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In this paper, we considered asymmetric 1 → n cloning circuits generalized from the
asymmetric 1 → 2 cloning circuit proposed by Bužek et al. [Phys. Rev. A 56, 3446

(1997)]. The generalization is based on an information flux insight of the original cloning
circuit. Specifically, the circuit separately and sequentially transfers the Z-type informa-
tion and X-type information of the input state to the output copies with controlled-not
gates. The initial input state of the clones defines the asymmetry among all output

clones. Although the generalized circuits do not perform universally, the averaged fideli-
ties over a uniform distribution of all possible input cloning states saturate the optimal
fidelity tradeoff relations of universal asymmetric cloning.
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1 Introduction

Unknown quantum states cannot be faithfully copied as a result of the quantum superposition

principle, which is the well known quantum no-cloning theorem [1]. However, copies with

reduced fidelities can be obtained through the so called quantum cloning machine [2, 3].

Quantum cloning, approximately or probabilistically, is related with various topics of quantum

information processing such as protocols of quantum cryptography. The quantum cloning

machines can be implemented by various schemes depending on specific physical systems. The

quantum circuit scheme takes the advantage that it depends only on the realization of the

universal quantum computation, without considering the details of physical implementation.

On the other hand, the design of simple quantum circuit relies on our understanding of

the investigated quantum information processing task [4]. Here, we will consider the circuit

realization of asymmetric quantum cloning.

After the introduction of universal 1 → 2 quantum cloning [5], Bužek et al. developed

a quantum circuit for this cloner [6]. The circuit consists of only controlled-not (CNOT)

gates and distributes the quantum information to the clones with respect to their initial input

states. Therefore, with specially chosen input states, the circuit can be programmed to realize

asymmetric 1 → 2 cloning. Another route to asymmetric quantum cloning is introduced by
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Cerf [7], where the clones went through different Pauli channels and achieved different fidelities

with the cloned state. Niu and Griffiths [8] also derived the optimal asymmetric universal

quantum cloner in their comprehensive study of the 1→ 2 cloning.

Later, the optimality of the above universal asymmetric cloners and generalized asym-

metric 1 → 3 cloning fidelity tradeoff relations were constructed by Fiurášek et al. [9] with

operator methods. Their results were also generalized to asymmetric 1 → 4 cloning [10, 11].

The most general asymmetric 1 → n cloning fidelity tradeoff relation was built by Key et

al. [12] with the concept of singlet monogamy and fully proved by them through Lieb-Mattis

Theorem in [13]. Besides these results on single input cloning, there are also many researches

on multiple input cloning [2, 3]. An interesting unified universal cloning construction with

multiple input to multiple output was introduced in Ref.[14], which has potential for asym-

metric generalization. Unlike the single input cloning, we generally do not have expressible

tradeoff relations for multiple input to multiple output cloning. The only exception was de-

rived in [13] for n→ n+1 universal asymmetric cloning. In this paper, we limit to the single

input case.

In [15], Franco et al. introduced an interesting insight on the information flux in the

cloning circuit proposed in [6]. They investigated the transformations of the operators under

the circuit operation, which showed that the circuit performed universally on all possible

cloning states. In this circuit, the Z-type and X-type information of the qubit state were

separately and sequentially transferred to the clones by two groups of CNOT gates. In light

of these insights, we will construct and analyze the 1→ n generalization of the original 1→ 2

circuit. Our results show that the generalized cloning circuit does not perform universally,

where the output clone fidelity depends on the input cloning states. However, if the cloning

state is chosen from a uniform distribution, we find that the averaged fidelities of the output

clones saturate the fidelity tradeoff relation in [13]. We also generalize our discussions to

higher dimensional discrete systems.

2 Qubit case

Firstly, we give an analysis on the 1→ 2 quantum cloning circuit for qubit system as shown

in Fig.1a [5].

In this circuit, the first qubit takes in the state to be cloned and the other two qubits act

as the clones. Throughout this paper, the first qubit denoted with number 0 is reserved as the

original qubit. The function of this circuit is determined by the input states of the three qubits.

For quantum cloning, there are two important states for the two clones, {|+〉z|+〉x, |+〉x|+〉z},
with the subscripts denoting the Pauli basis. With a randomly chosen qubit input state, |ψ〉0,
the cloning circuit transforms the inputs into,

|ψ〉0|+〉z,1|+〉x,2 → |ψ〉1|Φ+〉02, |ψ〉0|+〉x,1|+〉z,2 → |ψ〉2|Φ+〉01, (1)

where |Φ+〉 = (|00〉 + |11〉)/
√
2. We notice that the cloning state is transferred completely

to the two clones with the above preparations. Therefore, with an asymmetric superposition

state, |φ〉12 = a|+〉z,1|+〉x,2 + b|+〉x,1|+〉z,2, with a and b real numbers, the linear cloning

circuit performs the following transformation,

|ψ〉0|φ〉12 → a|ψ〉1|Φ+〉02 + b|ψ〉2|Φ+〉01. (2)
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Fig. 1. Quantum circuits for 1 → 2 qubit cloning (a) and 1 → 3 qubit cloning (b).

where a, b satisfy the normalization condition a2 + b2 + ab = 1 which confines the cloning

fidelities. Here, the initial state of clones acts as a software which determines how much input

information are separately transferred to the clones. The output states of the two qubit clones

are, ρ1 = [I+(a2+ab)n̂·~σ]/2, ρ2 = [I+(b2+ab)n̂·~σ]/2, where |ψ〉〈ψ| = [I+n̂·~σ]/2, |n̂| = 1. It

is important to notice that the two cloning outputs have the same direction with the cloning

input state while their lengths are reduced (< 1). The contraction rate is independent of the

direction of the input cloning state and only depends on the software part of the circuit, i.e.,

the input states of the clones, so the circuit performs universally.

Table 1. (taken from [15]). The evolved operators after time tj [i.e., after the application of the
j-th CNOT in Fig.1a] expressed in terms of the operators before the copying stage.

t1 t2 t3 t4
ˆ̃
X0(t) X̂0X̂1 X̂0X̂1X̂2 X̂0X̂1X̂2 X̂0X̂1X̂2

ˆ̃
Z0(t) Ẑ0 Ẑ0 Ẑ1 Ẑ0Ẑ1Ẑ2

ˆ̃
X1(t) X̂1 X̂1 X̂0X̂2 X̂0X̂2

ˆ̃
Z1(t) Ẑ0Ẑ1 Ẑ0Ẑ1 Ẑ0Ẑ1 Ẑ0Ẑ1

ˆ̃
X2(t) X̂2 X̂2 X̂2 X̂0X̂1

ˆ̃
Z2(t) Ẑ2 Ẑ0Ẑ2 Ẑ0Ẑ2 Ẑ0Ẑ2

The above results can also be conceived from another viewpoint. In the above discus-

sions, we use Schrödinger picture where the input state is changed by the circuit. How-

ever, we can also use Heisenberg picture where the operators are changed while the state

remains unchanged. Table 1 lists all the operator changes after each CNOT gate. Af-

ter cloning, we can carry out the calculations with the transformed operators and the ini-

tial state. Here, we are interested in the fidelities between the output clone states, ρ̃1,2 =

[I+
∑

Σ=X,Y,Z tr(ρ1,2
ˆ̃Σ1,2)Σ̂]/2, with the input cloning state |ψ〉〈ψ|, where ˆ̃Σ1,2 are the opera-

tors at the output clones. In order to obtain these operators, we notice the following facts. For
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a general CNOT gate acting on its control and target qubits, the following operator changes

can be directly checked with the corresponding operator basis,

ˆ̃Xc = X̂cX̂t,
ˆ̃Zc = Ẑc,

ˆ̃Xt = X̂t,
ˆ̃Zt = ẐcẐt, (3)

with X̂c, Ẑc (X̂t, Ẑt) the operators of the control (target) qubit before the action of the

gate and ˆ̃Xc,
ˆ̃Zc ( ˆ̃Xt,

ˆ̃Zt) the analogous operators after the action of the gate. Here we

only need to consider X̂1,2(t) and Ẑ1,2(t), since Ŷ1,2(t) is found as iX̂1,2(t)Ẑ1,2(t). As noted

in [15], the Z-type information flows through the first two CNOT gates and the X-type

information flows through the last two CNOT gates. Now we make a close check on the output

operators ˆ̃X1,2(t4),
ˆ̃Z1,2(t4) and the initial states |+〉z,1|+〉x,2 , |+〉x,1|+〉z,2. Firstly, Operators

ˆ̃X1,2(t4),
ˆ̃Z1,2(t4) always depend upon the input qubit operators X̂0, Ẑ0 respectively, which

shows that the quantum information is transferred to these clones. Secondly, |+〉z,1|+〉x,2 is a

simultaneous eigenvector of ˆ̃X1(t4) and
ˆ̃Z1(t4) (also

ˆ̃Y 1(t4)) with eigenvalue +1 and it changes

into an orthogonal state under the operation of ˆ̃X2(t4) and ˆ̃Z2(t4) (also ˆ̃Y 2(t4)). Similarly,

|+〉x,1|+〉z,2 is an eigenvector of both ˆ̃X2(t4) and
ˆ̃Z2(t4) (also

ˆ̃Y 2(t4)) with eigenvalue +1 and

it changes into an orthogonal state under the operation of ˆ̃X1(t4) and ˆ̃Z1(t4) (also ˆ̃Y 1(t4)).

This confirms the following fact: when |+〉z,1|+〉x,2 (|+〉x,1|+〉z,2) is used as the input, the

cloning state comes up at clone 1(2). Taking into account of the unbiasedness between X̂

and Ẑ, x〈+|+〉z = 1/
√
2, we can carry out the calculations of tr(ρ1,2

ˆ̃Σ1,2) to determine ρ̃1,2.

The results show that the two cloning outputs have the same direction with the cloning input

state and different reduced lengths. This confirms the universality of the circuit just as we

have already found out via Schrödinger picture.

Table 2. The evolved operators after time tj [i.e., after the application of the j-th CNOT in
Fig.1b] expressed in terms of the operators before the copying stage.

t1 t2 t3 t4 t5 t6
ˆ̃
X0(t) X̂0X̂1 X̂0X̂1X̂2 X̂0X̂1X̂2X̂3 X̂0X̂1X̂2X̂3 X̂0X̂1X̂2X̂3 X̂0X̂1X̂2X̂3

ˆ̃
Z0(t) Ẑ0 Ẑ0 Ẑ0 Ẑ1 Ẑ0Ẑ1Ẑ2 Ẑ1Ẑ2Ẑ3

ˆ̃
X1(t) X̂1 X̂1 X̂1 X̂0X̂2X̂3 X̂0X̂2X̂3 X̂0X̂2X̂3

ˆ̃
Z1(t) Ẑ0Ẑ1 Ẑ0Ẑ1 Ẑ0Ẑ1 Ẑ0Ẑ1 Ẑ0Ẑ1 Ẑ0Ẑ1

ˆ̃
X2(t) X̂2 X̂2 X̂2 X̂2 X̂0X̂1X̂3 X̂0X̂1X̂3

ˆ̃
Z2(t) Ẑ2 Ẑ0Ẑ2 Ẑ0Ẑ2 Ẑ0Ẑ2 Ẑ0Ẑ2 Ẑ0Ẑ2

ˆ̃
X3(t) X̂3 X̂3 X̂3 X̂3 X̂3 X̂0X̂1X̂2

ˆ̃
Z3(t) Ẑ3 Ẑ3 Ẑ0Ẑ3 Ẑ0Ẑ3 Ẑ0Ẑ3 Ẑ0Ẑ3

Next we consider the generalized 1→ 3 cloning circuit shown in Fig.1b. According to the

transformed operators ˆ̃Σi(t), Σ = X,Y, Z and i = 1, 2, 3, in table 2, we choose the following

states, {|+〉z,1(a|+〉x|+〉x+b|−〉x|−〉x)23 , |+〉z,2(a|+〉x|+〉x+b|−〉x|−〉x)13, |+〉z,3(a|+〉x|+〉x+
b|−〉x|−〉x)12}, with a,b real and a2 + b2 = 1, to construct an initial asymmetric state for

the clones, |φ〉123 = a1|+〉z,1(a|+〉x|+〉x+b|−〉x|−〉x)23+a2|+〉z,2(a|+〉x|+〉x+b|−〉x|−〉x)13+
a3|+〉z,3(a|+〉x|+〉x+b|−〉x|−〉x)12, with a1, a2, a3 ≥ 0 and a21+a

2
2+a

2
3+a1a2+a2a3+a1a3 = 1.
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It can be directly checked that with an initial state, |+〉z,i(a|+〉x|+〉x+b|−〉x|−〉x)jk, the input
cloning state comes out at clone i.

Will this circuit perform universally? It turns out that the answer is NO! Since the three

copies behave quite similarly, we take copy 1 as an example. Direct calculations show that,

〈 ˆ̃X1(t6)〉 ≡ tr(|ψ〉0〈ψ|X̂0)tr(|φ〉123〈φ|X̂2X̂3) = (a21 + a1a2 + a1a3 + a2a3)〈X̂0〉, (4)

〈 ˆ̃Z1(t6)〉 ≡ tr(|ψ〉0〈ψ|Ẑ0)tr(|φ〉123〈φ|Ẑ1) = (a21 + a1a2 + a1a3 + 2ab× a2a3)〈Ẑ0〉,(5)
〈 ˆ̃Y 1(t6)〉 ≡ tr(|ψ〉0〈ψ|Ŷ0)tr(|φ〉123〈φ|Ẑ1X̂2X̂3) = (a21 + a1a2 + a1a3 − 2ab× a2a3)〈Ŷ0〉.(6)

Obviously, the state of the output clone contracts differently along different axis. Therefore,

unlike the 1 → 2 case, the output is now dependent on the input state and the circuit does

not operate universally. However, if the input state |ψ〉 is uniformly distributed on the Bloch

Sphere, i.e., |ψ〉 = cos(θ/2)|+〉z + eiϕ sin(θ/2)|−〉z, with θ ∈ [0, π], ϕ ∈ [0, 2π], then we can

show that the output fidelities saturate the fidelity tradeoff relation for optimal asymmet-

ric universal quantum cloning. The output states are, ρi = (I + 〈 ˆ̃Xi(t6)〉X̂ + 〈 ˆ̃Y i(t6)〉Ŷ +

〈 ˆ̃Zi(t6)〉Ẑ)/2, i = 1, 2, 3. Their fidelities with the cloning state are, Fi = 〈ψ|ρi|ψ〉. For

example,

F1 = 〈ψ|ρ1|ψ〉 =
1

2
(1+a21+a1a2+a1a3+a2a3〈X̂0〉2+2ab×a2a3〈Ẑ0〉2−2ab×a2a3〈Ŷ0〉2). (7)

Taking the average over the Bloch sphere, we get

1

4π

∫ π

0

∫ 2π

0

sin θdθdϕ〈Σ̂0〉2 =
1

3
, (8)

with Σ = X,Y, Z. Hence, 〈F1〉 = 1

2
(1 + a21 + a1a2 + a1a3 +

1

3
a2a3), similarly, 〈F2〉 = 1

2
(1 +

a22+a1a2+a2a3+
1

3
a1a3), 〈F3〉 = 1

2
(1+a23+a1a3+a2a3+

1

3
a1a2), which saturate the optimal

fidelity tradeoff relation for asymmetric quantum cloning in [9].

An interesting special case is, a = b = 1/
√
2, then the contraction rates of 〈Ẑ0〉 and 〈X̂0〉

are equal. If the input state lies on the XZ plane, 〈Ŷ0〉 = 0, it will be contracted identically

at the output ports. In other words, the clone states will have the same direction with the

input state, only with contracted length.

Further generalizations to more copies are direct, where we only need to add more copy

qubits and CNOT operations. It should be noted that the CNOT gates are separated into

two groups, where the first group all having the input qubit as control transfer the Z-type

information and the second group all having the input qubit as target transfer the X-type

information. With this generalized circuit, we choose the following state as the initial state

for asymmetric 1→ n cloning,

|φ〉1,...,n = a1|+〉z,1|+〉x,2...|+〉x,n + a2|+〉x,1|+〉z,2...|+〉x,n + ...+ an|+〉x,1|+〉x,2...|+〉z,n (9)

with normalization
∑n

i=1
a2i +

∑

i<j aiaj = 1. After the circuit operation, all the clone

operators change as,

ˆ̃Xi = X̂0

n
∏

k 6=i,k=1

X̂k,
ˆ̃Zi = Ẑ0Ẑi. (10)
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Now we can calculate all the expectations needed for fidelities,

〈 ˆ̃Xi〉 = (a2i +

n
∑

k 6=i,k=1

aiak +
1

2

∑

k,l 6=i,k 6=l

akal)〈X̂0〉, (11)

〈 ˆ̃Zi〉 = (a2i +

n
∑

k 6=i,k=1

aiak)〈Ẑ0〉, (12)

〈 ˆ̃Y i〉 = (a2i +

n
∑

k 6=i,k=1

aiak)〈Ŷ0〉. (13)

Finally, we get all the clone fidelities for this asymmetric cloning circuit,

Fi =
1

2
(1 + a2i +

n
∑

k 6=i,k=1

aiak +
∑

k,l 6=i,k<l

akal〈X̂0〉2). (14)

The last term in the bracket proportional to 〈X̂0〉2 shows that the generalized cloning circuit

is not universal. However, if the cloning state is chosen from uniform distribution over all

pure qubit states, after averaging, we finally get

Fi =
1

2
(1 + a2i +

n
∑

k 6=i,k=1

aiak +
1

3

∑

k,l 6=i,k<l

akal). (15)

These fidelities saturate the optimal tradeoff relation for 1→ n asymmetric universal quantum

cloner and can be checked with [13]

n
∑

i=1

(3Fi − 1) = 1 +
1

n+ 1
(

n
∑

i=1

√

3Fi − 1)2. (16)

3 Qudit case

3.1 Preliminary

Before the generalization of the above discussions to d -dimensional systems (qudit), we give

some preliminary concepts. Firstly, we introduce the generalized Pauli operators for state de-

scription, Ẑ =
∑d−1

k=0
ei2πk/d|k〉z〈k|, X̂ =

∑d−1

l=0
ei2πl/d|l〉x〈l|, with |k〉z =

∑d−1

l=0
e−i2πkl/d|l〉x/

√
d,

|l〉x =
∑d−1

k=0
ei2πkl/d|k〉x/

√
d. An arbitrary state of a d -dimensional system can be represented

with {X̂, X̂2, ..., X̂d−1}, {Ẑ, Ẑ2, ..., Ẑd−1} and all their products. We denote this set as C.

ρ =
1

d
(I +

∑

Σ̂∈C

tr(ρΣ̂)Σ̂). (17)

A pure state has, tr(ρ2) = 1, and
∑

Σ̂∈C tr(ρΣ̂)
2 = d−1. If ρ is randomly taken from a uniform

distribution over all pure qudit states, then after taking average, we get 〈tr(ρΣ̂)2〉 = 1/(d+1)

for all Σ ∈ C since there are d2 − 1 elements in this set.

In the circuit (Fig.2), we use two generalized CNOT gates acting on one control qudit and

one target qudit [16]. The two gates are mutually converse and changes the operators of the

control and target in the following way,

−̂→
X c = X̂cX̂

−1
t ,

−̂→
Z c = Ẑc,

−̂→
X t = X̂t,

−̂→
Z t = ẐcẐt, (18)
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Fig. 2. Quantum circuits for 1 → 2 qudit cloning (a) and 1 → 3 qudit cloning (b). The controlled
gate with right or left arrow operates according to Eq.(18) or Eq.(19) respectively.

←̂−
X c = X̂cX̂t,

←̂−
Z c = Ẑc,

←̂−
X t = X̂t,

←̂−
Z t = Ẑ−1

c Ẑt, (19)

where the arrow towards the right, or left, defines the transformation |k〉|m〉 → |k〉|m + k〉,
or |k〉|m〉 → |k〉|m− k〉, respectively, sums and differences in the kets are modulo d.

3.2 1→ 2 cloning

We consider the following state as the initial input state for the circuit (Fig.2a), |ψ〉0|φ〉12 =

|ψ〉0[a1|0〉z,1|0〉x,2 + a2|0〉x,1|0〉z,2], with normalization condition a21 + a22 + 2a1a2/d = 1. The

evolution of the operators are listed in Table 3.

Table 3. The evolved operators after time tj [i.e., after the application of the j-th CNOT in Fig.2a]
expressed in terms of the operators before the copying stage.

t1 t2 t3 t4
ˆ̃
X0(t) X̂0X̂

−1

1
X̂0X̂

−1

1
X̂

−1

2
X̂0X̂

−1

1
X̂

−1

2
X̂0X̂

−1

1
X̂

−1

2

ˆ̃
Z0(t) Ẑ0 Ẑ0 Ẑ

−1

1
Ẑ

−1

0
Ẑ

−1

1
Ẑ

−1

2

ˆ̃
X1(t) X̂1 X̂1 X̂0X̂

−1

2
X̂X̂

−1

2

ˆ̃
Z1(t) Ẑ0Ẑ1 Ẑ0Ẑ1 Ẑ0Ẑ1 Ẑ0Ẑ1

ˆ̃
X2(t) X̂2 X̂2 X̂2 X̂0X̂

−1

1

ˆ̃
Z2(t) Ẑ2 Ẑ0Ẑ2 Ẑ0Ẑ2 Ẑ0Ẑ2

After the circuit operation, the expectations of the clone operators are calculated as,

〈 ˆ̃Σ1〉 = (a21 +
2

d
a1a2)〈ψ|Σ̂|ψ〉, 〈 ˆ̃Σ2〉 = (a22 +

2

d
a1a2)〈ψ|Σ̂|ψ〉, (20)

for all Σ ∈ C. Therefore, this circuit realizes optimal universal asymmetric quantum cloning,

with tradeoff fidelities,

F1 =
1

d
(1 + (d− 1)(a21 +

2a1a2
d

)), F2 =
1

d
(1 + (d− 1)(a22 +

2a1a2
d

)), (21)
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where we used the identity
∑d2−1

i=1
tr(ρΣ̂i)

2 = d− 1 since the input cloning state |ψ〉 is pure.

3.3 General 1→ n cloning

Now, we directly come to the 1 → n cloning. In Fig.2b, we draw the 1 → 3 cloning circuit

from which circuits with more output clones can be similarly constructed. After the operation

of the generalized cloning circuit, the operators of the output qudits change to,

ˆ̃Xi = X̂0

n
∏

k 6=i,k=1

X̂−1

k , ˆ̃Zi = Ẑ0Ẑi. (22)

The states of the output qudits can be obtained with the initial state of the copy qudits,

|φ〉1,...,n = a1|0〉z,1|0〉x,2...|+〉x,n + a2|0〉x,1|0〉z,2...|0〉x,n + ...+ an|0〉x,1|0〉x,2...|0〉z,n, (23)

with normalization
∑n

j=1
a2j +

2

n

∑

j<l ajal = 1. For output copy i, we have

〈 ˆ̃X
k

i 〉 = (a2i +
2

d
ai

∑

j 6=i

aj +
2

d
ai

∑

j,l 6=i,j<l

ajal)〈X̂k
0 〉 (24)

with k = 1, ..., d−1. All the other operators, i.e., {Ẑ, Ẑ2, ..., Ẑd−1} and the product operators

between X̂ and Ẑ have the same expectation relation,

〈 ˆ̃Σi〉 = (a2i +
2

d
ai

∑

j 6=i

aj)〈Σ̂0〉. (25)

Now, we get the fidelity,

Fi =
1

d
[1 + (d− 1)(a2i +

2

d

n
∑

j 6=i,j=1

aiaj) +
2

d

d−1
∑

k=1

∑

j,l 6=i,j<l

ajal〈X̂k
0 〉2] (26)

Because of the term with 〈X̂k
0 〉2, this cloning circuit is not universal, however after averaging

over the uniform distribution, we get

Fi =
1

d
[1 + (d− 1)(a2i +

2

d

n
∑

k 6=i,k=1

aiak +
2

d(d+ 1)

∑

k,l 6=i,k<l

akal)] (27)

Now, these fidelities satisfy the optimal tradeoff relation for universal asymmetric 1 → n

quantum cloner, which generalizes the previous results on 1 → 3 [9] and 1 → 4 [10] cloners.

It can be directly checked with the tradeoff relation founded in [13]

n
∑

i=1

[(d+ 1)Fi − 1] = d− 1 +
1

n− d+ 1
(

n
∑

i=1

√

(d+ 1)Fi − 1)2. (28)

4 Conclusion

In this paper, we considered a generalization of the 1→ 2 cloning circuit proposed by Bužek

et al.[5, 16] for asymmetric 1→ n quantum cloning. This generalization is based on an insight

of information flux in the original circuit. Here, the Z-type and X-type information of the
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input state flow through the circuit separately, therefore we can generalize the original circuit

with 2 clones to circuit with n clones. The generalized circuit does not work universally on the

input state since it contracts differently along different axis. However, after taking average

over the uniform distribution of the input state, the fidelities of the output copies saturate

the optimal universal fidelity tradeoff relation, which implies the conservation of quantum

information. Besides, under some circumstances, the generalized circuit operates universally.

The success of the scheme in this paper involves the consideration of transferring quantum

operators in the circuit. Similar methods and considerations may also apply in the study of

fundamental quantum theory and other tasks of quantum information processing.
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2. V. Scarani, S. Iblisdir, N. Gisin, and A. Aćın (2005), Quantum cloning, Rev. Mod. Phys. 77, pp.
1225-1256.

3. H. Fan, Y. N. Wang, L. Jing, J. D. Yue, H. D. Shi, Y. L. Zhang, and L. Z. Mu (2014), Quantum

cloning machines and the applications, Phys. Rep. 544, pp. 241-322.
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