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We present an open-loop unitary strategy to control the coherence in a pure dephasing

model (related to the phase-flip channel) that is able to recover, for whatever prescribed
time span, the initial coherence at the end of the control process. The strategy’s key

idea is to steer the quantum state to the subset of invariant states and keep it there the

necessary time, using a fine tuned control Hamiltonian.
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1 Introduction

The open-loop unitary controlling is an important methodology of quantum control, having

the characteristic of avoiding totally any perturbation of systems during the control pro-

cess, feature that simplifies the technological apparatus required to implement the control in

practice. In spite of its limitations, it has a vast range of applications, including quantum

chemistry, quantum optics, quantum information and also biophysics.

The unitary control of Markovian quantum systems is strongly motivated because the

Markovian approximation can be used to describe a wide class of open quantum systems

(besides the closed ones), enabling the theory to be used in many practical problems [1,

2]. Such systems are also particularly amenable because their dynamics can be suitably

transformed into real linear dynamical systems, through coherent vector representation [2,

pp.50-57].

Finally, the control of coherence in quantum systems is a demanding task for the devel-

opment of quantum information and computation technologies, fact evidenced by the vast

literature on the subject – see [3, 4, 5, 6] and references quoted therein. This subject has

been massively studied but there are many open questions even in the most simple situations.

For example, the unitary tracking-control strategy to stabilize (keep constant) the coherence

of a pure dephasing model presented in [7] suffers from a severe limitation, unavoidable for

all unitary control strategies which stabilize the coherence in this model (whether performed

in a closed-loop or in an open-loop fashion): the control can be carried out only within a

finite time span, at the end of which the control fields diverge. Nevertheless, it’s possible to

control the quantum state in order to recover the initial coherence after an arbitrary prescribed
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96 Controlling the coherence in a pure dephasing model for arbitrary prescibed time span

time span if one is allowed to use control Hamiltonians that don’t keep the coherence constant

(necessarily). The contribution of this paper is twofold: the definition of a general strategy

to find a fine tuned control Hamiltonian to recover the coherence of a given initial state after

any prescribed time span, and the explicit application of such strategy in the model just

mentioned, called here dephasing qubit.

The structure of the paper is simple. In Section 2 we review basic concepts in order to

give a short and precise formulation of our problem in Section 3. In Section 4 we define a

general strategy to tackle such kind of problem, we apply it to solve the specific problem

stated previously and give a numerical example. In the final Section 5 we discuss our results

and comment related issues. Appendix A focuses the concept of limit time, related to the

definition of the control Hamiltonian.

2 Dephasing qubit

We start recalling basic definitions and results concerning the dephasing qubit model, using a

notation borrowed from [7].

A general quantum state (density matrix) of a qubit can be written in terms of the identity

operator I and Pauli matrices (σx, σy, σz), whose coefficients define the so called Bloch vector :

ρ =
1

2
(I + vxσx + vyσy + vzσz) , v = (vx, vy, vz) ∈ B :=

{
v ∈ R3; ‖v‖ ≤ 1

}
. (1)

The purity and coherence are defined, respectively, by

P (ρ) := v2
x + v2

y + v2
z , C (ρ) := v2

x + v2
y. (2)

The free dynamics is given by the master equation

d

dt
ρ (t) =

γ

2
(σzρ (t)σz − ρ (t)) , (3)

where γ > 0 is a damping coefficient. A control Hamiltonian

H (t) =
1

2
(u1 (t)σx + u2 (t)σy + u3 (t)σz) ; u1 (t) , u2 (t) , u3 (t) ∈ R3. (4)

affects the free dynamics according with

d

dt
ρ (t) =

γ

2
(σzρ (t)σz − ρ (t))− i [H (t) , ρ (t)] . (5)

The model has a decoherence-free subset of statesa defined by:

Vz :=

{
1

2
(I + ξσz) ; −1 ≤ ξ ≤ 1

}
.

For time-dependent states evolving within Vz, the dynamics is reduced to the Liouville-von

Neumann equation (meaning that its time evolution is unitary):

d

dt
ρ (t) = −i [H (t) , ρ (t)] , if ρ (t) ∈ Vz.

aWe use the term “decoherence-free subset of states” to distinguish it from the related concept of decoherence
free subspaces, for which we refer to [8, 9].
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Equation (5) turns out to be equivalent to the following system for the Bloch vector’s coor-

dinates:  2v̇x = −γvx + uyvz − uzvy
2v̇y = −γvy − uxvz + uzvx
2v̇z = uxvy − uyvx.

(6)

Given the values of purity and coherence of an initial state ρ (0),

p = v2
x (0) + v2

y (0) + v2
z (0) , c = v2

x (0) + v2
y (0) , (7)

the corresponding breakdown time is defined by

tb :=
p− c
γc

. (8)

Theorem 1 In the dephasing qubit, the coherence of a time-dependent state cannot be

stabilized (kept constant) by unitary controlling for a time span greater then the breakdown

time Eq. (8).

Proof. Let H (t) be the Hamiltonian of a unitary control and let ρ (t) be a solution of the

system (5) having constant coherence, C (ρ (t)) = C (ρ (0)) = c. Assume that H (t) and ρ (t)

are defined for t ∈ [0, T ], for some T > 0. The dynamical equations for the Bloch coordinates

(6) imply
d

dt

(
v2
x + v2

y + v2
z

)
= −γ

(
v2
x + v2

y

)
. (9)

So, the coherence (given by Eq. (2)) is kept invariant if, and only if,

d

dt

(
v2
x + v2

y

)
= 0,

d

dt
v2
z = −γ

(
v2
x + v2

y

)
. (10)

In this case, it follows that

v2
z (t) = v2

z (0)− cγt, ∀t ∈ [0, T ] .

Since vz (t) must be real and v2
z (0) = p− c, the condition v2

z (t) ≥ 0 implies that T ≤ tb; this

means that the time span H (t) and ρ (t) are defined cannot be greater than the breakdown

time.

Due to Theorem 1, to recover the coherence of an initial state after a time span greater

than the breakdown time one must accomplish a control strategy that do not keep constant

the coherence; so, it is worthwhile to consider the problem formulated in the next section.

3 The Problem

Problem: In the dephasing qubit, for a given T > 0 and initial state ρ (0), set a

control Hamiltonian to steer the state’s evolution according with Eq. (5) in such

a way that the coherence of the system’ state after the time span T turns out to

be equal to the coherence of the initial state, i.e.,

C (ρ (T )) = C (ρ (0)) .

Remark 1 This problem cannot be solved using only unitary controlling if coherence and

purity start equal: according with Theorem 1 and Eq. (8), nothing can be done in this way

if vz (0) = 0. Also, the same theorem and equation imply that there is nothing to do if the

initial coherence is zero.
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4 The Solution

In this section, we define and apply a simple and general strategy to solve the specific Problem

previously stated. This strategy uses the decoherence-free subset of states of the dephasing

qubit.

To simplify the calculations, we deal first with a special initial state and then generalize

the result. After due developments, the solution will be presented in the form of an algorithm.

4.1 The Strategy

(i) first, steer the qubit’s state to the decoherence-free subset of states;

(ii) second, keep the state within Vz for the period needed;

(iii) finally, bring the system to some final state which has coherence equals to the

initial value at the end of the process.

4.2 Solving the Problem for special initial state

Consider an initial state ρ (0) with purity p greater than a positive coherence c which has the

following special formb

ρ (0) =
1

2
I +

1

2
vx (0)σx +

1

2
vz (0)σz, vz (0) 6= 0 < vx (0) . (11)

In this case, we can use control fields having y-component being the only nonzero – a choice

that confines the time-dependent Bloch vector to the xz-plane during its entire evolution:

ux = 0 = uz; uy =: εu, ε = ±1, u > 0. (12)

For convenience we have introduced the signal ε which determines de direction the state’s

Bloch vector rotates in the xz-plane due to the action of the control Hamiltonian: ε = +1

corresponds to clockwise direction and ε = −1 corresponds to counterclockwise direction.

The dynamics of Bloch vector Eq. (6) under action of the control fields Eq. (12) with

initial conditions at t0 added turns to
2v̇x = −γvx + εuvz
2v̇y = −γvy
2v̇z = −εuvx
vy (t0) = 0, v2

x (t0) + v2
z (t0) ≤ 1.

(13)

Assuming the control field u to be constant and

u >
γ

2
, (14)

bAs we already have said: if vx (0) = 0, there is nothing to be done; if vz (0) = 0, there is nothing which can
be done.
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the solution of Eq. (13) is given by

vx (t) = e−γ(t−t0)/4
(
vx (t0) cos

(
1
4

√
4u2 − γ2 (t− t0)

)
+

+ 2εuvz(t0)−γvx(t0)√
4u2−γ2

sin
(

1
4

√
4u2 − γ2 (t− t0)

))
vy (t) = 0

vz (t) = e−γ(t−t0)/4
(
vz (t0) cos

(
1
4

√
4u2 − γ2 (t− t0)

)
+

− 2εuvx(t0)−γvz(t0)√
4u2−γ2

sin
(

1
4

√
4u2 − γ2 (t− t0)

))
.

(15)

Now, we describe separately the evolution of the controlled state ρ (t) during the first and

the third stages of our control process, starting from the initial state Eq. (11).

The shortest time span ∆t1 > 0 we need to steer ρ (0) to Vz is given by the first positive

zero of vx (t) in Eq. (15) with t0 = 0 and t = ∆t1; after some algebraic manipulation, we get

∆t1 explicitly:

∆t1 =
4√

4u2 − γ2
arctan

( √
4u2 − γ2vx (0)

γvx (0)− 2ε1uvz (0)

)
. (16)

For ∆t1 to be positive, the argument of arctan in (16) has to be positive, so we must set

ε1 := −signal (vz (0)) . (17)

Analogously, the shortest time span ∆t3 > 0 we need to steer ρ (∆t1) from Vz to some state

having coherence equals to that of ρ (0), with the innocuous option to get the final state having

its σx-component equals to that of ρ (0), is given by the first positive solution of the following

transcendent equation for ∆t3, obtained from Eq. (15) by setting t0 = ∆t1, t = ∆t3 + ∆t1
and ε3 = −ε1:

vx (0) = e−γ∆t3/4

(
2ε3uvz (∆t1)√

4u2 − γ2
sin

(
1

4

√
4u2 − γ2∆t3

))
, (18)

where

vz (∆t1) = vz (0) e−γ∆t1/4 cos

(
1

4

√
4u2 − γ2∆t1

)(
1 +

γvz (0)− 2εuvx (0)√
4u2 − γ2vz (0)

tan

(
1

4

√
4u2 − γ2∆t1

))
.

Remark 2 Note the consistence of taking ε3 = signal (vx (0) vz (0)) in order for ∆t3 to be

positive in Eq. (18), since vz (∆t1) has the same signal that vz (0); this choice can be verified

by taking into account the definition of ε1 in Eq. (17).

Now, to write down our control Hamiltonian which solves the Problem, we have to find

a control field’s intensity u that guarantees the implicit equation Eq. (18) has a positive

solution and such that

T ≥ ∆t1 + ∆t3. (19)
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This amounts to solve for ∆t1, ∆t3 and u the system constituted by Equations (16) and (18)

and Inequality (19). Finally, by setting

ε = −signal (vz (0)) , ∆t2 := T −∆t1 −∆t3,

we can define the control Hamiltonian:

H (t) = εu [h(∆t1 − t)− h(t−∆t2)]σy, 0 ≤ t ≤ T, (20)

where h denotes the Heaviside Step Function,

h (t) =

{
0, t < 0
1, t > 1.

4.3 Solving the Problem for a general initial state

Here, we present the control Hamiltonian which solves the Problem for an arbitrary initial

state with purity greater than a non-zero coherence, viz.,

ρ (0) =
1

2
I +

1

2
(vx (0)σx + vy (0)σy + vz (0)σz) , (21)

where

0 < c = vx (0)
2

+ vy (0)
2
< p = vx (0)

2
+ vy (0)

2
+ vz (0)

2
.

Now, we define the unitary operator

Uθ :=

(
e−iθ/2 0

0 eiθ/2

)
=

(
cos

θ

2

)
I − i

(
sin

θ

2

)
σz,

where θ ∈ [0, 2π) is such that

vx (0) =
√
c cos θ , vy (0) =

√
c sin θ.

Using Uθ, we define the following state which has the previous special form as well as the

same purity and coherence of ρ (0):

ρ̃ (0) := U∗θ ρ (0)Uθ =
1

2
I +

1

2

√
cσx +

1

2
vz (0)σz.

Now, let H̃ (t) be the control Hamiltonian that solves the Problem for ρ̃ (0) and time span

T > 0. Since Uθ is constant and commutes with σz, the control Hamiltonian which solves the

Problem for ρ (0) and time span T > 0 is given by:c

H (t) := UθH̃ (t)U∗θ .

Remark 3 Naturally, a control Hamiltonian which solves the Problem for a general initial

state must be unitarily equivalent to the control Hamiltonian which solves the Problem for

some special initial state, because general states are related to the special ones by a change of

variables (specifically, a suitable rotation in the xy-plane).

cSee the explicit expression in Eq. (4.4) below.
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4.4 Algorithm

To solve the Problem for the initial state

ρ (0) =
1

2
I +

1

2
(vx (0)σx + vy (0)σy + vz (0)σz)

with

0 < c = v2
x (0) + v2

y (0) < p = c+ v2
z (0) ,

do:

i) Set ε := −signal (vz (0)) and θ ∈ [0, 2π) such that

vx (0) =
√
c cos θ , vy (0) =

√
c sin θ;

ii) Solve the following system for u, ∆t1 and ∆t3:

tan
(

1
4

√
4u2 − γ2∆t1

)
=

√
4u2−γ2

√
c

γ
√
c+2u

√
p−c

sin
(

1
4

√
4u2 − γ2∆t3

)
=

eγ(∆t1+∆t3)/4
√

4u2−γ2
√
c

2
√
u2p+γu

√
c
√
p−c

u > γ/2, ∆t1 > 0, ∆t3 > 0, ∆t1 + ∆t3 ≤ T ;

(22)

(Alternatively, one can prescribe a positive value for u, determine ∆t1 and ∆t3
from the first and second equations of System (22) and then verify if the inequal-

ities are also satisfied.)

iii) Define

∆t2 := T −∆t1 −∆t3 ≥ 0;

iv) Define the control Hamiltonian by:

H (t) = −εu [h(∆t1 − t)− h(t−∆t2)] [(sin θ)σx − (cos θ)σy] , 0 ≤ t ≤ T.

Remark 4 The System of equations (22) has solutions for u > γ/2 sufficiently large (imply-

ing that ∆t1 and ∆t3 are correspondingly small). To verify, we note the following approxi-

mations valid under such conditions:

∆t1 ≈
2

u
arctan

(∣∣∣∣vx (0)

vz (0)

∣∣∣∣) ,
|vz (∆t1)| ≈ e−γ∆t1/4

√
v2
z (0) + v2

x (0),

|vx (0)| ≈ e−γ∆t3/4 |vz (∆t1)| sin
(u

2
∆t3

)
.

The first equation gives an approximation for ∆t1, the second equation implies |vz (∆t1)| >
|vx (0)| and the third equation has a sine function which oscillates very quickly; therefore, for

relatively small values of ∆t3 it follows that e−γ∆t3/4 ≈ 1 and

∆t3 ≈
2

u
arcsin

(
|vx (0)|√

v2
z (0) + v2

x (0)

)
.
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4.5 A numerical example

Let us illustrate the application of the Solution using numerical values presented in [7].

Consider a system with damping coefficient γ = 0.1 and assume the initial state has purity

p = 0.8 and coherence c = 0.3,

ρ (0) =
I

2
+

√
0.3

2
σx +

√
0.5

2
σz.

In this case, the breakdown time is

tb =
p− c
γc
≈ 16.67.

If we set u = 0.2, then the system of equations (22) implies

∆t1 ≈ 5.79, ∆t3 ≈ 9.11.

Then, ∆t1 + ∆t3 = 14.90. For T = 20 > tb, the application of our control strategy gives

the following results: the purity evolves from the initial value 0.8 to the final value ≈ 0.63;

the coherence evolves from the initial value 0.3 to the final (and same) value 0.3, decreasing

to zero during the first stage (between t = 0 and t ≈ 5.8), staying equals to zero during the

second stage (between t ≈ 5.8 and t ≈ 10.9) and increasing to 0.3 during the third stage

(between t ≈ 10.9 and t = 20).

Figure 1 gives the graph of the y-component of the control Hamiltonian, the path of the

Bloch vector in the xz-plane during the control process and the graph of purity and coherence

as functions of time:

Fig. 1. Example of controlling the coherence in the dephasing qubit.

5 Conclusions

Characteristic of many problems in control theory is the need to develop idiosyncratic strate-

gies – even for situations in which there are general procedures to solve them, because the

advantages of a specific procedure may be worthwhile in a particular application. We think

this fact is well illustrated here by our open-loop strategy to control the coherence in the de-

phasing qubit. For a comparison with the tracking-control strategy of [7], we remark that: the

tracking-control can be applied to stabilize the coherence only for a time span smaller than the
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breakdown time (with energetic expenditure reducing as the control period decreases), while

our strategy can be applied for any prescribed time span (with the control fields becoming

larger as the control period decreases). The trick of our control strategy lies in the first and

third stages, which must be performed as quickly as necessary since purity decreases during

them; for this strategy to be successful, the control field’s intensity must reach sufficiently

large values, as one can deduce from Eq. (16).

We believe the reasoning presented here can be naturally adapted to control the coherence

of other Markovian quantum systems having a decoherence-free subset of states, with the help

of a coherent vector representation. The Strategy (Sec. 4.1) is general, in the sense that it may

be applied to recover the coherence in models other than the dephasing qubit ; nevertheless,

the first and third stages must be carried out taking into account specific details of each

model. A natural development of this work is the application of the Strategy in more complex

and realistic situations, what can be more interesting and more useful, but more laborious

too.

Turning to the important question about the energy expenditure of the control process,

we close the paper stating a new problem:

Optimal Control Problem: In the dephasing qubit, for a given T > 0 and an

initial state ρ (0), set a control Hamiltonian to steer the state’s evolution according

with the dynamics given by Eq. (5) so that (i) the coherence of the system’ state

after the time span T be equal to the coherence of the initial state and (ii) the

expenditure of energy in the process is minimum, with this expenditure being

defined by a quadratic form on the control fields [10, 11], e.g.,

Ku =

∫ T

0

(
u2

1 (t) + u2
2 (t) + u2

3 (t)
)
dt.
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Appendix A The limit time

For the dephasing qubit, we define the “limit time” by the maximum time span T̃ that one

can spend on steering an initial state to the decoherence-free subset of states Vz and, after, to

some final state having coherence equals to the initial value, using solely a control Hamiltonian

as given by Eq. (4). Specializing this definition for Hamiltonians having the shape (4.4, iv),

we define the “limit control field” as the minimal value that a (constant) control field u can

assume in the solutions of the system (22) when T = T̃ .

The relevance of these concepts is the following: for a control period T ≥ T̃ , the control

of coherence can be done using a control field u = ũ, while for a control period T < T̃ , the

control field must satisfy u > ũ.

Quantities T̃ and ũ are mutually dependent and are characterized by the property that

the purity of the initial state is fully reduced to the initial value of the coherence at the end of

the corresponding control process, namely:

vz

(
T̃
)

= 0. (A.1)

To calculate T̃ and ũ, we combine the two equations of the system (22) with condition

(A.1); after some algebraic manipulation, we get the following system for ũ and ∆t̃1 and ∆t̃3,

where T̃ = ∆t̃1 + ∆t̃3:d

∆t̃1 = 4√
4ũ2−γ2

arctan

( √
4ũ2−γ2vx(0)

γvx(0)−2εũvz(0)

)

∆t̃3 = 4√
4ũ2−γ2

arcsin

(
eγ(∆t̃1+∆t̃3)/4

√
4ũ2−γ2|vx(0)|

2
√
p0ũ2−εγvz(0)vx(0)ũ

)

tan

(√
4ũ2−γ2

4 ∆t̃3

)
= −
√

4ũ2−γ2

γ .

(A.2)

Since this system is very complicated, it is useful to know that T̃ is greater then the

breakdown time, given by Eq. (8). This fact is easy to prove and it implies a super estimation

of ũ, to which we now turn (with some omissions in the argument). Using that ∆t1 and ∆t3
are decreasing functions of u, a sub estimation of ∆t̃3 implies a super estimation of ũ; since,

in general, ∆t3 ≥ ∆t1 and ∆t1 + ∆t3 > tb, it follows

∆t̃3 >
tb
2

=
p− c
2γc

Inserting this sub estimation for ∆t̃3 in the third equation of the System (A.2), we conclude

that the minimal control field ũ is not greater than the solution ξ of the following equation:

tan

(√
4ξ2 − γ2

p− c
8γc

)
= −

√
4ξ2 − γ2

γ
. (A.3)

dWe remark that Eq. (A.1) is equivalent to the third equation of System (A.2).


