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We consider a discrete-time 2-state quantum walk on the line. The state of the quantum
walker evolves according to a rule which is determined by a coin-flip operator and a

position-shift operator. In this paper we take a 3-periodic time evolution as the rule.
For such a quantum walk, we get a limit distribution which expresses the asymptotic
behavior of the walker after a long time. The limit distribution is different from that
of a time-independent quantum walk or a 2-period time-dependent quantum walk. We

give some analytical results and then consider a number of variants of our model and
indicate the result of simulations for these ones.
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1 Introduction

Quantum walks (QWs) are considered to be a quantum analog of classical random walks.

The system and the dynamics of QWs have some similarities to those of random walks,

but the behavior of QWs is different from that of random walks in terms of their probability

distributions. In general, the behavior of the QWs can not be predicted based on our intuition.

A 3-period time-dependent QW which we are going to consider in this paper leads to an

interesting behavior. We study this behavior after a large number of discrete time steps and

describe it as a long-time limit theorem. The theorem will be given as a convergence in

distribution on a rescaled space by time. The fact that the relevant scale is time itself and

not its square root has been observed from the very first papers in the subject, [1]. For a

time-independent standard QW on the line, a limit distribution was obtained by Konno [2, 3]

in 2002 for the first time and the limit density function has a representation similar to an

arcsine law, in marked contrast to a Gauss distribution which appears for classical random

walks under appropriate conditions. Time-dependent QWs were numerically studied in some

papers [4, 5, 6, 7] and some limit theorems were analytically derived [8, 9, 10, 11]. In particular,

Machida and Konno [8] treated a 2-period discrete-time QW on the line whose time evolution
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is given by two unitary matrices which are used as coin-flip operators. The long time behavior

of the 2-period time-dependent walk can be completely determined by one of the two matrices

according to the determinant of the product of both of them.

In this paper we define a 3-period time-dependent discrete-time QW on the line and we will

see that this 3-period time-dependent walk also exhibits interesting behavior. The motivation

for the analytical study for the 3-period time-dependent walk done here comes from numerical

studies done in Ribeiro et al. [5]. Besides periodic time-dependent walks, they also looked at

time-dependent QWs whose coin-flip operator was controlled by a quasiperiodic sequence or

a random sequence. According to their result, we can expect that the long time behavior of

a walk with a long period is sub-ballistic or diffusive. That means that as the length of the

period increases, the behavior of the periodic time-dependent walks gets either less ballistic

or more diffusive departing form the behavior of a time-independent quantum walk. So, we

would see a different behavior for a periodic QW depending on the length of the period, and

this would be important in order to discuss the relationship between QWs and random walks.

We will define a 3-period time-dependent QW on the line in the following section. The

walker starts from the origin on the lattice Z = {0,±1,±2, . . .} at time 0 and from its state at

time t ∈ {0, 1, 2, . . .} one gets the state at time t+ 1 after operating with a coin-flip operator

and a position-shift operator. In our model the coin operator is 3-periodic as a function of

time t, and we use just one and the same coin-flip operator in the evolution. For the 3-period

time-dependent walk, we give a limit theorem as t→ ∞ in Sec. 3. The proof of the theorem

is based on Fourier analysis and is included in the same section. In the final section, we give

a summary and a discussion of our result.

There are two appendices: in the first one we show how the analytical proof can be made

to work in the case of some unitary (as opposed to orthogonal) operators. In the second one

we look at a number of models not covered by our analytical results and give some interesting

numerical evidence of their limiting behavior.

2 Definition of a 3-period time-dependent QW on the line

In this paper we deal with a discrete-time 2-state QW on the line and we give a 3-periodic

time evolution rule for the walk. The total system of a discrete-time 2-state QWs on the

line is defined in a tensor space Hp ⊗Hc, where Hp is called a position Hilbert space which

is spanned by an orthogonal normalized basis {|x〉 : x ∈ Z} and Hc is called a coin Hilbert

space which is spanned by an orthogonal normalized basis {|0〉 , |1〉}. Let |ψt(x)〉 ∈ Hc be the

state of the walker at position x at time t. The state of the 2-state QW on the line at time t

is expressed by |Ψt〉 =
∑

x∈Z
|x〉 ⊗ |ψt(x)〉 ∈ Hp ⊗Hc. In particular, we focus on a 3-period

time-dependent discrete-time QW whose coin-state is given by

C =cos θ |0〉 〈0|+ sin θ |0〉 〈1|+ sin θ |1〉 〈0| − cos θ |1〉 〈1|
=c |0〉 〈0|+ s |0〉 〈1|+ s |1〉 〈0| − c |1〉 〈1| , (1)

with θ ∈ [0, 2π) and we have abbreviated cos θ, sin θ to c, s in Eq. (1). The total system at

time t evolves to the next state at time t+ 1 according to the time evolution rule

|Ψt+1〉 =
{

S̃C̃ |Ψt〉 (t = 0, 1 mod 3)

S̃ |Ψt〉 (t = 2 mod 3)
, (2)
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where

C̃ =
∑

x∈Z

|x〉 〈x| ⊗ C, (3)

S̃ =
∑

x∈Z

|x− 1〉 〈x| ⊗ |0〉 〈0|+ |x+ 1〉 〈x| ⊗ |1〉 〈1| . (4)

The time evolution of the state |Ψt〉 depends on the value t mod 3. Equation (2) states that

the position of the walker gets shifted after the coin-flip operation has been completed at time

t = 0, 1 mod 3, and it just gets shifted without any coin-flip operation at time t = 2 mod 3.

Here, we don’t take θ = 0, π2 , π,
3π
2 because the behavior of the walker would be trivial. Under

the condition 〈Ψ0|Ψ0〉 = 1, the quantum walker can be observed at position x at time t with

probability

P(Xt = x) = 〈Ψt|
{

|x〉 〈x| ⊗ (|0〉 〈0|+ |1〉 〈1|)
}

|Ψt〉 , (5)

whereXt is a random variable and denotes the position of the walker at time t, regardless of the

spin orientation. The probability distribution evolves as a function of time t, as numerically

shown in Fig 1. Actually, this linear behavior is reflected in a limit theorem which will show

up after this section. We also show how the time evolution of the probability distribution

depends on the parameter θ of the coin-flip operator C in Fig. 2. We will analyze the long time

behavior of this probability distribution P(Xt = x) as t→ ∞ in the next section, concentrating

on values of time that are of the form 3t. Other values of time show an undistinguishable

behavior (see also Appendix C).

(a) θ = π
4 (b) θ = 2π

5

Fig. 1. Time evolution of probability distributions in the case of α = 1/
√
2, β = i/

√
2

3 Long-time limit theorem and its proof

We get a long-time limit theorem for the probability distribution and its proof in this section

assuming that the walker starts from the origin. Let us take an initial state |Ψ0〉 = |0〉 ⊗
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(a) α = 1/
√
2, β = i/

√
2 (b) α = 1, β = 0

Fig. 2. The relationships between the probability distribution at time t = 150 and the parameter
θ which determines the coin-flip operator C

(α |0〉+ β |1〉) with |α|2 + |β|2 = 1. This initial condition means that the walker starts from

the origin because of P(X0 = 0) = 1. Then we obtain a limit theorem for the 3-period

time-dependent QW.

Theorem 1

lim
t→∞

P

(

X3t

3t
≤ x

)

=

∫ x

−∞

[

{1− ν(α, β; y)} f(y)I(
1−4c2

3
,

√
1+8c2

3

)(y)

+ {1 + ν(α, β;−y)} f(−y)I(
−

√
1+8c2

3
,− 1−4c2

3

)(y)

]

dy, (6)

where

f(x) =
|s|

(

|s|x+
√

D(x)
)2

π(1− x2)
√

W+(x)
√

W−(x)
√

D(x)
, (7)

ν(α, β;x) =
1

c(1 + 8c2)

{

9c3(|α|2 − |β|2) + 3s(1 + 6c2)ℜ(αβ)
}

x

+
s

c|s|(1 + 8c2)

{

cs(|α|2 − |β|2)− (1 + 2c2)ℜ(αβ)
}
√

D(x), (8)

D(x) =1 + 8c2 − 9c2x2, (9)

W+(x) =− (1− 4c2) + 3(1− 2c2)x2 + 2|s|x
√

D(x), (10)

W−(x) =1 + 8c2 − 3(1 + 2c2)x2 − 2|s|x
√

D(x), (11)

IA(x) =

{

1 (x ∈ A)
0 (x /∈ A)

, (12)
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and ℜ(z) denotes the real part of the complex number z.

The function ν(α, β;x) is the part of the limit density function which gives the effect of

the initial condition α, β on the limit behavior, and if the conditions |α| = |β| and ℜ(αβ) = 0

are satisfied simultaneously (e.g. α = 1/
√
2, β = i/

√
2 ), this term disappears. Note that

D(x),W+(x),W−(x) > 0 for x ∈
(

−
√
1+8c2

3 ,− 1−4c2

3

)

∪
(

1−4c2

3 ,
√
1+8c2

3

)

and |1 − 4c2| <
√
1 + 8c2. As examples, Fig. 3 shows probability distributions and the limit density functions

when α = 1/
√
2, β = i/

√
2.

  

(a) θ = π
4

  

(b) θ = 2π
5

Fig. 3. Probability distribution at time 999 (= 3× 333) (blue line) and the limit density function
(red line), in the case of α = 1/

√
2, β = i/

√
2

Proof. To prove the limit theorem we use Fourier analysis in the way introduced

in Grimmett et al. [12], and derive a convergence of the r-th moment E [(X3t/3t)
r] (r =

0, 1, 2, . . .) which is equivalent to a convergence of the generating function E[eizX3t/3t].

First, we consider the following Fourier transform |Ψ̂t(k)〉 (k ∈ [−π, π)) derived from the

states of the walker

|Ψ̂t(k)〉 =
∑

x∈Z

e−ikx |ψt(x)〉 . (13)

We should note that we can obtain the state |ψt(x)〉 by using the inverse Fourier transform

|ψt(x)〉 =
∫ π

−π

eikx |Ψ̂t(k)〉
dk

2π
. (14)

Equation (2) produces a time evolution of the Fourier transform

|Ψ̂3t(k)〉 =
(

Ŝ(k)Ĉ(k)2
)t

|Ψ̂0(k)〉 ,

|Ψ̂3t+1(k)〉 =Ĉ(k)
(

Ŝ(k)Ĉ(k)2
)t

|Ψ̂0(k)〉 , (15)

|Ψ̂3t+2(k)〉 =Ĉ(k)2
(

Ŝ(k)Ĉ(k)2
)t

|Ψ̂0(k)〉 ,

where Ŝ(k) = eik |0〉 〈0| + e−ik |1〉 〈1| and Ĉ(k) = Ŝ(k)C. The operator Ŝ(k) corresponds to

the position-shift operator S̃.
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Before computing the r-th moment E (Xr
3t), we get the eigenvalues and the normalized

eigenvectors of the unitary matrix Ŝ(k)Ĉ(k)2 so that we rewrite the Fourier transform |Ψ̂3t(k)〉
on the appropriate eigenspace. Let us take a standard basis as the orthogonal normalized

basis {|0〉 , |1〉} with

|0〉 =
[

1
0

]

, |1〉 =
[

0
1

]

. (16)

Then the matrix Ŝ(k)Ĉ(k)2 has two eigenvalues

λj(k) = c2 cos 3k + s2 cos k − (−1)ji
√

1− (c2 cos 3k + s2 cos k)2 (j = 1, 2), (17)

and they are distinct as long as k 6= −π, 0. Again, we should note that 1−(c2 cos 3k+s2 cos k)2

is not a negative number and its value is zero if and only if k = −π, 0. As one of the possible

expressions of the normalized eigenvector corresponding to each eigenvalue λj(k), we have

|vj(k)〉 =
1

√

Nj(k)

[

−2cs e2ik sin k

c2 sin 3k + s2 sin k + (−1)j
√

1− (c2 cos 3k + s2 cos k)2

]

, (18)

where Nj(k) are normalization factors given by

Nj(k) =2

{

1− (c2 cos 3k + s2 cos k)2

+ (−1)j(c2 sin 3k + s2 sin k)
√

1− (c2 cos 3k + s2 cos k)2
}

. (19)

Here, we treat the r-th moments at time 3t and express them in the Fourier space by

using the eigenvalues λj(k) and the eigenvectors |vj(k)〉. With a decomposition |Ψ̂3t(k)〉 =
∑1

j=0 λ
t
j(k) 〈vj(k)|Ψ̂0(k)〉 |vj(k)〉, we get

E(Xr
3t) =

∑

x∈Z

xrP(X3t = x)

=

∫ π

−π

〈Ψ̂3t(k)|
(

Dr |Ψ̂3t(k)〉
) dk

2π

=(t)r

∫ π

−π

2
∑

j=1

(

iλ′j(k)

λj(k)

)r
∣

∣

∣
〈vj(k)|Ψ̂0(k)〉

∣

∣

∣

2 dk

2π
+O(tr−1), (20)

where D = i(d/dk) and (t)r = t(t−1)×· · ·× (t−r+1). Equation (20) gives us a convergence

as t→ ∞,

lim
t→∞

E

[(

X3t

3t

)r]

=

∫ π

−π

2
∑

j=1

(

iλ′j(k)

3λj(k)

)r
∣

∣

∣
〈vj(k)|Ψ̂0(k)〉

∣

∣

∣

2 dk

2π
, (21)

where
iλ′j(k)

3λj(k)
= (−1)j

3c2 sin 3k + s2 sin k

3
√

1− (c2 cos 3k + s2 cos k)2
. (22)
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Setting iλ′j(k)/3λj(k) = x in Eq. (21) takes us to our goal because we have

lim
t→∞

E

[(

X3t

3t

)r]

=

∫ ∞

−∞
xr

[

{1− ν(α, β;x)} f(x)I(
1−4c2

3
,

√
1+8c2

3

)(x)

+ {1 + ν(α, β;−x)} f(−x)I(
−

√
1+8c2

3
,− 1−4c2

3

)(x)

]

dx, (23)

which means that the random variable X3t/3t converges in distribution to a random variable

with a density function

{1− ν(α, β;x)} f(x)I(
1−4c2

3
,

√
1+8c2

3

)(x) + {1 + ν(α, β;−x)} f(−x)I(
−

√
1+8c2

3
,− 1−4c2

3

)(x).

(24)

To obtain the cumulative distribution function on the left hand side of Eq. (6), we need to

integrate this density. �.

4 Summary and Discussion

We have dealt with a 3-period time-dependent discrete-time 2-state QW on the line with

the walker located at the origin at the initial time, and gave a limit theorem which gives

the asymptotic behavior of the walker after a large number of steps. On a rescaled space

by time, the position of the walker converges in distribution to a random variable. The

density function of the random variable has a compact support. Its shape resembles that of a

doubled arcsine distribution. When we choose the parameter θ, which determines the coin-flip

operator C, in the open interval (π/3, 2π/3) ∪ (4π/3, 5π/3), we do not observe the walker at

the starting point after a long time as shown in Fig. 3-(b) because the compact support is

the open interval
(

−
√
1+8 cos2 θ

3 ,− 1−4 cos2 θ
3

)

∪
(

1−4 cos2 θ
3 ,

√
1+8 cos2 θ

3

)

. For a time-independent

walk or a 2-period time-dependent walk starting from the origin, the initial condition at the

origin produces a linear function in their limit density functions [2, 8]. On the other hand, the

3-period time-dependent walk treated in this paper, features a non-linear term reflecting the

initial condition at the origin, which is expressed by ν(α, β;x) in the limit theorem, and the

function
√

D(x) =
√
1 + 8c2 − 9c2x2. We showed that the limit distribution of the 3-period

time-dependent walk is essentially different from that of the time-independent walk or the

2-period time-dependent walk.

We have treated a 3-period time-dependent walk whose coin-state is flipped by only one

coin-flip operator C at time t = 0, 1 mod 3, and is shifted without any coin-flip operation at

time t = 2 mod 3. We can also see very interesting behavior for a 3-period time-dependent

walk with three distinct coin-flip operators by using numerics as displayed in the appendix.

We intend to analyze these results carefully in a future publication. We have described a

mathematical property of a 3-period time-dependent walk. It would be worth discussing this

phenomenon from the perspective of physics, for example it would be nice to explore a possible

application to the design of selective pulses in [13].
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Appendix A A limit distribution for a general unitary operator

Consider the following time evolution

|Ψt+1〉 =
{

S̃Ũ |Ψt〉 (t = 0, 1 mod 3)

S̃J̃ |Ψt〉 (t = 2 mod 3)
, (A.1)

where

Ũ =
∑

x∈Z

|x〉 〈x| ⊗ U, (A.2)

J̃ =
∑

x∈Z

|x〉 〈x| ⊗ J, (A.3)

U =a |0〉 〈0|+ b |0〉 〈1|+ c |1〉 〈0|+ d |1〉 〈1| ∈ U(2), (A.4)

J = |0〉 〈0| − ad

|a|2 |1〉 〈1| . (A.5)
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This differs from in Eq. (1) in that we allow for complex entries in our coin.

Lemma 1 We take the coin-flip operator which satisfies the condition abcd 6= 0. If the walker

starts with |Ψ0〉 = |0〉 ⊗ (α |0〉+ β |1〉), we have

lim
t→∞

P

(

X3t

3t
≤ x

)

=

∫ x

−∞

[

{1− χ(α, β; y)} f(y)I(
1−4|a|2

3
,

√
1+8|a|2

3

)(y)

+ {1 + χ(α, β;−y)} f(−y)I(
−

√
1+8|a|2

3
,− 1−4|a|2

3

)(y)

]

dy, (A.6)

where

f(x) =
|b|

(

|b|x+
√

D(x)
)2

π(1− x2)
√

W+(x)
√

W−(x)
√

D(x)
, (A.7)

χ(α, β;x) =
1

|a|2(1 + 8|a|2)
{

9|a|4(|α|2 − |β|2) + 3(1 + 6|a|2)ℜ(aαbβ)
}

x

+
1

|a2b|(1 + 8|a|2)
{

|ab|2(|α|2 − |β|2)− (1 + 2|a|2)ℜ(aαbβ)
}
√

D(x), (A.8)

D(x) =1 + 8|a|2 − 9|a|2x2, (A.9)

W+(x) =− (1− 4|a|2) + 3(1− 2|a|2)x2 + 2|b|x
√

D(x), (A.10)

W−(x) =1 + 8|a|2 − 3(1 + 2|a|2)x2 − 2|b|x
√

D(x). (A.11)

Proof. We parametrize the unitary operator U by the choices a = ei(γ+ξ) cos θ, b =

ei(γ−ξ) sin θ, c = ei(δ+ξ) sin θ, d = −ei(δ−ξ) cos θ (γ, δ, ξ, θ ∈ [0, 2π)) and get

Ŝ(k)
(

Ŝ(k)U
)2

= ei(
γ
2
+ 3δ

2
−ξ)Ŝ(−ξ)Ŝ

(

k +
γ − δ + 2ξ

2

){

Ŝ

(

k +
γ − δ + 2ξ

2

)

C

}2

Ŝ(ξ).

(A.12)

From Theorem 1, hence, we have

lim
t→∞

P

(

X3t

3t
≤ x

)

=

∫ x

−∞

[

{

1− ν(αeiξ, βe−iξ; y)
}

f(y)I(
1−4 cos2 θ

3
,

√
1+8 cos2 θ

3

)(y)

+
{

1 + ν(αeiξ, βe−iξ;−y)
}

f(−y)I(
−

√
1+8 cos2 θ

3
,− 1−4 cos2 θ

3

)(y)

]

dy,

(A.13)

for θ 6= 0, π2 , π,
3π
2 . �.
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Appendix B Using three different flip coins

The following figures show the results of some numerical simulations using three different

coins. We focus on a general 3-period time evolution

|Ψt+1〉 =











S̃Ũ0 |Ψt〉 (t = 0 mod 3)

S̃Ũ1 |Ψt〉 (t = 1 mod 3)

S̃Ũ2 |Ψt〉 (t = 2 mod 3)

, (B.1)

where

Uj =

[

eiγj 0
0 eiδj

] [

cos θj sin θj
sin θj − cos θj

] [

eiξj 0
0 e−iξj

]

(j = 0, 1, 2). (B.2)

 

 

(a)

(γ0, δ0, ξ0) = (0, 0, 0)
(γ1, δ1, ξ1) = (0, 0, 0)
(γ2, δ2, ξ2) = (0, 0, 0)

 

 

(b)

(γ0, δ0, ξ0) = (π4 , 0, 0)
(γ1, δ1, ξ1) = (0, 0, 0)
(γ2, δ2, ξ2) = (0, 0, 0)

 

 

(c)

(γ0, δ0, ξ0) = (0, 0, 0)
(γ1, δ1, ξ1) = (0, 0, 0)
(γ2, δ2, ξ2) = (π4 , 0, 0)

 

 

(d)

(γ0, δ0, ξ0) = (π2 ,
π
2 ,

π
2 )

(γ1, δ1, ξ1) = (π3 ,
π
3 ,

π
3 )

(γ2, δ2, ξ2) = (π4 ,
π
4 ,

π
4 )

Fig. B.1. Probability distributions at time t = 999 in the case of θ1 = 2π

5
, θ2 = π

3
, θ3 = π

4
, α =

1/
√
2, β = i/

√
2
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Appendix C Probability distributions at time 3t+1, 3t+2 and the limit density

functions

We show comparisons between the probability distributions of the rescaled random valu-

ables X3t+1

3t+1 ,
X3t+2

3t+2 and the limit density functions which follow from Theorem 1.

  

(a) θ = π
4

  

(b) θ = 2π
5

Fig. C.1. Probability distribution at time 1000 (= 3 × 333 + 1) (blue line) and the limit density

function (red line), in the case of α = 1/
√
2, β = i/

√
2

  

(a) θ = π
4

  

(b) θ = 2π
5

Fig. C.2. Probability distribution at time 1001 (= 3 × 333 + 2) (blue line) and the limit density
function (red line), in the case of α = 1/

√
2, β = i/

√
2


