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Consider a 2-D square array of qubits of extent L × L. We provide a proof that the

minimum weight perfect matching problem associated with running a particular class of
topological quantum error correction codes on this array can be exactly solved with a

2-D square array of classical computing devices, each of which is nominally associated

with a fixed number N of qubits, in constant average time per round of error detection
independent of L provided physical error rates are below fixed nonzero values, and other

physically reasonable assumptions. This proof is applicable to the fully fault-tolerant
case only, not the case of perfect stabilizer measurements.

Keywords:

Communicated by: S Braunstein & R Laflamme

1 Introduction

Quantum computing hardware is not expected to achieve the same level of reliability as

classical computing hardware due to its complexity and reliance on the fragile phenomena

of quantum mechanics. Arbitrarily reliable quantum computation can, however, be achieved

through the use of quantum error correction [1, 2, 3, 4]. Bright hopes in the field of quantum

error correction include the surface code and topological cluster states [5, 6, 7, 8, 9, 10]. These

approaches to quantum error correction have the very experimentally reasonable requirements

of a 2-D array of nearest-neighbor coupled qubits capable of implementing initialization,

measurement, and one- and two-qubit unitary gates, all with error rates below approximately

1% [11, 12]. Trade-offs are also possible, such as a measurement error rate of 10% or more at

the cost of somewhat lower two-qubit gate error rates [10].

Ion traps have achieved world-leading low error single-qubit rotations [13], readout [14],

and transport [15], however single experiments designed to perform all operations have much

higher error rates [16, 17]. Presently, an experimental demonstration of topological quantum

error correction (TQEC) has only been possible using photons [18]. We are hopeful that

solid-state demonstrations of TQEC shall follow shortly.
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Given a 2-D nearest-neighbor coupled qubit lattice, any quantum error correction code

with local stabilizers and certain additional properties can be decoded in a highly automated

manner using Autotune [19]. Autotune generally requires that every isolated error leads to

precisely two stabilizer measurement values changing. Errors on the qubit lattice boundaries

are allowed to lead to a single stabilizer measurement value change. This is the class of

quantum error correction schemes we focus on in this work. This class includes the surface

code and topological cluster states. Autotune runs on a single core, an approach that would

be insufficiently fast for a large quantum computer. However, a high-speed practical O(1)

parallel version has been proposed [12, 20]. In this work, we prove that this proposed parallel

version can indeed run in the claimed O(1) average time per round of error detection.

Algorithms not based on minimum weight perfect matching designed to decode topological

codes do exist [21, 22, 23, 24, 25, 26, 27, 28], but matching approaches [29, 30] have been by

far more thoroughly tested. In particular, non-matching methods have only been tested using

direct, imperfect measurement of the stabilizers, while matching has been implemented with

nearest neighbor faulty gates on a regular 2D lattice. Gate errors will generally only introduce

short range space-time noise correlations, so it is not expected to change the problem in a

fundamental way. Nonetheless, our proof removes any doubt that practical decoding of TQEC

codes can be performed.

Related prior work by Sipser and Spielman [31] and [32] on the linear time decoding

of low-density parity check classical codes cannot be used to prove the work considered in

this manuscript. Firstly, this prior work only achieves logarithmic depth parallel processing.

Secondly, nonlocal processing is used. Thirdly, these prior approaches do not guarantee

correction of the theoretical maximum number of errors. Fourthly, this prior work can only

be applied to expander codes, which are a particular family of classical block codes of constant

rate, which the surface code is not a member of.

The discussion is organized as follows. In Section 2, a brief historical overview of minimum

weight perfect matching is provided, followed by the relationship between prior work and this

work. In Section 3, the linear optimization problem that is minimum weight perfect matching

is described. In Section 4, a serial algorithm is described capable of efficiently solving this

linear optimization problem. In Section 5, the average complexity of the serial algorithm

when applied to problem instances associated with TQEC is shown to be O(n), where n is

the number of detection events, defined in this same Section. The worst-case complexity is

shown to be O(n2). In Section 6, the proposed parallel implementation is described and shown

to require O(1) average parallel processing per round of error detection. Section 7 concludes

with a complete statement of the theorem proved in this work.

2 Background

Minimum weight perfect matching has a long history. The first version of the algorithm was

devised by Jack Edmonds and published in 1965 [33, 34]. Conceptually, this algorithm takes

a weighted graph and finds a set of edges with minimal weight sum (Fig. 1a). Given an even

number n of vertices and edges between every pair of vertices, a direct implementation of

Edmonds’ algorithm runs in worst-case time O(n4) [35].

A great deal of research has gone into improving the worst-case performance of Edmonds’

algorithm, with performance first improved to O(n3) by Balinski [36], Gabow [37, 38], Kameda
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a)

b)

Fig. 1. a) Standard minimum weight perfect matching input, a weighted graph, and output, a
perfect matching with minimum total weight. b) Schematic minimum weight perfect matching

problem associated with topological quantum error correction. Time runs vertically. Vertical

lines represent boundaries. The goal is now to match each vertex with either another vertex or
a boundary such that the total weight of matched edges is minimal. New vertices are constantly

added to the problem.

and Munro [Kameda and Munro(1974)], and Lawler [39]. In the most recent work, this has

been further improved to O(n2.5) by Micali and Vazirani [40], Gabow and Tarjan [41], and

Goldberg and Karzanov [42]. This scaling has only been surpassed by approximate techniques

presented by Duan and Pettie, which can generate a minimum weight matching within 1 + ε

of optimal in O((n/ε)2 log3 n) time.

The above algorithms can cope with negative weight edges, and graphs with small numbers

of edges. To the best of our knowledge, these algorithms do not currently cope with additional

vertices being added during execution. Our focus will ultimately be on the graphs arising dur-

ing TQEC. Such graphs involve vertices located in 3-D space-time. The separation of vertices

defines the weight of a connecting edge, enabling one to omit an explicit specification of any

edges at the beginning of the algorithm. Furthermore, since vertices correspond to endpoints

of error chains in a quantum computer, and a quantum computer runs continuously, we must

handle the case of a constant stream of additional vertices. These special properties of our

problem regrettably make the existing literature difficult to use. Existing algorithms require

a complete graph as input to match the error suppression performance of our algorithm, and

simple construction of this complete graph would guarantee a minimum runtime of O(n2).

Given a number of vertices n in a finite space-time corresponding to running a finite

quantum computer for a finite amount of time, our algorithm runs on a single core in worst-

case time O(n2). This is not, however, the case of greatest interest. Given an L × L qubit

quantum computer running continuously with a uniform 2-D array of classical computing

devices, our algorithm runs in O(1) average time per round of error detection, independent

of L, which is optimal.
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3 Minimum weight perfect matching

Let G be a weighted graph (V,E,W ), meaning a set of vertices V = {vi}, a set of edges

E = {eij} satisfying i 6= j and eij = {vi, vj}, and a set of real weights W = {we}, e ∈ E. A

matching of G is a subset of edges M ⊆ E such that ∀e, f ∈M, e∩ f = ∅. A perfect matching

is a matching with the additional property that ∀v ∈ V,∃e ∈M such that v ∈ e. A minimum

weight perfect matching is a perfect matching with the additional property that
∑

e∈M we is

minimal within the set of perfect matchings.

A complete graph is a graph with the additional property that ∀vi, vj ∈ V, i 6= j ⇒ eij ∈ E.

Denote the number of elements (cardinality) of a set S by |S|. Clearly, any complete graph

G with an even number of vertices |V | possesses a perfect matching. Let i ∈ [0, . . . , n] ⊂ Z.

Consider V = {vi}. We shall associate a special label with v0, calling it the boundary of G.

Let V + = V − {v0}. We shall henceforth restrict ourselves to graphs with this form of index

set. We shall call a matching M of G perfect if ∀e, f ∈ M, e ∩ f 6= ∅ ⇒ e ∩ f = {v0} and

∀v ∈ V +,∃e ∈ M such that v ∈ e. Note that |V +| does not need to be even for a perfect

matching so defined to exist. Let vi, vj , vk be distinct vertices. We shall further restrict

ourselves to positively weighted graphs satisfying the triangle inequality weik ≤ weij + wejk .

Let S ⊆ V +. Define the hair of S to be h(S) = {e = {v, w} ∈ E | v ∈ S,w ∈ V − S}.
In standard graph theory literature, this is typically called the boundary of S, however we

use the term hair to avoid confusion with the boundary v0 of G defined above. Furthermore,

the term hair gives a nice intuitive picture, as given a connected region of vertices S, h(S)

would look like the set of edges touching the surface of this region and pointing outwards.

Let {xe}, e ∈ E be a set of real variables. Define O = {S ⊆ V + | |S| odd}. We impose the

following conditions on {xe}:

1. ∀e ∈ E, xe ≥ 0,

2. ∀S ∈ O,
∑

e∈h(S) xe ≥ 1.

Let {yS}, S ∈ O, be another set of real variables. We impose the following conditions on

{yS}:

3. ∀S ∈ O, yS ≥ 0,

4. ∀e ∈ E,
∑

S∈O | e∈h(S) yS ≤ we.

Arbitrarily order the sets O and E. Let Si, ei denote the ith elements of these sets, respec-

tively. Let A denote the |O| × |E| matrix with entry Aij equal to 1 if ej ∈ h(Si), and 0

otherwise. Let x̃ denote the |E| entry column vector with ith entry xei . Let c̃ denote the |O|
entry column vector with all entries 1. Let ỹ denote the |O| entry column vector with ith

entry ySi . Let w̃ denote the |E| entry column vector with ith entry wei . Conditions 2 and 4

can be rewritten as:

5. Ax̃ ≥ c̃,

6. AT ỹ ≤ w̃.

We seek to minimize the value of w̃T x̃ and maximize the value of c̃T ỹ.
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At this point in time, some intuition into why we care about solutions of the above

symmetric linear optimization problem [43] would be of value. Consider conditions 1 and

2. Condition 1 restricts all xe variables to be positive, defining a region P ⊂ R|E|. Each

condition
∑

e∈h(S) xe ≥ 1, S ∈ O splits R|E| in half along a plane, potentially slicing off a low

xe portion of P . Collectively, conditions 1 and 2 define a convex subset P ′ ⊂ P . Given P ′, it

is clear that a well-defined, finite minimum value of w̃T x̃ exists.

Let M be a perfect matching of G and set xe equal to 1 if e ∈M and 0 otherwise. Clearly,

such an assignment satisfies conditions 1 and 2. Suppose it is possible to find a set of non-

negative values {yS} such that xe = 1 implies
∑

S∈O | e∈h(S) yS = we and
∑

S∈O | e∈h(S) yS <

we implies xe = 0 and the edges e with xe = 1 form a perfect matching. Such a set {yS}
would clearly satisfy conditions 3 and 4. Suppose in addition that ∀S ∈ O,

∑
e∈h(S) xe > 1

implies yS = 0. We would then have (c̃ − Ax̃)T ỹ = 0 and (w̃ − AT ỹ)T x̃ = 0, and hence by

the complimentary slackness theorem [43], w̃T x̃ = c̃T ỹ and w̃T x̃ is minimal. Our goal, then,

is to describe an efficient algorithm finding such sets of values {xe} and {yS}.

4 Serial minimum weight perfect matching

Start with x̃ = 0 and ỹ = 0. We shall restrict the variables xe to take the values 0 and 1.

We shall call an edge e with xe = 1 matched, and one with xe = 0 unmatched. We shall

ensure at all times that the set of matched edges is a matching. Given a matched edge e,

vertices v, w ∈ e shall also be called matched with the exception of the boundary vertex v0,

which shall always be called unmatched regardless of how many matched edges it belongs to.

Any vertex not belonging to a matched edge shall also be called unmatched. With the stated

initial variable assignments, all vertices are initially unmatched.

Define an edge e satisfying
∑

S∈O | e∈h(S) yS = we to be tight. An edge that is not tight is

called slack. We shall ensure that all matched edges are tight, but not all tight edges will be

matched. Define a node to be a vertex or blossom, where a blossom is an odd cycle of nodes

constructed as described in step (g) below, an example of which is shown in Fig. 2d. Define

a blossom to be unmatched if it contains an unmatched vertex. An alternating tree is a tree

of nodes rooted on an unmatched node such that every path from the root to a leaf consists

of alternating unmatched and matched tight edges. Alternating trees can by this definition

only branch from the root and every second node from the root. Define branching nodes to

be outer. Define all other nodes in the alternating tree to be inner. Fig. 2 shows all necessary

alternating tree manipulations.

A number of invariants are maintained during the execution of the algorithm. Many have

already been mentioned, however for convenience we gather them all here.

7. ∀e ∈ E, xe ∈ {0, 1}

8. ∀S ∈ O, yS ≥ 0

9. ∀e ∈ E,
∑

S∈O | e∈h(S) yS ≤ we

10. {e ∈ E | xe = 1} is a matching

11. xe = 1⇒
∑

S∈O | e∈h(S) yS = we

12.
∑

S∈O | e∈h(S) yS < we ⇒ xe = 0
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Fig. 2. All required alternating tree manipulations. a) Increase outer node and decrease inner

node y values, maintaining the tightness of all tree edges and potentially creating new tight edges

connected to at least one outer node. b) Inner blossoms with y = 0 can be expanded into multiple
inner and outer nodes and potentially some nodes that are no longer part of the tree. c) Outer–

matched tight edges can be used to grow the alternating tree. d) Outer–inner tight edges can be

ignored. e) Outer–outer tight edges make cycles that can be used to make blossoms. f) When
another unmatched vertex v is found, the path from the unmatched vertex within the root node

through the alternating tree to v is augmented, meaning matched edges become unmatched and

unmatched edges become matched. This strictly increases the total number of matched vertices.

13. v unmatched and not in an alternating tree implies y{v} = 0

Note that while conditions 1, 3, and 4 are implied by conditions 7, 8, and 9, condition 2 will

only be satisfied when the algorithm terminates with all vertices matched.

Define a growth edge to be a tight edge connecting an outer node to anything other than

an inner node. Given a weighted graph G, the following algorithm finds a minimum weight

perfect matching.

(a) If there are no unmatched vertices in V +, return the set of matched edges.

(b) Choose an unmatched vertex v ∈ V + to be the root of an alternating tree.

(c) If there are no growth edges, increase the value of y associated with each outer node

while simultaneously decreasing the value of y associated with each inner node until a

growth edge is created, or an inner blossom node y variable becomes 0 (Fig. 2a).

(d) If an inner blossom node y variable becomes 0 and there are no growth edges, expand

that blossom and return to step (c) (Fig. 2b).

(e) Choose a growth edge e.

(f) If e leads to an unmatched node, or a node matched to the boundary (which is itself

an unmatched node), augment the path (unmatched↔matched) from the unmatched

vertex within the root node to the unmatched vertex within the found unmatched node

(Fig. 2c). Destroy the alternating tree, keeping any newly formed blossoms. Return to

step (a).
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Fig. 3. Autotune generated (primal) nest of a distance 4 surface code with depolarizing noise.

Primal nests are associated with Z error detection. Cylinders (sticks) do not have equal diameter,

accurately representing the diverse range of probabilities of various pairs of detection events. Note
also the many diagonal sticks, which are associated with errors that propagate to space-time

location separated by more than one unit of space and/or time.

(g) If e leads to an outer node, add the growth edge to the alternating tree. There will now

be a cycle C ⊂ V + of odd cardinality |C|. Collapse this cycle into a new blossom and

associate a new variable yC = 0 (Fig. 2d). Return to step (c).

(h) Add the growth edge and the matched edge leading from the growth edge to the alter-

nating tree (Fig. 2e). Return to step (c).

5 Serial minimum weight perfect matching complexity

The algorithm described in the previous Section is quite general, however we are only in-

terested in the complexity of minimum weight perfect matching on graphs generated during

TQEC. We shall be using the concepts of a nest and a detection event, terminology intro-

duced in [19]. A nest is a 3-D structure of cylinders (sticks), each of whose diameter is

proportional to the total probability of detection events at the endpoints of the sticks arising

from single errors. A detection event is simply a local pattern of measurements indicating the

nearby presence of an error. For convenience of discussion, we say that a ball is located at

the points where stick endpoints meet. Fig. 3 contains an example of a nest associated with

Z error detection in a distance 4 surface code. The terminology balls and sticks conveniently

distinguishes nests from graphs which contain vertices and edges.

The weight of a stick with probability p is defined to be − ln p. In a running quantum

computer, detection events are observed at random locations. Each detection event is associ-

ated with a vertex in a graph. The weight of an edge connecting a pair of vertices or a vertex

to a boundary is defined to be the minimum weight connecting path through the nest. With

this definition, edges do not need to be explicitly constructed and the implicitly defined edges

of the graph automatically satisfy the triangle inequality. Generating a nest with n vertices

can be completed in O(n) time. The input to our algorithm can thus be generated optimally.

The variables yS in a graph associated with a nest can be visualized as exploratory regions.

An example of a tight edge with various yS variables visualized in this manner can be found in
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Fig. 4. An example of a tight edge. Y1 = y{v2,v3,v4}. Y2 = y{v2,v3,v4,v5,v6}. yi = y{vi}. Edge

e12 has the property that we12 − y1 − y2 − Y1 − Y2 = 0. Abbreviating e12 to e, this can also be
expressed as

∑
S∈O | e∈h(S) yS = we.

Fig. 4. The utility of this visualization lies in the realization that tight edges can be detected

by keeping track of when expanding exploratory regions collide with vertices, boundaries, or

other exploratory regions. This enables the algorithm described in the previous Section to

only generate explicit edges as they are required. We now need to determine the probability

distribution of the number of operations nop required to successfully match a vertex to another

vertex or the boundary.

It will be necessary for any sufficiently large quantum computing system to be built in a

modular manner, rather than manufactured in one enormous piece. Modularity has a number

of advantages in addition to enabling practical manufacturing — one can set reasonable

manufacturing standards and discard modules that do not meet them. This means one can

control both the density and distribution of hardware faults, meaning qubits and couplers

that are non-functional at time of manufacture. We do not require that all components in

a given module work, however we do require that modules be assembled in a manner that

sets a strict upper bound on the size of any patch of connected non-functional hardware.

Patches of non-functional hardware necessitate measuring larger stabilizers encircling these

patches [44]. Larger stabilizers cannot be measured as reliably as small stabilizers. If the

quantum computer construction were not controlled to set a reasonable upper bound on the

stabilizer size, stabilizers of arbitrary size would need to be measured, and above a certain

size the stabilizer measurement results would essentially be random, leading to a breakdown

of the error correction procedure. Any density of excessively large stabilizers would limit the

maximum reliability of the quantum computer.

Define the degree b of a ball to be the number of sticks ending there. By setting a maximum

stabilizer size at time of manufacturing, we set a maximum degree bmax. We assume that if

it is possible for the qubit state to leak to a non-computational state or for the qubit be lost

entirely, the underlying TQEC code can detect these errors. Topological cluster states [7, 8, 9]

provide an example of a topological code capable of detecting leakage [45, 46] and loss [47].

An isolated gate error leads to detection events at the endpoints of a particular stick.

Leakage or loss leads to the need to measure a larger stabilizer encompassing the connected

region of leaked or lost qubits [47, 48]. A single leakage or loss of event effectively leads to the
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merging of a pair of neighboring balls, which can equally well be visualized as the labeling of

the stick connecting these balls. Gate errors, qubit state leakage, and qubit loss can therefore

all be thought of as highlighting a particular stick. We need to ensure that connected regions

of highlighted sticks are small on average. A connected region of highlighted sticks connecting

boundaries within a topological code or encircling some structure in a topologically non-trivial

manner results in an undetectable error.

Fortunately, it is known that provided an infinite extent graph has a finite maximum

degree bmax and the probability of highlighting any edge is below some fixed nonzero value

(the percolation threshold), the probability of any given edge belonging to a connected region

of highlighted edges of size n decays exponentially with n [49]. In the case of a TQEC

nest associated with a quality controlled modular quantum computer, a percolation threshold

exists as there is a maximum stabilizer size and therefore errors cannot accumulate for long

before being detected, meaning a finite maximum stick probability pmax < 1. To state all

of this in a manner convenient for our needs, the probability of an error chain of length L

sticks beginning on any given vertex (detection event) can be upperbounded by AxL for some

0 < x < 1 and some A such that Ax < 1.

A finite pmax < 1 directly implies a nonzero minimum stick weight wmin. Under the

assumption that quantum computer errors occur with some nonzero minimum probability,

there will also be a nonzero pmin, and hence a finite wmax. Let R = dwmax/wmine.
Consider an error chain v1v2. We wish to calculate an upper bound nav on the average

number of other error chains u1u2 sufficiently nearby to enable an alternating tree to grow.

If the v1v2 chain has length Lv, made up of sticks of weight wmax, and the u1u2 chain has

length Lu, also made up of sticks of weight wmax, then provided some uj is within R(Lv +Lu)

sticks of some vi, there is a chance of a tight edge viuj . The number of balls reachable by any

path of R(Lv + Lu) sticks from any given ball is at most b
R(Lv+Lu)
max . Focusing temporarily

on just one vertex vi, given an error chain ends here, the fraction of error chains containing

Lv sticks is at most (1− x)xLv−1. The average number of other error chains u1u2 sufficiently

nearby either v1 or v2 to enable an alternating tree to grow is therefore no more than

2

∞∑
Lv=1

(1− x)xLv−1
∞∑

Lu=1

bR(Lv+Lu)
max AxLu , (1)

which simplifies to

nav =
A(1− x)xb2Rmax

(1− xbRmax)2
. (2)

The value of x depends on physical error rates and can, therefore, in principle be made

arbitrarily low. We restrict ourselves to hardware with sufficiently low physical error rates to

ensure nav < 1. For the surface code, R = 2 and bmax = 12, and hence the above suggests

x ∼ 10−5. Our simulation results in [20] suggest x > 10−3.

It is highly likely, although not yet proven, that local behavior is maintained all the way

up to the threshold error rate. This makes theoretical sense as only at the threshold error

rate and above are error patterns ambiguous on an infinite scale leading to arbitrarily large

incorrectly identified error patterns. Locality should prevail at any error rate below threshold.

Our low proven value of x should be clearly understood to be the result of the approximations

and loose bounds used in the proof, rather than being of fundamental nature.
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In the nav < 1 regime, large alternating trees are exponentially unlikely to grow. It should

be clearly understood that this means that a low density of detection events at the ends of

short error chains is on average locally matchable. Global information is not required, and

indeed the matching problem will decompose into small local clusters of detection events that

are algorithmically forbidden from interacting. The detection events in each cluster can only

be matched amongst themselves.

Given a finite-size quantum computer running for a finite amount of time resulting in n

detection events, minimum weight perfect matching any given vertex results in the systematic

one-way exploration of at most the entire finite volume, which takes O(n) time given the

constant density of vertices. This means finite-volume TQEC graphs can be matched in

worst-case O(n2) time.

The run-time complexity of minimum weight perfect matching a small cluster of n de-

tection events is again at worst O(n2). Combining this with the exponential distribution of

cluster sizes and consequent constant average cluster size independent of problem size leads

to an average runtime to match a single detection event of O(1). Given n detection events,

the input structure and output can both therefore be generated in O(n) time. This has been

empirically corroborated in [20], where the decoding time per round of error detection was

observed to grow in proportion to the area of the surface code considered.

6 Parallel minimum weight perfect matching complexity

Consider an L × L 2-D array of qubits with some constant density of associated classical

processing elements, each nominally servicing N qubits, although note in practice that these

processing elements can communicate, and with low probability matching a single detection

may involve communicating with a large region. The 2-D array of classical processing elements

is assumed to each have some large but finite amount of local memory and the capacity to

communicate with the eight neighboring processing elements. Each processing element would

be an ASIC (Application-Specific Integrated Circuit) custom designed to run minimum weight

perfect matching only.

Each ASIC would nominally be responsible for some square patch of N qubits total. The

qubits in this patch would generate a random stream of detection events. For convenience,

each ASIC would also receive notification of detection events in the eight neighboring square

patches.

Initially, consider just one ASIC working without communicating with its neighbors. If a

given detection event can be matched to some other detection event in this ASIC’s local patch

without creating an alternating tree with exploratory regions that bleed into the neighboring

patches, the ASIC would be permitted to proceed with the matching without notifying its

neighbors.

If, however, an alternating tree not exclusively within the local patch is required, com-

munication is necessary. If the alternating tree does not bleed outside the neighboring eight

patches, the ASIC can proceed and simply notify each neighboring ASIC that had its patch

touched of the details performed in that region. If these modifications are inconsistent with

what has already been done there, all detection events involved in this inconsistency would

be unmatched and made the responsibility of the middle ASIC. All other ASICs involved in

the inconsistency could simply be stalled while this occurs.
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If an alternating tree needs to span many patches, an arbitrary ASIC can be chosen

responsible for the entire tree, all other ASICs with detection events associated with this

alternating tree in their local patch can be stalled, and the single chosen ASIC can proceed as

normal, requesting data from and writing data to nonlocal patches through sequential nearest

neighbor communication.

Another possibility is an alternating tree extending further in the past than is stored in

local memory. While one would choose a sufficiently large local memory to make this unlikely,

it is not a possibility that can be eliminated. To handle this, we must restrict our interest to

quantum computations of finite duration, a reasonable assumption given we are unlikely to

want to run a quantum algorithm for more than a year, and have slower external storage of

all of the previous detection events and all matching data no longer stored in local memory.

If we ensure that the probability of requiring external data is sufficiently low, the impact of

accessing external data on the average detection event matching time can be made negligible.

Clearly, large alternating trees will take longer to process, however nonlocal communication

adds at worst polynomial overhead to a procedure that runs in at worst O(n4) time, using the

original unoptimized Edmonds’ algorithm. Given larger alternating trees are exponentially

unlikely, the average time spent matching a given detection event is still a well-defined constant

value. This value takes into account the possibility of being stalled while some other ASIC

uses local memory.

The average number of detection events per local patch per round of error detection is

also a well-defined constant value independent of problem size. One can therefore define

an average required classical processing time Tc per round of error detection, a time which

includes a certain amount of probabilistic stalling.

Define Tq to be the time required to perform a round of error detection using the quantum

hardware assuming any probabilistic execution paths succeed. For example, if some ancilla

state is required, and this state is probabilistically prepared, define Tq to be the time required

to perform error detection assuming this preparation succeeds the first time. Assume further-

more that Tq is defined with reference to a region of quantum hardware with no non-functional

components. The purpose of Tq is simply to provide a well-defined heartbeat for the quantum

computer.

We assume it is possible to build sufficiently fast ASICs such that Tq = 2Tc. This means

that, in addition to any stalling imposed by large alternating trees, which is already included

in Tc, on average every ASIC will be idle by choice a significant fraction of the time. This

fraction will be less than 50%, as we shall see.

On average, each ASIC has plenty of time to cope with its stream of detection events and

communicate results with its neighbors. However, with exponentially small probability, and

arbitrarily large alternating tree can be required which delays all of the ASICs it touches.

Note crucially, however, that ASICs not touched by any large alternating tree will continue

to process as normal without delay. When the problematic large alternating tree is finally

cleared, and the difficulty of matching detection events trends back to average difficulty, the

fact that we have designed the ASICs to run sufficiently fast that Tq = 2Tc means they will

be able to catch up. The parallel algorithm is thus asynchronous, however any given ASIC

will fall linearly behind the average progress mark only with exponentially small probability,

and with no global impact. The alternating delay and then catch up cycle reduces the idle
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time below 50%.

It is reasonable to assume that any quantum computation must take at least O(logL)

time since this is the minimum number of rounds of error detection required to implement

even a single layer of robust fault-tolerant logical gates. Finishing off the classical processing

at the end of the algorithm also takes O(logL) time on average due to exponentially unlikely

hard matching instances. In more detail, the volume of the entire algorithm is O(L2 logL).

The probability of considering information a distance r away from any given initial vertex

is O(e−ar) for some positive constant a, so the average maximum value of r only grows

logarithmically with the number of matchings. We can therefore upper bound the average

maximum radius rmax by a value O(log(L2 logL)) = O(logL). The average processing time

per round of error detection is therefore a constant independent of L.

7 Conclusion

We have proved that, given the following ingredients:

1. an L× L qubit quantum computer

2. a modular architecture such that there is a finite maximum number of non-functioning

qubits in any given connected defective patch

3. gate, leakage and loss error rates below some set of nonzero values

4. a uniform 2-D array of finite speed processing elements with finite local memory and

the ability to communicate with their nearest neighbors at finite speed

5. external memory with capacity sufficient to store all detection events and matching data

for the duration of a temporally finite quantum algorithm

it is possible to solve the minimum weight perfect matching problem in a globally optimal

manner with O(1) average cost per round of error detection independent of L.
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