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We investigate geometric phases in terms of Heisenberg equation. We find that, equiva-

lently to Schrödinger picture with a memory of its motion in terms of the geometric phase
factor contained in the wave function, the observales carry with the geometric message
under their evolutions in the Heisenberg picture. Such an intrinsic geometric feature

may be particularly useful to implement the multi-time correlation geometric quantum
gate in terms of the observables, which leads to a possible reduction in experimental
errors as well as gate timing. An application is discussed for nuclear-magnetic-resonance
system, where the geometric quantum gate is proposed.
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1 Introduction

As early as 1956, Pancharatnam anticipated the quantum geometric phase in terms of the

experiment involving a sequence of changes in polarization of a beam of classical light by

sending it through suitable polarizers [1].

One of the most important progresses in the geometric phase related to the formal structure

of quantum mechanics was discovered in the context of adiabatic and cyclic evolution of wave

function obeying the Schrödinger equation with time-dependent Hamiltonian by Berry in

1984 [2]. This Berry phase can be interpreted as a holonomy of the Hermitian fibre bundle

over the parameter space [3]. Especially, the phase is proportional to the area spanned in

parameter space and independent of the path passed by the system during its evolution, which

means that the geometric phase has an observable consequence. Thus the wave function of a

quantum system retains a memory of its motion in the form of the Berry phase. Therefore, the

geometric phases are interesting in both fundamental physical concepts and their applications

[4].

951



952 Geometric phase carried by the observables and its application to quantum computation

The importance of Berry phase on various areas of physics has naturally resulted in the

generalization to the nonadiabatic cyclic [5] and non-clyclic [6] evolutions. This nonadiabatic

geometric phase, especially, showed a geometric picture of quantum dynamics, which can

be defined for any closed or open curve in the Hilbert space. Thus, the geometric phase is

independent of the Hamiltonian of the physical system for a given closed curve.

The geometric phase has recently been generalized in the context of non-adiabatic quan-

tum computation both theoretically [7] and experimentally [8, 9]. As an application of the

geometric nature, the geometric quantum computation is a potentially intrinsical fault tol-

erant and therefore resilient to certain types of the experimental and fluctuational errors

[10, 11, 12, 13]. This potential value of the quantum holonomy and topology phenomenon has

attracted great interests in quantum computation [14, 15], gauge theory [16, 17], fractional

statistics [18, 19], quantum Hall effect [20], quantum Bohm theory [21, 22], nonunitary evo-

lution [23, 24] and open quantum system [25, 26, 27, 28, 29, 30, 31]. The geometric phases in

the wave functions have been observed in many different experiments [32, 33, 34, 35].

Up to today, the developments and applications of the geometric phases have been studied

in the so-called Schrödinger picture. In the Schrödinger picture, any physical observables are

visualized as a fixed set of values and the state vector evolves in time according to the

Schrödinger equation. On the other hand, the same system can be described equally well by

setting the time-dependent observables to evolve in terms of the Heisenberg equation and the

state vector remains stationary. This mode of formulating quantum mechanics is physically

equivalent to the Schrödinger picture and called as the Heisenberg picture. It is clear that

the geometric phases in the stationary wave function disappear in the Heisenberg picture. In

physical principle, the two descriptions are physically equivalent. Therefore, the geometric

phase should not disappear as an intrinsical property. It is known that, on the other hand, it is

particularly useful in the study of the multi-time correlation function [36, 37] in the Heisenberg

picture. Thus it is interesting to investigate the geometric phase in the Heisenberg picture,

which may be extremely helpful to observe and further apply it.

In this work, we firstly expand the observable and Hamiltonian in the Heisenberg picture

in terms of a complete basis with a set of the Hermitian operators and then seek for an

analytic solution of the observable by rescaling the Heisenberg equation as a Schrödinger-like

matrix form. We find that the observables hide in the message of geometric phases when

the system evolves in time and the motion memory of quantum system is preserved in the

physical observables. We apply the method to the nuclear magnetic resonance system and

find the multi-time correlation geometric quantum gate can be directly implemented in terms

of the physical observables.

2 Rescaling to Heisenberg equation

Consider the Heisenberg equation of motion for an arbitrary observable Q that is independent

of time in the Schrödinger picture,

d

dt
Q(t) = − i

h̄
[Q(t),H(R(t))], (1)

where the Hamiltonian of physical system H(R(t)) is usually time-dependent because of inter-

acting with external potentials and R(t) = (R1(t), R2(t), ..., Rl(t)) are a set of slowly varying

classical parameters (adiabatic evolution).
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It is known that in a complex Hilbert space, one can find a set of traceless and Hermi-

tian matrices with the normalization condition {Ol = O+
l , l = 1, 2, . . . , N2 − 1 : TrOl =

0, T r(OkOl) = 2δkl} [38], where the closed algebra is satisfied by the commutative [Ol,Ok] =

2iflkjOj (flkj are the totally antisymmetric structure constants) and anticommutative {Ol,Ok} =
4
N δlk +2dlkjOj (dlkj are the totally symmetric N-tensor components) relations. The complex

N × N matrices {Ol, l = 1, 2, . . . , N2 − 1}, together with the identity matrix 1N×N = ON2

form a complete basis for a space of N ×N matrices. So, any observable Q and Hamiltonian

H can be expanded as

Q(t) =

N2

∑

k=1

Qk(t)Ok,H(R(t)) =

N2

∑

k=1

Hk(R(t))Ok, (2)

where Qk(t) and Hk(t) are corresponding expansive coefficients, respectively. Inserting Eq.

(2) into Eq. (1), one has

Q̇i(t) =
1

2

N2

∑

k,j=1

Tr

(

− i

h̄
Hk(R(t))Oi[Oj ,Ok]

)

Qj(t), (3)

which can be rescaled in terms of a matrix form, i.e.,

d

dt











Q1

Q2

...
QN2











=









M11 M12 · · · M1N2

M21 M22 · · · M2N2

· · · · · · · · · · · ·
MN21 MN22 · · · MN2N2



















Q1

Q2

...
QN2











, (4)

where the matrix elements are defined by

Mij(t) =
1

2

N2

∑

k=1

Tr (− i

h̄
Hk(R(t))Oi[Oj ,Ok]). (5)

Eq. (4) is a Schrödinger-like matrix equation by taking (Q1,Q2, · · ·,QN2)t as a vector in

the N2-dimensional complex Hilbert space. The matrix M defined by Eq. (5), however, may

not be a Hermitian matrix in the general case. Fortunately, the matrix MM+ is a Hermitian

matrix and can be diagonalized by a unitary matrix UL with the relation ULU
+
L = U+

L UL = 1,

i.e.,

U+
L MM+UL = D2, (6)

with

D2
ij = d2i δij , (7)

where

d2i =
∑

j

(U+
L M)ij(M

+UL)ji =
∑

j

|(U+
L M)ij |2, (8)
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are positive real number. Thus the matrix M may be denoted as

M = ULDU+
R , (9)

in terms of another unitary matrix UR = M−1ULD with the relation URU
+
R = U+

RUR = 1.

Thus the matrix M can be diagonalized by using the two unitary matrices UL and UR, or a

set of biorthonormal eigenvectors [23]. By applying the matrices UL and UR into the unitary

transformations, in fact, we can get a set of biorthonormal eigenvectors.

3 Geometric phase in Heisenberg picture

In the Schrödinger picture, the Berry phases depend on the area spanned in evolving path

of a dynamic system. A general approach to determine the possible geometric phases for a

physical system is to consider the eigenvalues associated with the effective dynamics of the

system.

In order to investigate the geometric phase in the Heisenberg picture, we firstly consider

the eigenvectors of N2 ×N2 time-dependent matrix M(R(t). Suppose that a complete set of

biorthonormal eigenvectors [23], |−̃→λ (R(t))〉 = {|−̃→λ i(R(t))〉, i = 1, 2, . . . , N2} and |−̃→η (R(t))〉 =
{|−̃→η i(R(t))〉, i = 1, 2, . . . , N2}, obeys the instantaneous eigenequations,

M(R(t))|−̃→λ (R(t))〉 = λ̃(R(t))|−̃→λ (R(t))〉, (10)

and

M+(R(t))|−̃→η (R(t))〉 = η̃(R(t))|−̃→η (R(t))〉, (11)

where λ̃(R(t)) = η̃∗(R(t)) with the complete and normalized conditions [23],

∑

i

|−̃→η i(R(t))〉〈−̃→λ i(R(t))| = 1, (12)

and

〈−̃→η i(R(t))|−̃→λ j(R(t))〉 = δij . (13)

In order to find an exact solution of Eq. (4) by using Eqs. (10)-(13), we set

|−→λ i(R(t))〉 = eiαi(t)|−̃→λ i(R(t))〉, (14)

and then substitute it into Eq. (4). After a straightforward algebra calculation, we find

αi(t) = −i

∫ t

0

dt

(

〈−̃→η i|M |−̃→λ i〉 − 〈−̃→η i|
∂

∂t
|−̃→λ i〉

)

, (15)

where the phase factor αi(t) can be separated into the two parts. The first term,

γd
i (t) = −i

∫ t

0

dt〈−̃→η i(t)|M |−̃→λ i(t)〉, (16)
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is relative to the Hamiltonian of system as shown in Eq. (5) and therefore called as the

dynamic phase. The second term,

γg
i (t) = i

∫ t

0

dt〈−̃→η i(R(t))| ∂
∂t

|−̃→λ i(R(t))〉

= i
∑

β

∫ Rβ(t)

R(0)

dRβ〈−̃→η i(R(t))| ∂

∂Rβ
|−̃→λ i(R(t))〉

= i

∫ R(t)

0

〈−̃→η i(R(t))|d|−̃→λ i(R(t))〉, (17)

is an integral of the local differential one-form,

Ai(R(t)) = 〈−̃→η i(R(t))|d|−̃→λ i(R(t))〉, (18)

which is a N2-dimensional vector potential. From Eqs. (17) and (18), we know that γg
i (t) is

independent of the dynamics of system.

It is interesting to note that Eq. (14) defines a projective map Π, i.e.,

|−̃→λ i〉 → Π(|−̃→λ i〉) = {|−→λ i〉 : |
−→
λ i〉 = eiαi(t)|−̃→λ i〉}, (19)

and

|−̃→η i〉 → Π(|−̃→η i〉) = {|−→η i〉 : |−→η i〉 = eiαi(t)|−̃→η i〉}, (20)

where |−̃→λ i〉 and |−̃→η i〉 trace a curve C in Hilbert space H: [0, t] → H with Ĉ = Π−1(C) being
a closed curve in projective Hilbert space in processing of the cyclic evolution of a physical

system. Therefore the same |−→λ i(t)〉 and |−→η i(t)〉 can be chosen for every curve C for which

Π−1(C) = Ĉ by an appropriate choice of αi(t) [39].

Thus, the phase factor γg
i from Eq. (17) under the cyclic evolution is rewritten as

γg
i =

∮

Ĉ=∂S

Ai =

∫

S

dAi, (21)

where the curve Ĉ is traced by the parameters R(t) and the surface S can be arbitrarily chosen

as long as it is bounded by the closed curve Ĉ.
For another choice βi(t) different from αi(t), such as

|−→λ ′
i(t)〉 = eiβi(t)|−̃→λ i(t)〉, (22)

and

|−→η ′
i(t)〉 = eiβi(t)|−̃→η i(t)〉, (23)

ones have

Ai → A′
i = 〈−→η ′

i(t)|d|
−→
λ ′

i(t)〉 = Ai − dβi(t). (24)
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It is interesting to note that an exterior derivative of the connection one-form Ai is invari-

ant, i.e.,

dA′
i = dAi. (25)

According to Eq. (21), we see that γg
i in Eq. (21) is gauge invariant under the gauge

transformations (19) and (20) as well as (22) and (23). Therefore, γg
i can not be modified and

eliminated by a multiplication of the basis vectors |−̃→λ i(R(t))〉 and 〈−̃→η i(R(t))| or by a local

(time-dependent) complex factor. In other words, γg
i (t) is a geometric phase factor in which

is independent of αi(t) and H(t) for a given closed curve Ĉ.
From the above analysis, it is known that in the Hilbert space the observables are able

to be rescaled in the Heisenberg picture as N2-state vectors. For a given eigenvalue of the

system, however, there exist two cases of degeneracy and nondegeneracy eigenvectors. It is

obvious that in the nondegeneracy case, γg
i is a Abelian geometric phase.

For the degeneracy eigenvectors |−̃→λ i(R(t)), b〉 and 〈−̃→η i(R(t)), a| with the degeneracy labels

b and a, the corresponding vector potential Ai, geometric phase γg
i and dynamic phase γd

i

should be modified as

Aiab = 〈−̃→η i(t), a|d|
−̃→
λ i(t), b〉, (26)

γg
iab = i

∫ t

0

Aiab, (27)

and

γd
iab(t) = −i

∫ t

0

dt〈−̃→η i, a|M |−̃→λ i, b〉, (28)

respectively. Thus, a useful generic solution of the observable Q in the Heisenberg picture is

given by

Q(t) =
∑

i,a,b

ciabP
(

eiαiab(t)
)

O · |−̃→λ i(t), a〉, (29)

where O = {O1,O2, · · ·,ON2} is written as a vector form, ciab are time-independent constants

determined by the initial conditions and P denotes path-ordering operator. It is noted that

the geometric part of the phase factor, P
(

eiγ
g

iab
(t)
)

, is similar to Wilezek and Zee’s non-

Abelian geometric phase [16] in the Heisenberg picture. Moreover, this phase factor reduces

to the Abelian geometric phase factor γg
i (t) under the case of nondegeneracy with a = b = 1.

4 Nuclear-magnetic-resonance system

It is known that the nuclear-magnetic-resonance (NMR) spectroscopy is a powerful tech-

nique that can provide detailed information on the topology, dynamics and three-dimensional

structure of molecules in solution and the solid state. For an application, let us consider a

nuclear-magnetic-resonance system with the Hamiltonian,

H(t) = − h̄

2
Ω0(σx sin θ cosωt+ σy sin θ sinωt)

− h̄

2
Ω1σz cos θ, (30)
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where Ωi = g(µ)Bi/h̄(i = 0, 1) with g(µ) are the gyromagnetic, Bi and θ act as the external

controllable parameters and can be experimentally changed, and σi(i = x, y, z) are the Pauli

operators satisfying a closed algebra with the commutative [σi, σj ] = 2iǫijkσk(i, j, k = x, y, z)

and the anticommutative {σi, σj} = 2δij relations. Therefore, σx, σy and σz together with

the unit operator I2×2 construct a complete basis vector for any 2 × 2 matrices. Thus the

arbitrary observable Q(t) in the system can be expanded as Q(t) = Qx(t)σx + Qy(t)σy +

Qz(t)σz + QI(t)I. QI is independent of time from the structure of Eq. (3) whereas Qi(t)

(i=x,y,z) satisfy

d

dt





Qx

Qy

Qz



 =





0 Ω1 cos θ −Ω0 sin θ sin(ωt)
−Ω1 cos θ 0 Ω0 sin θ cos(ωt)

Ω0 sin θ sin(ωt) −Ω0 sin θ cos(ωt) 0









Qx

Qy

Qz



 , (31)

which defines the matrix M in Eq. (4). It is direct to obtain its biorthonormal eigenvalues

and corresponding eigenvectors. The eigenvalues are λ̃0 = η̃0 = 0 and λ̃± = η̃∗± = ±iλ with

λ =
√

Ω2
0 sin

2 θ +Ω2
1 cos

2 θ and corresponding normalized and biorthonormal eigenvectors,

|−̃→λ 0(t)〉 = |−̃→η 0(t)〉 =
1

λ





Ω0 sin θ cos(ωt)
Ω0 sin θ sin(ωt)

Ω1 cos θ



 , (32)

and

|−̃→λ ±(t)〉 = |−̃→η ∓(t)〉 =
1√
2λ





−Ω1 cos θ cos(ωt)± iλ sin(ωt)
−Ω1 cos θ sin(ωt)∓ iλ cos(ωt)

Ω0 sin θ



 , (33)

respectively.

Inserting Eqs. (32) and (33) into Eq. (21), the cyclic geometric phases can be obtained

for the different biorthonormal eigenvectors as

γg
0 (C) = i

∮ 2π/ω

0

dt〈−̃→η 0(t)|
∂

∂t
|−̃→λ 0(t)〉

= 0, (34)

and

γg
±(C) = i

∮ 2π/ω

0

dt〈−̃→η ∓(t)|
∂

∂t
|−̃→λ ±(t)〉

= ±π

λ
Ω1 cos θ, (35)

respectively. In the geometric quantum computation, however, the nonadiabatic evolutions

result in the errors that typically destroy cyclicity [40]. Therefore, it is interesting to discuss

the noncyclic case, the nontrivial noncyclic dynamic phases are given by

γd
±(t) = −i

∫ t

0

dt〈−̃→η ∓(t)|M |−̃→λ ±(t)〉 = ±γd(t), (36)
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where γd(t) = λt/2. According to the gauge invariant, the noncyclic geometric phase is

expressed as [41]

γg
±(t) = Arg〈−̃→η ∓(0)|

−̃→
λ ±(t)〉 − Im

∫ t

0

dt〈−̃→η ∓(t)|
∂

∂t
|−̃→λ ±(t)〉

= ∓ tan−1 2λΩ1 cos θ sinωt

(Ω2
1 cos

2 θ + λ2) cosωt+Ω2
0 sin

2 θ
± 1

2λ
Ω1 cos θωt, (37)

which is called as a Pancharatnam phase [1, 28]. In Eq. (37), the first term is total phase.

Under the situation of the cyclic evolution with the cyclicity T = 2π/ω, it is equal to a

constant ∓2π, which is not important and can be dropped off in quantum computation. The

second term is exactly the same as the geometric phase in Eq. (35) and therefore noted as

γg(t) = (2λ)−1Ω1 cos θωt.

Thus the solution of Eq. (31) is given by





Qx

Qy

Qz



 = c0|
−̃→
λ 0(t)〉+ c+e

i(γd(t)+γg(t))|−̃→λ +(t)〉

+c−e
−i(γd(t)+γg(t))|−̃→λ +(t)〉, (38)

where c0 and c± are constants determined by the initial conditions. Eq. (38) implies that

there indeed exist nontrivial geometric phases depending on the particular set of eigenvalues

at the observable Q in the Heisenberg picture.

In terms of Eq. (38), it is possible to implement the conditional geometric quantum compu-

tation by using the observables. An effective way is to let the dynamic phase be proportional

to the geometric phase by tuning experimentally the external controllable parameters [42],

such as Ω0, ω1, θ and ω. We find that when λ2 = rΩ1 cos θω, the dynamic phase is propor-

tional to the geometric phase, i.e., γd = rγg with a given controllable proportional constant

r. Thus the time-dependent quantum gate may be written as

U(t) =





1 0 0
0 ei(1+r)γg(t) 0
0 0 e−i(1+r)γg(t)



 , (39)

under the biorthonormal basis {|−̃→λ 0(t)〉, |
−̃→
λ ±(t)〉} and {|−̃→η 0(t)〉, |−̃→η ±(t)〉}. Under the cyclic

evolution with the cyclicity T = 2π/ω, U(t = T ) is a geometric quantum gate. In this case,

the proposed approach can avoid the problems about some types of errors that do not directly

observe in the experiments and therefore reduces experimental operations, which is useful to

analyze the fault tolerance associated with such errors. Especially, the observable Q(t) can be

obtained in the geometric quantum computation. For example, under the initial conditions

Qz(0) = 1,Qx(0) = Qy(0) = QI(0) = 0, we find that c+ = c− = 1√
2
λ−1Ω0 sin θ, c0 =

λ−1Ω1 cos θ, and cI = 0. In this case, Q(t) = σz(t), i.e.,

σz(t) =
Ω0 sin θ

λ2
{Ω1 cos θ(1− cos(1 + r)γg)σ

+
xy(t)

−λ sin(1 + r)γgσ
−
xy(t)}+ σz, (40)
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Fig. 1. (Color online) Time-dependent quantum gate from the observables σx, σy and σx for
the nuclear-magnetic-resonance system. For the cyclic evolution, U(γ(t = 2π/ω)) is a geometric

quantum gate.

where σ+
xy(t) = cos(ωt)σx + sin(ωt)σy and σ−

xy(t) = sin(ωt)σx − cos(ωt)σy.

Under the conditions of Qx(0) = 1, Qy(0) = Qz(0) = QI(0) = 0, one has c+ = c− =

− 1√
2
λ−1Ω1 cos θ, c0 = λ−1Ω0 sin θ, and cI = 0. In this case, Q(t) = σx(t), we have

σx(t) =
1

λ2
{(Ω2

0 sin
2 θ +Ω2

1 cos
2 θ cos(1 + r)γg)σ

+
xy(t)

+λΩ1 cos θ sin(1 + r)γgσ
−
xy(t)}. (41)

The similar case for Qy(0) = 1, Qx(0) = Qz(0) = QI(0) = 0, c+ = i√
2
. Thus c− = −i√

2
and

c0 = cI = 0. In this case, Q(t) = σy(t), we find

σy(t) =
1

λ
{Ω1 cos θ sin(1 + r)γgσ

+
xy(t)

−λ cos(1 + r)γgσ
−
xy(t)}. (42)

From Eqs. (40)-(42), we see that the observables carry with the geometric phase in the

cyclic evolution. In the Heisenberg picture, therefore, the quantum system retains its memory

of evolution in terms of this phase. Therefore a quantum geometric gate can be implemented

in terms of the observables σx, σy and σx as shown in Fig. 1.

Comparing the geometric phases from the observables satisfied the Heisenberg equation

with the ones from the wave functions satisfied the Schrödinger equation [42], we find that

they are not fully the same. The results can be understood because the observables in the

Heisenberg picture are different from the wave functions in the Schrd̈inger picture, which

provides the other choices in the geometric quantum computation.

5 Conclusions

In summary, an exact solution of observables under time evolution is given in the Heisenberg

picture, where the Heisenberg equation is rescaled as a Schrödinger-like matrix form in terms

of a complete basis with a set of the Hermitian operators. We find that the observales

carry with a geometric message in their evolutions in the Heisenberg picture. Especially, this

geometric phase shows a geometric structure picture of quantum dynamics so as to be defined

for any closed curve in the projective Hilbert space. Similarly to the Schrödinger picture,

thus, the geometric phase is independent of the Hamiltonian of the physical system for a

given closed curve and proportional to the area spanned in the parameter space. Therefore

the evolving memory of a quantum system is kept in terms of the geometric phase carried by

the observables in the Heisenberg picture.

Such a geometric nature provides another clue to implement the geometric quantum cal-

culation in terms of the observables as shown for the nuclear-magnetic-resonance system. In
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particular it may be helpful to reduce the experimental and fluctuational errors as well as

gate timing for the multi-time correlation geometric quantum computation.
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