
Quantum Information and Computation, Vol. 15, No. 1&2 (2015) 0134–0144
c© Rinton Press

POLYESTIMATE: A LIBRARY FOR

NEAR-INSTANTANEOUS SURFACE CODE ANALYSIS

AUSTIN G. FOWLER1,2

1CNSI, Department of Physics, University of California, Santa Barbara, California 93106, USA
2CQC2T, School of Physics, The University of Melbourne, Victoria 3010, Australia

Received September 10, 2013

Revised July 28, 2014

The surface code is highly practical, enabling arbitrarily reliable quantum computation

given a 2-D nearest-neighbor coupled array of qubits with gate error rates below approx-
imately 1%. We describe an open source library, Polyestimate, enabling a user with no

knowledge of the surface code to specify realistic physical quantum gate error models
and obtain logical error rate estimates. Functions allowing the user to specify simple de-

polarizing error rates for each gate have also been included. Every effort has been made

to make this library user-friendly. Polyestimate provides data essentially instantaneously
that previously required hundreds to thousands of hours of simulation, statements which

we discuss and make precise. This advance has been made possible through careful

analysis of the error structure of the surface code and extensive pre-simulation.

Keywords:

Communicated by: R Jozsa & B Terhal

1 Introduction

Quantum computing hardware is not expected to achieve the same level of reliability as clas-

sical computing hardware due to its complexity and reliance on the fragile phenomena of

quantum mechanics. Arbitrarily reliable quantum computation can, however, be achieved

through the use of quantum error correction [1, 2, 3, 4]. A bright hope in the field of quantum

error correction is the surface code [5, 6, 7, 8, 9], which has the very experimentally reason-

able requirements of a 2-D array of nearest-neighbor coupled qubits capable of implementing

initialization, measurement, and one- and two-qubit unitary gates, all with error rates below

approximately 1% [10, 11]. Trade-offs are also possible, such as a measurement error rate

of 10% or more at the cost of somewhat lower two-qubit gate error rates. An open source

analysis tool, Autotune [12], exists that is capable of taking into account such error model

details.

Autotune is, however, rather computationally expensive to run and complex to use. Con-

sider Fig. 1. This contains two examples of different size surface codes containing a single

logical qubit. The operators in Fig. 1 are measured using the circuits of Fig. 2. The circuits

of Fig. 2 are built out of eight types of gates, namely initialization, measurement, Hadamard,

CNOT, and four potentially different identity gates of durations equal to each of these non-

134



A.G. Fowler 135

X X

X

X

X X

X

X

X X

X

X X

X

X X

X

X X

X

Z Z

Z

Z

Z Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

a.)

X X

X

X

X X

X

X

X X

X

X X

X

X X

X

X X

X

Z Z

Z

Z

Z Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

b.)

X X

X

X

X X

X

X

X X

X

X X

X

Z Z

Z

Z

Z

Z

Z

Z

Z

Z

X X

X

X

X X

X

X X

X

Z Z

Z

Z

Z Z

Z

Z

Z

Z

Z

Z

Z

Z

X X

X

X

X X

X

Z Z

Z

Z

Z

Z

Z

Fig. 1. a.) Distance 3 surface code. b.) Distance 4 surface code. Circles represent qubits. Bubbles

represent operators (tensor product of Pauli X or Z operators) that are measured to detect errors.
Note that all operators commute. Each bubble is associated with its own (syndrome) qubit, used to

measure its operator (stabilizer [13]) via the circuits shown in Fig. 2. Each surface code contains a

single logical qubit. A distance d surface code, properly implemented, can correct any combination
of b(d− 1)/2c errors.

trivial gates. It would be nice if a simple library existed taking error models or simple error

rates for each gate and a code distance d as input and producing accurate estimates of the log-

ical X and Z error rates of the protected logical qubit. In this work, we report the creation of

Polyestimate, a library which returns such estimates essentially instantaneously. More precise

comparative benchmarks can be found in Section 5.

Polyestimate is designed to work accurately on error models that are not too extremely

asymmetric within a single error type on the CNOT gate. For example, Polyestimate will

return inaccurate results (meaning excessively high logical error rate estimates) if, for some

reason, the probability of X error on the control qubit of the CNOT is very much higher than

the probability of an X error on the target qubit. Asymmetry between X and Z errors is,

however, accurately handled on all gates. Polyestimate can also work quite accurately quite

close to threshold — it does not rely on error rates being low as we did in [14], work which

required error rates to be of order 10−4 or lower. These statements will be made more precise

as the details of Polyestimate are explained.

The discussion is organized as follows. In Section 2, we describe how to reduce detailed

error models for the eight types of gates described above to three simple error rates. In

Section 3, we describe our simulation method and give selected examples of the data collected.

In Section 4, we describe how Polyestimate interpolates and extrapolates from the simulation



136 Polyestimate: a library for near-instantaneous surface code analysis

a.
0 MZ 0

b.
H H MZ

Fig. 2. Quantum circuits measuring a.) ZZZZ and b.) XXXX operators. The |0〉 represents

initialization, the H represents Hadamard, the MZ represents measurement of the operator Z,
and the dot and target symbols connected by lines each represent a CNOT gate. The interaction

sequence is with the North data qubit as shown in Fig. 1, then West, East, South. If no data qubit

is present in a given direction, the CNOT is simply replaced with an identity gate of duration
CNOT.

generated data to the user specified error models and code distance d. In Section 5, we

compare the output of Polyestimate to that of detailed Autotune simulations for a range of

situations, characterizing the accuracy of Polyestimate. Section 6 concludes and discusses

further work.

2 Error classes

When using circuits of the form shown in Fig. 2, currently the only available algorithm to cor-

rect errors is based on minimum weight perfect matching [15, 16, 17]. While other algorithms

for decoding the surface code certainly exist, including algorithms based on renormalization

group methods [18, 19], Markov chain Monte Carlo methods [20, 21], expanding diamonds

[22], and iterative methods [23], none of these algorithms have been tested on the output of

fault-tolerant circuits making use of only nearest-neighbor two-qubit gates.

In this paper, we do not take into account correlations between X and Z errors. For

example, if after a given quantum gate there is a probability p of X, Y , or Z error, each with

probability p/3, then if we believe with high confidence that we have detected an X error after

this gate we should also believe there to be a Z error with 50% probability since Y = iXZ.

This information can be used to improve error correction [21, 24], leading to at most a factor

of 2dd/2e reduction in the logical error rate, achieved for a standard depolarizing channel. If X

and Z errors are uncorrelated, however, no benefit is obtained. Even if maximally correlated,

if Z errors are much more likely than X errors, correction of Z errors will benefit little from

the rare X error information, and the presence of Z errors will not strongly imply the presence

of X errors. Building a fast library with the capacity to accurately take all of this complexity

into account is unlikely to be feasible. Our goal is reasonable accuracy near instantaneously.

The most accurate and optimized results will always come from CPU intensive simulations.

Treating X and Z errors independently is enormously helpful. An arbitrary single-qubit

error model with probabilities pX , pY , pZ of errors X, Y , Z can simply be treated as two

independent error models implying an X error with probability p′X = pX + pY and a Z error

with probability p′Z = pY +pZ . Missing out on the potential factor of 2dd/2e lower logical error

rates may seem unacceptable, however the threshold error rate is not significantly improved

by accounting for correlations [24], so the feasibility of a given technology can still be well

tested using Polyestimate. Furthermore, the maximum factor of improvement is only achieved

for quite low balanced depolarizing error rates p . 2× 10−4 [24], with higher error rates, less



A.G. Fowler 137

correlation, and more X-Z asymmetry all substantially limiting the benefit. Even when the

maximum benefit is achieved, at a couple of orders of magnitude below the threshold error

rate, the difference in the estimated code distance required to achieve a given logical error

rate is very small, meaning Polyestimate is still viable as an algorithm overhead calculator,

the primary purpose for its construction.

Splitting CNOT gate error models into pure X and Z terms requires care. Given 15

error probabilities pIX , pIY , . . . , pZZ one can certainly make a similar identification p′IX =

pIX + pIY + pZX + pZY , p′XX = pXX + pXY + pY X + pY Y , etc, however if p′XX 6= p′IX or

p′XX 6= p′XI we first artificially set all three parameters to be equal to the maximum to obtain

a balanced p′IX = p′XI = p′XX error model then define p2X = 5(p′IX + p′XI + p′XX)/4. The

multiplicative factor of 5/4 scales the 12 fundamental error rates making up p′IX , p′XI , p′XX to

a 15 component depolarizing error rate with the correct probability of each of the derived X

terms. If the CNOT error model is very asymmetric within a single type of error, the process

of raising one or two of p′IX , p′XI , p′XX can make the logical error rate estimates excessively

high. We shall give a concrete example of this in Section 4. Repeating the above process for

Z errors gives a second value p2Z . Note that p2X and p2Z as defined could be greater than 1,

but only if one of their three constituent components had probability 4/15 or greater, which

would not be below the threshold error rate of the surface code, resulting in rejection of the

error model.

Referring to Fig. 2, data qubit identity errors can be lumped into a single variable p1X =

3(p′X(IdInit) + 2p′X(IdHad) + p′X(IdMeas))/8, and similarly for Z errors, giving p1Z . The

abbreviations stand for identity of duration initialization, identity of duration Hadamard,

and identity of duration measurement, respectively. Identity of duration CNOT does not

appear in the equation as in even a small distance surface code only a few such identity gates

are required around the boundary of the qubit lattice and their influence is negligible — the

vast majority of data qubits are busy performing CNOTs when any data qubit is involved in

a CNOT. While this may not be immediately apparent from Fig. 2, it should be remembered

that all stabilizers are measured simultaneously and each data qubit not on the boundary of

the surface code interacts with each of its four neighboring syndrome qubits. The factor of

3/8 in the definition of p1X consists of a factor of 3/2 to scale the individual error type error

rate to a depolarizing error rate, and a factor of 1/4 to reduce the result to an error rate per

gate rather than per stabilizer measurement cycle.

Syndrome qubits associated with Z stabilizer measurements, meaning X error detection,

only suffer initialization and measurement errors in addition to CNOT errors. Initialization

and measurement errors cannot propagate off the syndrome qubit. We can therefore define

p0X = pX(Init) + pX(Meas). Note that for initialization and measurement pY = pZ = 0. For

syndrome qubits associated with X stabilizer measurements, meaning Z error detection, we

have two additional Hadamard gates, the first of which is only dangerous if it introduces Z

errors, the second of which is only dangerous if it introduces X errors. We therefore get a

second definition p0Z = pX(Init) + p′X(Had) + p′Z(Had) + pX(Meas). We choose to leave p0A
as an error rate per error detection cycle as the number of gates for A = X and A = Z differs.

Given arbitrary error models, we have described how to obtain two sets of error rates p0A,

p1A, p2A focusing on either A = X or A = Z errors. These simple error rates well characterize

the behavior of the detailed error models provided the CNOT error model does not deviate



138 Polyestimate: a library for near-instantaneous surface code analysis

very far from balanced depolarizing within a single type of error.

3 Simulations

It is straightforward to use Autotune to simulate the performance of a given surface code of

distance d making use of gate error rates p0A, p1A, p2A. Autotune will set up the appropriate

array of qubits, execute the appropriate sequence of gates, insert stochastic errors and use

minimum weight perfect matching to insert corrections. When too many errors occur in the

wrong places, logical errors will occur. Autotune simulates many continuous cycles of error

detection and calculates the probability of logical error per round.

Our goal is to obtain the logical X and Z error rates corresponding to a sufficiently broad

range of d, p0A, p1A, p2A to enable the logical X and Z error rates at any other combination

of values of d, p0A, p1A, p2A to be accurately determined.

Note that below threshold the logical error rate is provably exponentially suppressed with

increasing d [4], or, to be more precise, exponentially suppressed with increasing de = b(d +

1)/2c. This means that we only need to simulate distances d = 3, 4, 5, 6 as the logical error

rate at all higher distances can be obtained by taking the ratio of odd or even distance data

to the appropriate power with the appropriate pre-factor. Details are given in Section 4.

Note that the threshold error rate when the surface code is subjected to only CNOT gate

errors is approximately 1.25% [9]. We therefore do not simulate values of p2A above 2%, as

this is sufficiently high to be above threshold for all values of p0A and p1A.

Let r0A = p0A/p2A and r1A = p1A/p2A. We have initially considered only syndrome

errors in the range r0A ∈ [0.01, 200] and data qubit errors in the range r1A ∈ [0.01, 1]. This is

essentially a statement that we consider it possible that initialization and measurement error

rates could be significantly less, comparable, or significantly greater than the CNOT error rate,

whereas we expect the single-qubit identity error rates to be less than or equal to the CNOT

error rate. It would be straightforward to simulate a broader range if a quantum technology

called for it. We have restricted ourselves to p2A ≥ 10−4 as lower error rates are well out of

reach of currrent universal and scalable quantum technology. The range p2A ∈ [10−4, 0.02]

covers all existing technology, and technology likely to be available in the short to medium

term. Note that p2A is not expected to be 0 in any physical technology. Input of an error model

with p2A lower than the lowest simulated value of p2A, currently 10−4, will result rejection of

the model. To keep the size of the simulation task under control, we have initially restricted

ourselves to three points per decade, so for example r1A ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}.
Samples of the data collected can be found in Figs. 3–4. These two graphs contain data for

the highest and lowest error ratios, respectively. Error bars corresponding to 2σ confidence

have been included. At the very lowest error rates p2A it is computationally challenging to

observe a sufficiently large number of logical errors to obtain an accurate logical error rate.

Nevertheless, the data presented is sufficiently accurate for practical purposes. This data is

available as part of the Polyestimate library, available online at [12].

4 Interpolation and extrapolation

Given detailed error models for each gate or simple error rates for each gate, in Section 2 we

described how to define two sets of three values r0A = p0A/p2A, r1A = p1A/p2A, p2A, where

A = X,Z, that can be used to estimate the failure behavior of the surface code. In Section 3,



A.G. Fowler 139

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1 × 10
-5

1 × 10
-4

1 × 10
-3

1 × 10
-2

Lo
gi

ca
l X

 e
rr

or
 r

at
e 

(p
L)

Depolarizing probability (p)

d=3
d=4
d=5
d=6

Fig. 3. (Color online) probability of logical X error as a function of the depolarizing error rate
p = p2A for distances d = 3, 4, 5, 6 and r0A = 100, r1A = 1. Referring to the left of the figure, the

distance d = 3, 4, 5, 6 curves are ordered top to bottom. Quadratic curves have been fit through

the lowest d = 3, 4 data points, and cubic curves through the lowest d = 5, 6 data points.

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1 × 10
-5

1 × 10
-4

1 × 10
-3

1 × 10
-2

Lo
gi

ca
l X

 e
rr

or
 r

at
e 

(p
L)

Depolarizing probability (p)

d=3
d=4
d=5
d=6

Fig. 4. (Color online) probability of logical X error as a function of the depolarizing error rate
p = p2A for distances d = 3, 4, 5, 6 and r0A = 0.01, r1A = 0.01. Referring to the left of the

figure, the distance d = 3, 4, 5, 6 curves are ordered top to bottom. Quadratic curves have been fit

through the lowest d = 3, 4 data points, and cubic curves through the lowest d = 5, 6 data points.



140 Polyestimate: a library for near-instantaneous surface code analysis

we described the construction of a database of logical error rates for a range of code distances

and values of r0A, r1A, p2A. Note that a single database suffices for both A = X and A = Z

as the database is for balanced depolarizing noise. We now describe how to obtain functions

of d giving estimates of the logical X and Z error rates.

If r0A, r1A, p2A 6= 1, 2, 5×10i for some integer i ∈ Z, interpolation will be required. Define

superscripts H and L to mean the first variable value in the database higher or lower than

the given value. For example, if r0A = 0.3, then rL0A = 0.2 and rH0A = 0.5. Note that the

logical error rates are strictly increasing smooth functions of r0A, r1A, p2A. For a sufficiently

fine-grained database, linear interpolation is therefore appropriate.

For each distance d = 3, 4, 5, 6 in the database and each type of logical error A, find the

up to eight different values of logical A error for the up to eight different combinations of rB0A,

rB1A, pB2A, where B = H,L. If there are eight different combinations of rB0A, rB1A, pB2A, these

triples can be viewed as the coordinates of the corners of a cuboid. Along any edge of the

cuboid, we define the logical error rate to be a linearly increasing or decreasing function based

on the corner values. Across the faces and through the volume, we can similarly uniquely

define a linearly interpolated logical error rate. Denote this linearly interpolated logical error

rate by pAL
(d, r0A, r1A, p2A). For brevity, we shall refer to this as simply pAL

(d).

For d > 6, we extrapolate. At gate error rates below the surface code threshold error rate,

suppression of logical error with increasing code distance is exponential (see eq. 12 of [4]).

Define x = pAL
(5)/pAL

(3), C = pAL
(3)/x2, y = pAL

(6)/pAL
(4), D = pAL

(4)/y2. This gives

us four expressions

pAL
(d) = Cxb

d+1
2 c, (1)

pAL
(d) = Dyb

d+1
2 c, (2)

valid for d odd and even, respectively, and A = X,Z.

5 Verification

The simplicity of derivation and form of Eqs. 1–2 is appealing, however verification of the

accuracy of logical error rates obtained by Polyestimate is required. In this Section, we shall

compare the output of Polyestimate with data generated in a number of situations by direct

simulation with Autotune.

The first situation we shall consider is balanced depolarizing noise of equal strength on all

gates. When all gates have probability p = 10−3 of failure, Table 1 shows in columns 3 and 4

the Autotune determined probability of logical X and Z error for distances d = 3, . . . , 8. This

should be compared with the Polyestimate data in columns 5 and 6. As the distance increases,

the computational cost of using Autotune rapidly becomes prohibitive, whereas Polyestimate

can be used for arbitrary distances, and generated the data in Table 1 in approximately

one hundredth of one second, including loading the database from disk and calculating the

appropriate values in Eqs. 1–2. This comparative timing information was obtained using a

single core of a 16-core PowerEdge C6145 1.6GHz AMD processor with 2 GB of memory per

core. The computational cost of evaluating Eqs. 1–2 for additional values of d is negligible

after loading the database. Over 6.5 million evaluations can be completed in under one second

using our chosen hardware.



A.G. Fowler 141

d T pXL
pZL

pXL
(d) pZL

(d)
3 10min 1.1× 10−3 1.4× 10−3 1.1× 10−3 1.4× 10−3

4 90min 4.5× 10−4 5.8× 10−4 4.5× 10−4 5.8× 10−4

5 7.7hr 1.0× 10−4 1.5× 10−4 9.9× 10−5 1.4× 10−4

6 48hr 3.2× 10−5 4.7× 10−5 3.2× 10−5 4.7× 10−5

7 250hr 8.5× 10−6 1.4× 10−5 9.0× 10−6 1.5× 10−6

8 500hr 2.5× 10−6 4.2× 10−6 2.2× 10−6 3.8× 10−6

9 - - - 8.2× 10−7 1.6× 10−6

10 - - - 1.6× 10−7 3.0× 10−7

36 - - - 1.5× 10−22 1.7× 10−21

Table 1. Comparison of Autotune and Polyestimate for depolarizing noise of rate p = 10−3.

Column 1 contains the code distance d. Column 2 contains the total CPU time required by
Autotune to observe 104 logical errors enabling accurate estimation of the logical X and Z error

rates shown in columns 3 and 4. Columns 5 and 6 contain Polyestimate generated logical X and

Z error rates. Agreement is in all cases within 10%, sufficient for practical purposes.

The agreement between Autotune and Polyestimate is within 10% for the data shown

in Table 1. It should be noted, however, that since Polyestimate uses a simple exponential

expression (Eqs. 1–2), any small inaccuracy will grow with code distance, so absolute values

of logical error rates for large distances will only be approximate. A user can still, however,

quite accurately determine the code distance d required to suppress logical errors below some

desired rate. For example, if a logical error rate below 10−20 is desired, Polyestimate can be

used to predict that a code distance of approximately 36 is sufficient.

The next case we shall consider is depolarizing noise of rate p = 10−3 for every gate except

the measurement gate which shall have an error rate of 10%. It is possible that supercon-

ducting qubits may possess such a distribution of error rates as fast, low error measurement

is especially challenging [25]. Agreement between Autotune and Polyestimate is again very

good (Table 2), within 15% in all cases, frequently significantly better, and this agreement is

exhibited over logical error rates varying by over two orders of magnitude. Similar levels of

agreement have been observed for other ratios of simple depolarizing error rates on each gate.

To provide a little more insight into the computational cost of the simulations, consider

the d = 8 data in Tables 1–2. All simulations in these tables were run until 104 of the least

likely type of logical error were observed. In both these tables, logical X errors are least

likely. This means that the total number of rounds of d = 8 error detection simulated can be

calculated directly from the logical X error rates, so 104/2.5 × 10−6 = 4.0 × 109 in Table 1

and 104/2 × 10−4 = 5 × 107 in Table 2. This places the computational cost per round of

error detection at 45µs in both cases, as expected since the computational cost is dominated

by simulating the action of thousands of gates on hundreds of qubits each round of error

detection.

Finally, we shall consider the case of all gates having total probability of error p = 10−3,

however the CNOT gate having an asymmetric error model satisfying p′IX = 10p′XI =

100p′XX . We shall focus only on logical X errors. In this instance, since Polyestimate must

raise the probability of XI and XX errors significantly in order to achieve an upper bound

on the logical error rate using its pre-generated database, the logical X error estimates are

excessively high (Table 3).



142 Polyestimate: a library for near-instantaneous surface code analysis

d T pXL
pZL

pXL
(d) pZL

(d)
3 11min 2.8× 10−3 3.4× 10−3 2.8× 10−3 3.4× 10−3

4 40min 1.8× 10−3 2.2× 10−3 1.7× 10−3 2.3× 10−3

5 2hr 9.6× 10−4 1.3× 10−3 9.9× 10−4 1.3× 10−3

6 6.3hr 5.7× 10−4 7.9× 10−4 5.9× 10−4 8.6× 10−4

7 16hr 3.4× 10−4 4.9× 10−4 3.5× 10−4 5.0× 10−4

8 47hr 2.0× 10−4 3.0× 10−4 2.0× 10−4 3.2× 10−4

9 86hr 1.2× 10−4 1.9× 10−4 1.2× 10−4 1.9× 10−4

10 199hr 7.6× 10−5 1.2× 10−4 6.6× 10−5 1.2× 10−4

11 422hr 4.6× 10−5 7.8× 10−5 4.3× 10−5 7.5× 10−5

12 960hr 2.8× 10−5 4.8× 10−5 2.2× 10−5 4.6× 10−5

13 1590hr 1.7× 10−5 3.2× 10−5 1.5× 10−5 2.9× 10−5

14 - - - 7.4× 10−6 1.7× 10−5

15 - - - 5.2× 10−6 1.1× 10−5

Table 2. Comparison of Autotune and Polyestimate for 10% measurement error and depolarizing

noise of rate p = 10−3 on all other gates. Column 1 contains the code distance d. Column 2
contains the total CPU time required by Autotune to observe 104 logical errors enabling accurate

estimation of the logical X and Z error rates shown in columns 3 and 4. Columns 5 and 6 contain

Polyestimate generated logical X and Z error rates. Agreement is in all cases within 15%, sufficient
for practical purposes.

d T pXL
pmax
XL

(d) pavXL
(d)

3 10min 1.1× 10−3 4.0× 10−3 1.4× 10−3

4 47min 4.6× 10−4 2.5× 10−3 6.8× 10−4

5 6.8hr 9.7× 10−5 1.4× 10−3 2.1× 10−4

6 33hr 3.1× 10−5 8.7× 10−4 8.6× 10−5

7 199hr 7.9× 10−6 4.7× 10−4 3.0× 10−5

8 986hr 2.3× 10−6 3.0× 10−4 1.1× 10−5

Table 3. Comparison of Autotune and Polyestimate for the case of all gates having total probability
of error p = 10−3, however the CNOT gate having an asymmetric error model satisfying p′IX =

10p′XI = 100p′XX . Column 1 contains the code distance d. Column 2 contains the total CPU time
required by Autotune to observe 104 logical errors enabling accurate estimation of the logical X

error rates shown in column 3. Column 4 contains Polyestimate generated logical X error rates
when raising the low error rates to match the maximum. Agreement is poor, with Polyestimate
significantly overestimating the logical error rate due significantly raising the probability of XI
and XX errors. Column 5 instead takes the average error rate, which still leads to an overestimate,
but one sufficiently close to simulation to be practically useful.



A.G. Fowler 143

A simple alternative to raising all error probabilities to match the maximum when the

underlying error model is highly asymmetric is to instead work with the average error prob-

ability. Polyestimate includes a switch to use averaging rather than the maximum. In many

ways, it could be argued that averaging is always a more reasonable approach, however, when

the asymmetry is low, using the maximum still gives good estimates with the additional de-

sirable property that logical error rates are guaranteed to not be underestimates. Averaging

intuitively should also lead to an upper bound on the logical error rate as the total error is

still the same however the asymmetry in the model has not been exploited to achieve further

logical error suppression the way Autotune does. This argument is not, however, rigorous.

The last column of Table 3 shows Polyestimate data with averaging. The obtained logical

error rates are less than a factor of 4 off for odd d < 9, which is sufficient to obtain usefully

accurate overhead estimates. Note that the level of asymmetry considered here is so extreme

that it is highly unlikely to be found in a physical system, yet the logical error rate estimates

are still acceptable for practical purposes.

6 Conclusion

We have described an open source tool, Polyestimate, that is shipped with a database of

Autotune simulation results sufficiently broad and detailed to provide, through interpolation

and extrapolation, near-instantaneous surface code logical error rates for a very broad range of

practical depolarizing error rates and arbitrary code distances d. Individual depolarizing error

rates for initialization, measurement, Hadamard, CNOT, and identity gates of duration each

of these gates, respectively, can be specified and handled accurately. The primary limitation

of Polyestimate is its inability to cope with very asymmetric error models on the CNOT within

a single type of error. In future work, we plan address this limitation with slower analytic

techniques for such error models that will still be orders of magnitude faster than running

Autotune.

Acknowledgements

This research was conducted by the Australian Research Council Centre of Excellence for

Quantum Computation and Communication Technology (project number CE110001027), with

support from the US National Security Agency and the US Army Research Office under con-

tract number W911NF-13-1-0024. Supported by the Intelligence Advanced Research Projects

Activity (IARPA) via Department of Interior National Business Center contract number

D11PC20166. The U.S. Government is authorized to reproduce and distribute reprints for

Governmental purposes notwithstanding any copyright annotation thereon. Disclaimer: The

views and conclusions contained herein are those of the authors and should not be interpreted

as necessarily representing the official policies or endorsements, either expressed or implied,

of IARPA, DoI/NBC, or the U.S. Government.

References

1. E. Knill, R. Laflamme, and W. H. Zurek, Accuracy Threshold for Quantum Computation, Tech.
Rep. LAUR-96-2199 (Los Alamos National Laboratory, 1996) quant-ph/9610011.

2. D. Aharonov and M. Ben-Or, Proc. ACM STOC 29, 176 (1997), quant-ph/9611025.
3. A. Y. Kitaev, Russ. Math. Surv. 52, 1191 (1997).
4. A. G. Fowler, Phys. Rev. Lett. 109, 180502 (2012), arXiv:1206.0800.



144 Polyestimate: a library for near-instantaneous surface code analysis

5. S. B. Bravyi and A. Y. Kitaev, quant-ph/9811052 (1998).
6. E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math. Phys. 43, 4452 (2002), quant-

ph/0110143.
7. R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504 (2007), quant-ph/0610082.
8. R. Raussendorf, J. Harrington, and K. Goyal, New J. Phys. 9, 199 (2007), quant-ph/0703143.
9. A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Phys. Rev. A 86, 032324 (2012a),

arXiv:1208.0928.
10. D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg, Phys. Rev. A 83, 020302(R) (2011),

arXiv:1009.3686.
11. A. G. Fowler, A. C. Whiteside, and L. C. L. Hollenberg, Phys. Rev. Lett. 108, 180501 (2012b),

arXiv:1110.5133.
12. A. G. Fowler, A. C. Whiteside, A. L. McInnes, and A. Rabbani, Phys. Rev. X 2, 041003 (2012c),

arXiv:1202.6111, http://topqec.com.au/autotune.html.
13. D. Gottesman, Stabilizer Codes and Quantum Error Correction, Ph.D. thesis, Caltech (1997),

quant-ph/9705052.
14. A. G. Fowler, Phys. Rev. A 87, 040301(R) (2013a), arXiv:1208.1334.
15. J. Edmonds, Canad. J. Math. 17, 449 (1965a).
16. J. Edmonds, J. Res. Nat. Bur. Standards 69B, 125 (1965b).
17. A. G. Fowler, A. C. Whiteside, and L. C. L. Hollenberg, Phys. Rev. A 86, 042313 (2012d),

arXiv:1202.5602.
18. G. Duclos-Cianci and D. Poulin, Quant. Inf. Comput. 14, 0721 (2014), arXiv:1304.6100.
19. S. Bravyi and J. Haah, Phys. Rev. Lett. 111, 200501 (2013), arXiv:1112.3252.
20. J. R. Wootton and D. Loss, Phys. Rev. Lett. 109, 160503 (2012), arXiv:1202.4316.
21. A. Hutter, J. R. Wootton, and D. Loss, Phys. Rev. A 89, 022326 (2014), arXiv:1302.2669.
22. J. R. Wootton, Phys. Rev. A 88, 062312 (2013), arXiv:1310.2393.
23. P. Sarvepalli and R. Raussendorf, Phys. Rev. A 85, 022317 (2012), arXiv:1111.0831.
24. A. G. Fowler, arXiv:1310.0863 (2013b).
25. Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, B. Chiaro, J. Kelly, E. Lucero,

M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, Y. Yin, A. N. Cleland, and
J. M. Martinis, .


