

under twirling type operations τrs.

Definition 4 [28, 29, 25]A twirling operation τrs is defined by flipping randomly 3 bits

∆x,∆y,∆z and applying the following transformation to a 2 × 2 box P (a, b|x, y):

x → x⊕ ∆x

y → y ⊕ ∆y

a → a⊕ ∆yx⊕ ∆x∆y ⊕ ∆z ⊕ s∆y

b → b⊕ ∆xy ⊕ ∆z ⊕ r∆x.

(27)

It is known that the non-local vertices of the set NS2 have the form [3]:

Brst(a, b|x, y) =

{

1

2
if a⊕ b = xy ⊕ rx⊕ sy ⊕ t

0 else
(28)

with r, s, t = {0, 1}.

It is important, that after τrs any (2 × 2) non-signaling box becomes an isotropic box

denoted as Pα
rs for some α ∈ [0, 1], according to the following parametrization:

Pα
rst(a, b|x, y) = αBrst(a, b|x, y) + (1 − α)Brst̄(a, b|x, y), (29)

(̄. denotes bit negation). Note that B000 is a PR box and B001 is an anti-PR box. The

boxes Pα
rst are invariant under an appropriate twirling operation: τrs(P

α
rst) = Pα

rst. Adapting

similar results as in [30], the following dependence occurs:
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Observation 2 For a 2 × 2 isotropic box Pα
rst with α ∈ [ 1

2
, 1] and t ∈ {0, 1}:

C(Pα
rst) = max{0, 4α− 3} (30)

(for details of proof for r = s = t = 0 see [30], for the other r, s the proof is analogous).

In what follows, another fact is also required, namely, that for any (2 × 2) box, βrst is

invariant under τrs twirling operation [31]:

Observation 3 [30, 25] For any binary r, s, t, r′, s′, a 2 × 2 box P:

βrst(τr′s′(P )) = (8α− 4)δr,r′δs,s′ (31)

and

βrst(P ) = βrst(τrs(P )) (32)

for some α ∈ [0, 1], where τr′s′(P ) = Pα
r′s′ (τrs(P ) = Pα

rs) denotes a box that is invariant

under τr′s′ (τrs) twirling operation, and δ is the Kronecker symbol.

Collecting the facts from the Observations 3 and 2 as well as using monotonicity of C

under local operations, the following fact is immediately obtained:

Observation 4 For a bipartite 2 × 2 box P , and any r, s ∈ {0, 1}, such that τrs(P ) = Pα
rst,

there is:

C(P ) ≥ C(Pα
rst) =

βrst(P
α
rst) − 2

2
=

βrst(P ) − 2

2
. (33)

4.2 Non-locality cost for multipartite boxes and the lower bound

Considering in place of LRns the class of partially local boxes XY Z (that is such that at

least one letter belongs to the set {TOBL,NSBL}), one obtains a measure of multipartite

non-locality with respect to this class.

Definition 5 A non-locality cost for a box P with respect to the class XYZ is defined as:

CXY Z(P (a1, a2, a3|x1, x2, x3)) =

inf
p
{ p|P (a1, a2, a3|x1, x2, x3) = pA + (1 − p)L,A ∈ NS3, L ∈ XY Z, p ∈ [0, 1]} , (34)

where at least one of X,Y, Z belongs to the set {NSBL, TOBL} while the others are

arbitrary in {NSBL, TOBL, S}.
Following the dependences (24), the relation is obtained:

CXY Z ≥ CX′Y ′Z′ (35)

if X ′Y ′Z ′ can be obtained from XY Z by changing exactly one letter T into S, in particular:

CSST ≤ CTST ≤ CTTT

CTSS ≤ CTTS ≤ CTTT . (36)

The CXY Z is non-increasing under linear operations, which preserves the set XY Z, namely,

that transforms the set XY Z into the set XY Z.
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To lower bound of the multipartite non-locality cost, the attention will be centered on the

non-locality cost with respect to the classes TY Z, that is, where in cut 1 : 23 the box belongs

to the TOBL or NSBL class, and set Y and Z are fixed arbitrarily:

CTY Z(P (a1, a2, a3|x1, x2, x3)) =

inf
p
{p|P (a1, a2, a3|x1, x2, x3) = pA + (1 − p)LA ∈ NS3, L1:23 ∈ TOBL, L2:13 ∈ Y, L3:12 ∈ Z} ,

(37)

where Y and Z are arbitrary from the set {S, TOBL,NSBL}. Since these considerations

will remain true for any choice of Y and Z the above measure will be referred to as to CX .

The following fact for the 3-party correlations can be observed:

Lemma 1 For any 2×2×2 box P CX(P ) for X ∈ {NSBL, TOBL} and Y,Z ∈ {NSBL, TOBL, S},
is lower bounded by the non-locality cost of a box emerging from P under any wiring operation

Wγ,η applied to the systems 2 and 3 where the maximum over the directions of wiring W is

taken.

Proof: Let us fix Y and Z arbitrarily and wiring Wγ,η on systems 23 and its direction

from the subsystem 2 to 3. Let us assume, that C(P (a1, a2, a3|x1, x2, x3)) = p, that is,

P (a1, a2, a3|x1, x2, x3) = pA + (1 − p)L. After applying the wiring, a 2 × 2 box is ob-

tained: Wγ,η(P (a1, a2, a3|x1, x2, x3)) = P (a1, a
′

2|x1, x
′

2) ≡ P ′. By linearity of the wiring,

Wγ,η(P (a1, a2, a3|x1, x2, x3)) = pWγ,η(A) + (1 − p)Wγ,η(L). Now, one recalls the fact that

L1:23 ∈ {TOBL,NSBL}. It is known that the classes TOBL and NSBL are closed under

wiring [14], thus the box Wγ,η(L) is a local 2 × 2 box. As a result, the decomposition of P ′

into Wγ,η(A) and Wγ,η(L) is a valid decomposition into (possibly non-local) and local part,

with the weight p which can be then larger from C(P ′). Hence, this is obtained:

C(P (a1, a
′

2|x1, x
′

2)) ≤ C(P (a1, a2, a3|x1, x2, x3)), (38)

as desired.

Having all the mentioned properties of the both 3- and 2- party non-locality, it can be

seen that the non-locality cost for a 2 × 2 × 2 box is lower bounded by the linear function of

the CHSH expression of a 2 × 2 box resulting from the wiring:

Theorem 2 : The non-locality cost for a 2 × 2 × 2 box P with X ∈ {TOBL,NSBL},
admits the following lower bound:

CX(P ) ≥ max
W

C(W (P )) ≥ max
β,W

β(W (P )) − 2

2
, (39)

where the wiring acting on the subsystems 2 and 3 are considered and the maximum over

direction of wiring is taken.

Proof: Let us fix r, s ∈ {0, 1}, γ, η and the direction of a wiring Wγ,η arbitrarily. Denote

Wγ,η(P ) as P ′. First, Lemma 1 is used to obtain:

CX(P ) ≥ C(P ′). (40)
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By monotonicity of C under τrs which is a locality preserving operation [30]:

CX(P ) ≥ C(P ′) ≥ C(τrs(P
′)). (41)

Now, there are two possibilities. First is that C(τrs(P
′)) = 0. Then the box τrs(P

′) is local,

and hence |βr′s′t′(τrs(P
′))| ≤ 2 by definition for any r′s′t′. Then the second inequality in (39)

is satisfied. Second case is that C(τrs(P
′)) > 0. Then the box τrs(P

′) is not local which in a

2× 2 case means that there exists a pair r′s′ such that for all t′ there is |βr′s′t′(τrs(P
′))| > 2,

since βr′s′0 = −βr′s′1. Now, the box τrs(P
′) is described as τrs(P

′) = Pα
rst for α ∈ ( 3

4
, 1]

which fixes the value of t ∈ {0, 1}. Due to the Observation 3: r′ = r and s′ = s. Also t′ = t

we obtain the following:

βrst(P
α
rst) > 2. (42)

Due to the Observation 4:

C(Pα
rst) ≥

βrst(P
′) − 2

2
, (43)

as desired. Due to the (42) RHS of the above inequality is greater than zero. From the above

consideration, for any r′′, s′′, t′′ ∈ {0, 1} there is:

βrst(P
′) − 2

2
≥ βr′′s′′t′′(P

′) − 2

2
. (44)

Indeed, for (r′′, s′′) 6= (r, s) RHS of the above equals −1, and for (r′′, s′′) = (r, s), and t′′ 6= t,

it is less than −2, while the LHS is positive by a construction. This leads to:

CX(P ) ≥ C(W (P )) ≥ max
β

β(W (P )) − 2

2
. (45)

Since Wγ,η was arbitrary, maximising over wirings, the desired chain of inequalities is obtained.

If the class of partially local boxes has more than one cut which admits the TOBL or the

NSBL model, then the above Theorem can be applied to these cuts, and obtain independent

lower bounds. Taking supremum over the cuts yields a superior lower bound, hence an

immediate corollary is obtained:

Corollary 1 Let Q ⊂ {X,Y, Z} such that for q ∈ Q there is q ∈ {TOBL,NSBL}. Then,

for any tripartite box P , there is:

CXY Z(P ) ≥ max
q∈Q

max
β,W q

β(W q(P )) − 2

2
, (46)

where the maximum over the direction of wiring is taken.

4.3 Multipartite robustness of non-locality and the lower bound

In analogy to non-locality cost the so called robustness R is studied which is a multipartite

counterpart of the measure given by R ≡ 1 − R̄ [25]. R is defined as follows:
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Definition 6 For a bipartite 2 × 2 box P ∈ NS2, its robustness of non-locality is defined as:

R(P ) = inf
A∈NS2

{p | pA + (1 − p)P ∈ LRns, p ∈ [0, 1]} , (47)

where A is an arbitrary bipartite non-signaling 2 × 2 box and LRns denotes the set of non-

signaling local-realistic bipartite 2 × 2 boxes.

The multipartite robustness of non-locality for 3 parties is defined with respect to a class

of local boxes XY Z (that is such that at least one letter belongs to the set {TOBL,NSBL}):

Definition 7 For a tripartite 2×2×2 box P ∈ NS3, its robustness of non-locality with respect

to a class of local boxes XY Z, where at least one of X,Y, Z belongs to {NSBL, TOBL} and

the others are arbitrary in {NSBL, TOBL, S} reads:

RXY Z(P ) = inf
A∈NS3

{p | pA + (1 − p)P ∈ XY Zp ∈ [0, 1]} , (48)

where the infimum is taken over the arbitrary non-signaling 2 × 2 × 2 boxes.

Similarly as for non-locality cost (36), the following dependencies occur:

RTTT ≥ RTST ≥ RSST

RTTT ≥ RTTS ≥ RTSS . (49)

Since considerations concerning bound on this measure are analogous to that for cost of

non-locality, just the results are here presented. For the sake of completeness, the proofs

are presented in Appendix. In analogy to Lemma 1 it is demonstrated that multipartite

robustness does not increase under wiring:

Lemma 2 For any 2 × 2 × 2 box P , its robustness RXY Z(P ) for X ∈ {NSBL, TOBL}
and Y,Z ∈ {NSBL, TOBL, S}, is lower bounded by the robustness of non-locality of a box

emerging from P under wiring operation applied to systems 2 and 3.

Realizing this, an analogue of Theorem 2 for multipartite robustness can be stated:

Theorem 3 : The robustness of non-locality for a 2×2×2 box P with X ∈ {TOBL,NSBL},
admits the following lower bound:

RXY Z(P ) ≥ max
W

R(W (P )) ≥ max
β,W

β(W (P )) − 2

β(W (P )) + 4
,

where wiring W acting on subsystems 2 and 3 is considered and the maximum is taken over

wiring direction.

Finally, if the class of boxes is closed under wiring with respect to more than one cut, the

bounds over the MWN in these cuts can be maximized:

Corollary 2 Let Q ⊂ {X,Y, Z} such that for q ∈ Q there is q ∈ {TOBL,NSBL}. Then,

for any tripartite 2 × 2 × 2 box P , there is:

RXY Z(P ) ≥ max
q∈Q

max
β,W q

β(W q(P )) − 2

β(W q(P )) + 4
, (50)

where the maximum over the direction of wiring is taken.
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5 The MWN - the case study via the Linear Programming

In this section the MWN is studied by the Linear Programming. Different classes of tripartite

boxes are considered: NNS, NTS, TTS, NSS and TSS class. Prior to presenting results we

show that it is sufficient to restrict the considerations to wiring of a simple form.

Observation 5 Let us consider a wiring Wγ,η. For the WN the following relation holds

WN(Wγ,η) = WN(Wγ̄,η) where Wγ̄,η denotes wiring of a simple form, namely, (x2 = a1, a
′

1 =

⊕ijηijk(ai1x
j
1a

k
2)). Moreover, MWN = maxη(Wγ̄,η).

The idea of the proof of the above Observation (see Appendix sec. B) is based on the

fact that the action of any wiring Wγ,η on a box P can be implemented by the wiring of the

simple form Wγ̄,η on a box P ′ that can be obtained from P by the local operations. Hence,

since the WN entiles maximization over all boxes from the same class, to which P and P ′

belongs, it is sufficient to consider the wiring of the simple form.

The values of the MWN and WN for different classes are summarized in the Table 3.

Only the presented classes matter, as far as the MWN of a class is concerned, since classes

with the same number of letters T (or N) yield the same MWN. Moreover, due to the relations

(17) the MWN for SSS class can be obtained from a Table 3 (because TSS ⊂ SSS and the

MWN for TSS class yields maximal possible value for bipartite boxes with binary inputs and

outputs). We found that as far as wirings are concerned, there is no difference between the

NNS and NTS. The same holds for the NSS and TSS class.

Table 3. The MWN for different correlations classes (N - NSBL, T -TOBL, S- boxes with the fully
bilocal decomposition which may entile the two way signaling boxes). The values of the WN are
also presented.

Class MWN WN(Wγ̄,η)
NTS, NNS 3 2 4

5

TTS 3 2 12

13

NSS, TSS 4 3

The wiring leading to the non-zero WN for classes are presented in Tables B.1, B.2,

B.3, B.4. The full list of wiring can be obtained from these Tables by performing the local

relabeling of a2 (a2 → a2 + 1 and a2 → a2 + a1). For a given class, in principle there could

be as many WNs as non-trivial wiring, however, as it can be seen in Tables B.1, B.2, B.3,

B.4 there are only two of them. Having a given value of the WN, it could be that depending

on wiring, a different box to attain it is required. Interestingly, we have found a box which

we call a representative for this WN, as for any wiring its WN can be obtained on some local

relabeling of this box. For instance, there are two representative boxes for the NSS class for

the two values of the WN: 3 and 14/5 (see Table 4 and 5 for the analogous results for the

TTS class). For the representative boxes the upper bound on the MWN of the Theorem 1

is computed, as well as lower bounds on non-locality cost and robustness. These results are

presented in Tables 4 and 6, for the TTS and NNS class respectively. For the representative

box 1 in the case of the TTS and the NNS correlations the upper bound on the MWN is tight.

For the other classes of correlations we have not succeeded in finding representative box.

In some cases, using wiring, it is possible to determine to which class of correlations a
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Table 4. The representative boxes from the TTS class associated to the groups of wiring.

Box
〈Ax1

〉 〈Bx2
〉 〈Cx3

〉
0 1 0 1 0 1

1 0 0 0 0 0 0
2 1

13

1

13
− 3

13

5

13

1

13
− 1

13

Box
〈Ax1

Bx2
〉 〈Ax1

Cx3
〉

00 01 10 11 00 01 10 11
1 0 0 0 0 0 0 0 0
2 1

13

1

13

1

13

5

13

9

13
− 5

13

1

13
− 1

13

Box
〈Bx2

Cx3
〉 〈Ax1

Bx2
Cx3

〉
00 01 10 11 000 001 010 011

1 0 1

2
0 1

2
− 1

2

1

2

1

2
− 1

2

2 5

13

7

13

5

13

7

13
− 3

13

3

13

5

13
− 5

13

Box
〈Ax1

Bx2
Cx3

〉
100 101 110 111

1 1

2

1

2
− 1

2
− 1

2

2 5

13

7

13
− 7

13
− 5

13

Table 5. Wiring that together with the boxes from Table 4 attain the maximum of the WN (local
relabeling of boxes is not required). In subsequent columns the value of the WN, upper bound on

the MWN for boxes from Table 4, as well as Lower bound on non-locality cost and robustness are
presented.

Box Representative wiring WN(Wγ,η) Upper bound on MWN
1 a1, a2 3 3
2 a1, a2 + a1a2x1

38

13

50

13

Box Lower bound on non-locality cost Lower bound on robustness
1 C ≥ 1

2
R ≥ 1

7

2 C ≥ 6

13
R ≥ 2

15

given box cannot belong to. If βrst(Wγ,η(P )) is higher than the value of WNXY Z(Wγ̄,η) for

some XYZ, it implies that P 6∈ XY Z. For instance, if after any wiring from a Table B.1 with

the WN = 14

5
value of any CHSH expression is higher than this WN, the box cannot belong

to the NNS and NTS class.

5.1 Distributing non-locality in a local-like manner

In [21] it is shown that one can distribute entanglement ”without entanglement”: using

ancillary state, that in each step is separable with the rest of the system. Correlations

belonging to the NNS, NTS and TTS class are such that in cut 1:23, and 2:13 they cannot be

wired to a non-local box, while in cut 3:12, after suitable wiring, the WN is non-zero. Therefore

using these boxes and the appropriate wiring it is possible to distribute non-locality in a local-

like manner. For instance, it could be that initially system 2 is possessed by one party (Alice)

and systems 13 are possessed by the other one (Bob). Then no non-locality between Alice

and Bob can be created by the wiring applied to the Bob’s devices. The situation transforms

when the system 1 is transferred from Bob to Alice (see Figure 3). Then, after applying

wiring to subsystem 12, the effective box shared by Alice and Bob will become non-local.
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Table 6. The representative boxes from the TTS class associated to the groups of wiring.

Box
〈Ax1

〉 〈Bx2
〉 〈Cx3

〉
0 1 0 1 0 1

1 0 0 − 1

20

1

20
0 0

2 − 2

5

1

5
− 3

5

1

5

1

5
− 1

5

Box
〈Ax1

Bx2
〉 〈Ax1

Cx3
〉

00 01 10 11 00 01 10 11
1 0 0 0 0 1

20
− 1

20

1

20
− 1

20

2 0 0 1

5

1

5
0 − 2

5

1

5
− 1

5

Box
〈Bx2

Cx3
〉 〈Ax1

Bx2
Cx3

〉
00 01 10 11 000 001 010 011

1 0 1

2
0 1

2
− 1

2

1

2

1

2
− 1

2

2 1

5

3

5

1

5

3

5
− 2

5
0 2

5
− 4

5

Box
〈Ax1

Bx2
Cx3

〉
100 101 110 111

1 1

2

1

2
− 1

2
− 1

2

2 1

5

3

5
− 3

5
− 1

5

Table 7. Wiring that together with boxes from Table 6 attains the maximum of the WN (local
relabeling of boxes is not required). In subsequent columns the value of WN, upper bound on
the MWN for boxes from Table 6, as well as lower bound on non-locality cost and robustness are
presented.

Box Representative wiring WN(Wγ,η) Upper bound on MWN
1 a1, a2 3 3
2 a1, a2 + a1a2x1

14

5

18

5

Box Lower bound on non-locality cost Lower bound on robustness
1 C ≥ 1

2
R ≥ 1

7

2 C ≥ 2

5
R ≥ 1

17

It is often the case in the Quantum Information Theory that new resources and (more or

less) real life scenarios, become related. The Quantum Key Distribution is the most profound

example of such an approach [32]. Suppose that in the NNS/NTS/TTS there is a box which

after wiring is useful for the so called Device Independent QKD. Then the contrived, whereas

still possible cryptographic scenario can be introduced. Consider a situation in which an

agent Alice would like to communicate with an agent Bob in a secure way. One of the

possible solutions would be to equip the both agents with the secure devices. However, due

to the character of her activity, Alice may be caught and her device may be at some point in

the hands of enemies. In order to prevent enemies from using her device, one more element

of the system would be desirable. This element is kept in a secure location C and enables

security. Such a tripartite system can be built from the box, which was mentioned above,

belonging to the NNS/NTS/TTS class. Let us focus on a box belonging to the TTS class

presented in Figure 3. One equips agent Alice with a pocket device consisting of a subsystem

2 of the considered box, another part of the device with subsystem 1 is kept in the secure

location known to Alice, and agent Bob is in possession of a pocket device with a subsystem
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Fig. 3. A box-analogue of distribution of entanglement by separable ancilla. a) A box from the

TTS class, such that no non-locality can be created by wiring in cuts 1:23 and 2:13. In cut 3:12
this box admits fully bilocal decomposition. b) When the system 1 is transferred to 2, after wiring
on systems 12, the initial tripartite box P (a1, a2, a3|x1, x2, x3) becomes an effective bipartite,

non-local box P (a′
1
, a3|x1, x3).

3. When Alice has an access to the two specific subsystems of the complete box (a subsystem

2 in her pocket and a subsystem 1 in the secure location C), she can perform appropriate

wiring and then the effective box shared by Alice and Bob will become non-local. Otherwise,

due to the Observation 1, the box shared by Alice and Bob (consisting of subsystems 2 and 3)

is local and therefore it cannot be used to perform any cryptographic task. From the security

point of view in order to set up such a system against quantum adversary one can also use

the quantum states from [21], provided that secure key can be extracted from them.

6 Conclusions

The phenomenon of non-locality emerging from the application of wiring involving 2 parties

to a 3-partite boxes with binary inputs and outputs have been studied quantitatively. In

particular, the natural counterparts of the known bipartite non-locality measures, such as

cost of non-locality and its robustness have been introduced, placing a lower bound on these

measures in the terms of explicit functions of maximal violation of the CHSH inequality after

wiring.

Presented approach can be generalized to the case of a tripartite non-signaling box with

a larger number of inputs and/or outputs. However, then the Bell expressions other than the

CHSH must be considered. It is also straightforward to generalize these definitions to the

multipartite case with m ≥ 4 parties, however the bounds should then involve the violation

of some multipartite Bell inequality for more than 2 parties.

The class of partially local boxes can be defined in a more general way, that is, as boxes

admitting in bipartition the fully bilocal decomposition.

We have shown, that maximal attainable non-locality via wiring is upper bounded by the

weight of boxes signaling in opposite direction to the wiring in fully bilocal decomposition

of a box. It would be also interesting to place some lower bounds based on this description.

Finally, we have studied the MWN using the Linear Programming. In particular, we have

identified the boxes which fall into an interesting class enabling the distribution of non-locality



J. Tuziemski and K. Horodecki 1101

in a local manner. The boxes which maximize the value of the WN in each of the considered

classes are manifestly non-quantum (reaching 3 > 2
√

2 of violation of the CHSH inequality).

It would be interesting to find their quantum-realizable versions like the one demonstrated in

[14]. We have also classified different wiring proving that some of them are equivalent as far

as the increase of the non-locality under their application is concerned. These findings shed

some light on the phenomenon of non-locality emerging from processing of the multipartite

non-locality via wiring.
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Appendix A The conversion of expectation values

The conversion of expectation values between notation in which a1, a2, a3,∈ {−1, 1} and

ã1, ã2, ã3 ∈ {0, 1} is given by [24]:

〈Ax1
〉 = 1 − 2

〈

Ãx1

〉

(A.1)

〈Ax1
Bx2

〉 = 1 − 2
〈

Ãx1
+ B̃x2

〉

〈Ax1
Bx2

Cx3
〉 = 1 − 2

〈

Ãx1
+ B̃x2

+ C̃x3

〉

,

where
〈

Ãx1

〉

=
∑

ã1

P (ã1|x1)ã1

〈

Ãx1
+ B̃x2

〉

=
∑

ã1 ã2

P (ã1ã2|x1x2)ã1ã2

〈

Ãx1
+ B̃x2

+ C̃x3

〉

=
∑

ã1 ã2 ã3

P (ã1ã2ã3|x1x2x3)ã1ã2ã3.

Appendix B Proofs and examples

In this section the details of the proof of Lemma 2 and Theorem 3 are demonstrated.

We initiate with some useful facts about robustness for the bipartite case. In particular,

it was shown in [25] that for isotropic boxes Pα
rs(a1, a2|x1, x2) = αBrst(a1, a2|x1, x2) + (1 −

α)Brst̄(a1, a2|x1, x2) there is:

R̄(A) =
3

4α
(B.1)

and for A such that βrst(A) ≥ 2 there is:

R̄(A) = R̄(τrs(A)). (B.2)
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From this fact, one obtains that for α > 3/4:

R(Pα
rs) =

4α− 3

4α
=

βrst(P
α
rs) − 2

βrst(Pα
rs) + 4

(B.3)

for any binary r, s, t.

Having collected the known facts for robustness in a 2 × 2 case Lemma 2 can be proved

which states that robustness of a 2×2×2 box is monotonous under wiring on two subsystems.

It is demonstrated for the class X, as for other classes the proof is analogous.

Proof of Lemma 2: Let us fix Y and Z arbitrarily and wiring Wγ,η on systems 2 and 3 with

arbitrary direction. It could be assumed that R(Wγ,η(P )) = p̃ and R(P ) = p. Then, there

exists a box L ∈ {NSBL, TOBL} with respect to 1:23 cut, such that pX + (1− p)P = L. By

linearity of wiring the following is obtained:

pWγ,η(X) + (1 − p)Wγ,η(P ) = Wγ,η(L). (B.4)

Now, by the fact that classes N and T yield local boxes under wiring on 2nd and 3rd subsys-

tems, it is obtained that Wγ,η(L) = L′ is a 2× 2 local box. Hence, the decomposition (B.4) is

valid decomposition of a local box L′ into Wγ,η(P ) and some other box which confirms p ≥ p̃

as expected.

As a result the Robustness for a 2 × 2 × 2 box is lower bounded by the linear function of

the CHSH expression of a 2 × 2 box resulting from wiring which is stated in the Theorem 3.

The proof of this Theorem is presented below:

Proof of Theorem 3: Let us fix γ, η arbitrarily. Then, by Lemma 2, RXY Z(P ) ≥
R(Wγ,η(P )) where wiring acting on subsystems 2 and 3 is considered. Let us fix r and s

arbitrarily, and denote τrs(Wγ,η(P )) ≡ τrs(P
′). In analogy to the proof of the Theorem 2,

the case when for all r′s′t′ there is |βr′s′t′(τrs(P
′))| ≤ 2 implies that R(P ′) is zero (the box is

local) [25] and the RHS of (50) is not positive, hence the claimed inequality is satisfied.

Let us consider now the non-trivial case when there exist r′s′ such that for all t′, there is

|βr′s′t′(τrs(P
′))| > 2. The box τrs(P

′) as τrs(P
′) = Pα

rst is now described for α ∈ ( 3

4
, 1] which

fixes the value of t ∈ {0, 1}. Now, due to the Observation 3 r′ = r, s′ = s, by choosing also

t′ = t:

βrst(P
α
rst) > 2. (B.5)

Then, from the Eq. (B.3), there is:

R(τrs(P
′)) =

βrst(τrs(P
′)) − 2

βrst(τrs(P ′)) + 4
. (B.6)

From the Eq. (B.2) there is R(τrs(P
′)) = R(P ′) as robustness (like anti-robustness), is

invariant under appropriate twirling: namely, if a box B has βrst(B) > 2 then after τrs,

R(τrs(B)) = R(B).

Finally, it is worth noticing that βrst(τrs(P
′)) = βrst(P

′) by Observation 3. Since, as in

the proof of Theorem 2, r, s, t are such, that:

βrst(P
′) − 2

βrst(P ′) + 4
≥ βr′′s′′t′′(P

′) − 2

βr′′s′′t′′(P ′) + 4
(B.7)
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for any r′′, s′′, t′′ ∈ {0, 1}, the LHS of the above inequality is the highest value of the RHS

expression over r′′, s′′, t′′. After maximization over W :

RXY Z(P ) ≥ max
W

R(W (P )) ≥ max
β,W

β(W (P )) − 2

β(W (P )) + 4
, (B.8)

as desired.

Proof of Observation 5: It is worth to consider a wiring (x2 = a1, a
′

1 = a2) performed on a

box P (a1, a2, a3|x1, x2, x3) leading to the box P1(a′1, a3|x1, x3). The output of P (a1, a2, a3|x1, x2, x3)

can be locally changed, defining ã1 = a1 + a1x1. Now, the wiring (x2 = ã1, ã
′

1 = a2) leading

to the resulting box P2(ã′1, a3|x1, x3) is considered. The same box P2(ã′1, a3|x1, x3) can be ob-

tained by performing the wiring (x2 = a1 + a1x1, a
′

1 = a2) on the box P (a1, a2, a3|x1, x2, x3).

So the investigation of (x2 = a1 + a1x1, a
′

1 = a2) can be performed using (x2 = a1, a
′

1 = a2)

and a locally relabeled box P (ã1, a2, a3|x1, x2, x3) with ã1 = a1 + a1x1 . In general, there is

a correspondence between (x2 = a1, a
′

1 = a2) and all local relabellings l(.) of the output a1
which results in (x2 = l(a1), a′1 = ⊕ijkηijk(l(a1)ixj

1a
k
2)).
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Table B.1. The value of the WN for Wiring acting on subsystems 12 of boxes
P (a1, a2, a3|x1, x2, x3) belonging to the NNS correlations (namely, the maximal violation over
the CHSH inequalities (14) obtained using given wiring on the boxes belonging to the NNS class).

Due to the Observation 5 an input to the second subsystem is given by x2 = a1. An output of the
effective box P (a′

1
, a3|x1, x3) is given by a′

1
.

No. WNNNS a1’
1 3 a2
2 3 a1 + a2
3 3 a2 + x1

4 3 a1 + a2 + x1

5 14

5
a2 + a1a2x1

6 14

5
a2 + a1x1 + a1a2x1

7 14

5
a2 + x1 + a1a2x1

8 14

5
a2 + x1 + a1x1 + a1a2x1

9 14

5
a2 + a1a2 + a1a2x1

10 14

5
a2 + a1a2 + x1 + a1a2x1

11 14

5
a1 + a2 + a1a2x1

12 14

5
a1 + a2 + a1x1 + a1a2x1

13 14

5
a1 + a2 + x1 + a1a2x1

14 14

5
a1 + a2 + x1 + a1x1 + a1a2x1

15 14

5
a1 + a2 + a1a2 + a1a2x1

16 14

5
a1 + a2 + a1a2 + x1 + a1a2x1

17 14

5
1 + a1a2 + a2x1 + a1a2x1

18 14

5
1 + a1a2 + x1 + a2x1 + a1a2x1

19 14

5
a1a2 + a2x1 + a1a2x1

20 14

5
a1a2 + x1 + a2x1 + a1a2x1

21 14

5
a1a2 + a1x1 + a2x1 + a1a2x1

22 14

5
a1a2 + x1 + a1x1 + a2x1 + a1a2x1

23 14

5
a2 + a2x1 + a1a2x1

24 14

5
a2 + a1x1 + a2x1 + a1a2x1

25 14

5
a2 + x1 + a2x1 + a1a2x1

26 14

5
a2 + x1 + a1x1 + a2x1 + a1a2x1

27 14

5
a2 + a1a2 + a1x1 + a1a2x1

28 14

5
a2 + a1a2 + x1 + a1x1 + a1a2x1

29 14

5
a1 + a2 + a2x1 + a1a2x1

30 14

5
a1 + a2 + a1x1 + a2x1 + a1a2x1

31 14

5
a1 + a2 + x1 + a2x1 + a1a2x1

32 14

5
a1 + a2 + x1 + a1x1 + a2x1 + a1a2x1

33 14

5
a1 + a2 + a1a2 + a1x1 + a1a2x1

34 14

5
a1 + a2 + a1a2 + x1 + a1x1 + a1a2x1

35 14

5
1 + a1a2 + a1x1 + a2x1 + a1a2x1

36 14

5
1 + a1a2 + x1 + a1x1 + a2x1 + a1a2x1
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Table B.2. The value of the WN for Wiring acting on subsystems 12 of boxes
P (a1, a2, a3|x1, x2, x3) belonging to the TTS correlations (namely, the maximal violation over

the CHSH inequalities (14) obtained using given wiring on boxes belonging to the TTS class).
Due to the Observation 5 an input to the second subsystem is given by x2 = a1. An output of the
effective box P (a′

1
, a3|x1, x3) is given by a′

1
.

No. WNTTS a1’
1 3 a2
2 3 a2 + x1

3 3 a1 + a2x1

4 3 a1 + a2
5 3 a1 + a2 + x1

6 3 1 + a1 + a2x1

7 3 a2 + a1x1 + a2x1

8 3 a2 + x1 + a1x1 + a2x1

9 3 a1 + a1x1 + a2x1

10 3 a1 + a2 + a2x1

11 3 a1 + a2 + x1 + a2x1

12 3 1 + a1 + a1x1 + a2x1

13 38

13
a2 + a1a2 + a1a2x1

14 38

13
a2 + a1a2 + x1 + a1a2x1

15 38

13
a1 + a2 + a1a2x1

16 38

13
a1 + a2 + a1x1 + a1a2x1

17 38

13
a1 + a2 + x1 + a1a2x1

18 38

13
a1 + a2 + x1 + a1x1 + a1a2x1

19 38

13
a1 + a2 + a1a2 + a1a2x1

20 38

13
a1 + a2 + a1a2 + x1 + a1a2x1

21 38

13
1 + a1a2 + a2x1 + a1a2x1

22 38

13
1 + a1a2 + x1 + a2x1 + a1a2x1

23 38

13
a1a2 + a2x1 + a1a2x1

24 38

13
a1a2 + x1 + a2x1 + a1a2x1

25 38

13
a2 + a1a2x1

26 38

13
a2 + a1x1 + a1a2x1

27 38

13
a2 + x1 + a1a2x1

28 38

13
a2 + x1 + a1x1 + a1a2x1

29 38

13
a1a2 + a1x1 + a2x1 + a1a2x1

30 38

13
a1a2 + x1 + a1x1 + a2x1 + a1a2x1

31 38

13
a2 + a2x1 + a1a2x1

32 38

13
a2 + a1x1 + a2x1 + a1a2x1

33 38

13
a2 + x1 + a2x1 + a1a2x1

34 38

13
a2 + x1 + a1x1 + a2x1 + a1a2x1

35 38

13
a2 + a1a2 + a1x1 + a1a2x1

36 38

13
a2 + a1a2 + x1 + a1x1 + a1a2x1

37 38

13
a1 + a2 + a2x1 + a1a2x1

38 38

13
a1 + a2 + a1x1 + a2x1 + a1a2x1

39 38

13
a1 + a2 + x1 + a2x1 + a1a2x1

40 38

13
a1 + a2 + x1 + a1x1 + a2x1 + a1a2x1

41 38

13
a1 + a2 + a1a2 + a1x1 + a1a2x1

42 38

13
a1 + a2 + a1a2 + x1 + a1x1 + a1a2x1

43 38

13
1 + a1a2 + a1x1 + a2x1 + a1a2x1

44 38

13
1 + a1a2 + x1 + a1x1 + a2x1 + a1a2x1
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Table B.3. The value of the WN for Wiring acting on subsystems 12 of boxes
P (a1, a2, a3|x1, x2, x3) belonging to the NSS correlations (namely, maximal violation over the

CHSH inequalities (14) obtained using given wiring on the boxes belonging to NSS class). Due to
Observation 5 an input to the second subsystem is given by x2 = a1. An output of the effective
box P (a′

1
, a3|x1, x3) is given by a′

1
.

No. WNNSS a1’
1 4 a2 + a1x1

2 4 a1 + a2 + a1x1

3 4 a2 + x1 + a1x1

4 4 a1 + a2 + x1 + a1x1

5 3 a2
6 3 a2 + a2x1 + a1a2x1

7 3 a2 + a1x1 + a2x1 + a1a2x1

8 3 a2 + x1 + a1a2x1

9 3 a2 + x1 + a1x1 + a1a2x1

10 3 a2 + a1a2 + a1a2x1

11 3 a2 + a1a2 + x1 + a1a2x1

12 3 a1 + a2
13 3 a1 + a2 + a2x1 + a1a2x1

14 3 a1 + a2 + a1x1 + a2x1 + a1a2x1

15 3 a1 + a2 + x1 + a1a2x1

16 3 a1 + a2 + x1 + a1x1 + a1a2x1

17 3 a1 + a2 + a1a2 + a1a2x1

18 3 a1 + a2 + a1a2 + x1 + a1a2x1

19 3 1 + a1a2 + a2x1 + a1a2x1

20 3 1 + a1a2 + x1 + a2x1 + a1a2x1

21 3 a1a2 + a2x1 + a1a2x1

22 3 a1a2 + x1 + a2x1 + a1a2x1

23 3 a1a2 + a1x1 + a2x1 + a1a2x1

24 3 a1a2 + x1 + a1x1 + a2x1 + a1a2x1

25 3 a2 + a1a2x1

26 3 a2 + a1x1 + a1a2x1

27 3 a2 + x1

28 3 a2 + x1 + a2x1 + a1a2x1

29 3 a2 + x1 + a1x1 + a2x1 + a1a2x1

30 3 a2 + a1a2 + a1x1 + a1a2x1

31 3 a2 + a1a2 + x1 + a1x1 + a1a2x1

32 3 a1 + a2 + a1a2x1

33 3 a1 + a2 + a1x1 + a1a2x1

34 3 a1 + a2 + x1

35 3 a1 + a2 + x1 + a2x1 + a1a2x1

36 3 a1 + a2 + x1 + a1x1 + a2x1 + a1a2x1

37 3 a1 + a2 + a1a2 + a1x1 + a1a2x1

38 3 a1 + a2 + a1a2 + x1 + a1x1 + a1a2x1

39 3 1 + a1a2 + a1x1 + a2x1 + a1a2x1

40 3 1 + a1a2 + x1 + a1x1 + a2x1 + a1a2x1
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Table B.4. The value of the WN for Wiring acting on subsystems 12 of boxes
P (a1, a2, a3|x1, x2, x3) belonging to the TSS correlations (namely, the maximal violation over

the CHSH inequalities (14) obtained using given wiring on the boxes belonging to TSS class). Due
to the Observation 5 an input to the second subsystem is given by x2 = a1. An output of the
effective box P (a′

1
, a3|x1, x3) is given by a′

1
.

No. WNTSS a1’
1 4 a2 + a1x1

2 4 a1 + a2 + a1x1

3 4 a2 + x1 + a1x1

4 4 a1 + a2 + x1 + a1x1

5 3 a2
6 3 a2 + a2x1 + a1a2x1

7 3 a2 + a1x1 + a2x1

8 3 a2 + x1

9 3 a2 + x1 + a2x1 + a1a2x1

10 3 a2 + x1 + a1x1 + a2x1

11 3 a2 + a1a2 + a1a2x1

12 3 a2 + a1a2 + x1 + a1a2x1

13 3 a1 + a2x1

15 3 a1 + a2 + a2x1

16 3 a1 + a2 + a1x1 + a1a2x1

17 3 a1 + a2 + x1

18 3 a1 + a2 + x1 + a2x1

19 3 a1 + a2 + x1 + a1x1 + a1a2x1

20 3 a1 + a2 + a1a2 + a1a2x1

21 3 a1 + a2 + a1a2 + x1 + a1a2x1

22 3 1 + a1a2 + a2x1 + a1a2x1

23 3 1 + a1a2 + x1 + a2x1 + a1a2x1

24 3 1 + a1 + a2x1

25 3 a1a2 + a2x1 + a1a2x1

26 3 a1a2 + x1 + a2x1 + a1a2x1

27 3 a1a2 + a1x1 + a2x1 + a1a2x1

28 3 a1a2 + x1 + a1x1 + a2x1 + a1a2x1

29 3 a2 + a1a2x1

30 3 a2 + a1x1 + a1a2x1

31 3 a2 + a1x1 + a2x1 + a1a2x1

32 3 a2 + x1 + a1a2x1

33 3 a2 + x1 + a1x1 + a1a2x1

34 3 a2 + x1 + a1x1 + a2x1 + a1a2x1

35 3 a2 + a1a2 + a1x1 + a1a2x1

36 3 a2 + a1a2 + x1 + a1x1 + a1a2x1

37 3 a1 + a1x1 + a2x1

38 3 a1 + a2 + a1a2x1

39 3 a1 + a2 + a2x1 + a1a2x1

40 3 a1 + a2 + a1x1 + a2x1 + a1a2x1

41 3 a1 + a2 + x1 + a1a2x1

42 3 a1 + a2 + x1 + a2x1 + a1a2x1

43 3 a1 + a2 + x1 + a1x1 + a2x1 + a1a2x1

44 3 a1 + a2 + a1a2 + a1x1 + a1a2x1

45 3 a1 + a2 + a1a2 + x1 + a1x1 + a1a2x1

46 3 1 + a1a2 + a1x1 + a2x1 + a1a2x1

47 3 1 + a1a2 + x1 + a1x1 + a2x1 + a1a2x1

48 3 1 + a1 + a1x1 + a2x1


