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We present a three-dimensional generalization of a renormalization group decoding algo-

rithm for topological codes with Abelian anyonic excitations that we introduced for two
dimensions in [7, 8]. We also provide a complete detailed description of the structure

of the algorithm, which should be sufficient for anyone interested in implementing it.

This 3D implementation extends our previous 2D algorithm by incorporating a failure
probability of the syndrome measurements, i.e., it enables fault-tolerant decoding. We

report a fault-tolerant storage threshold of ∼ 1.9(4)% for Kitaev’s toric code subject to

a 3D bit-flip channel (i.e. including imperfect syndrome measurements). This number
is to be compared with the 2.9% value obtained via perfect matching [6]. The 3D gen-

eralization inherits many properties of the 2D algorithm, including a complexity linear

in the space-time volume of the memory, which can be parallelized to logarithmic time.
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1 Introduction

Topological quantum error-correcting codes currently stand as some of the most promising im-

plementations of quantum memories and computers. Crudely, topological codes are standard

quantum error-correcting codes with additional geometric constraints: their check operators

involve only neighbouring spins on a two dimensional (2D) lattice. As a consequence, they can

exhibit high fault-tolerant threshold [1, 2, 3] with relatively low overhead. Some topological

codes also support transversal implementation of Clifford gates [4], which simplifies fault-

tolerant quantum computation. Lastly, topological codes can be efficiently decoded [5, 6, 7],

which is the topic of this paper.

Decoding a quantum code consists in inferring the optimal recovery given a statistical

description of the noise and an error syndrome—i.e., the measurement outcome of check

operators which reveal incomplete information about the particular error that has affected

the system. Thus, decoding is a classical statistical inference problem involving a very large
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number of correlated random variables. Extremely fast decoding algorithms are required

to prevent errors from building up in between error correction cycles, although some lag-

time can be tolerated, e.g., by extending ideas from [9]. In [7, 8], we introduced a decoding

algorithm for Kitaev’s topological code [10] that uses renormalization group (RG) techniques

from statistical physics. It’s complexity is linear with the number of qubits, as compared

to the cubic complexity of previously known algorithms [11]. Most importantly, it can be

parallelized to logarithmic time.

The present paper is a continuation of our work initiated in [7, 8], and serves many pur-

poses. 1) Our previous work focused on error correction in the presence of perfect syndrome

measurements. When measurements are faulty, fault-tolerant techniques are required which

change the nature of the decoding problem. As we explain below, for topological codes,

this can be effectively described by increasing the lattice dimension by one dimension repre-

senting time [5]. Thus, we adapt our RG algorithm, initially devised for a 2D lattice, to a

3D fault-tolerant setting.c 2) Our algorithm was devised specifically for Kitaev’s topological

code. Because all 2D stabilizer codes are locally equivalent to multiple copies of Kitaev’s code

[13], our RG algorithm can be used with any such code. However, this requires determin-

ing the local mapping that realizes this equivalence, and transforming the local noise model

accordingly, which can in principle affect the decoder’s performance. Here, we describe our

methods in physical terms that are directly applicable to any code that supports Abelian

anyons [14, 13, 15, 10, 16], not restricted to stabilizer codes. We have implemented a special

case of this generalization in [16] for the Zd quantum double model. 3) Our previous publica-

tions on this topic focused on applications, giving only a high level description of the actual

algorithm. Here, we provide a complete detailed description of the structure of the algorithm,

which should be sufficient for anyone interested in implementing it.

The rest of the paper is organized as follows. In the next section, we provide a heuristic

physical description of the algorithm in terms of localized Abelian anyons. This section should

provide a good physical intuition of the different components of the algorithm. This is first

done assuming perfect syndrome measurements, and in the last subsection we explain how

the problem is modified in the presence of faulty errors, following [5]. Section 3 revisits all the

concepts introduced heuristically in Section 2 for the special case of Kitaev’s topological code,

using an algebraic formalism closely related to the actual implementation of the algorithm.

Section 4 presents our numerical experiments, and we conclude in Section 5 with possible

extensions and relations to other methods. Appendix 1 details our mathematical notation for

probability distributions over the n-qubit Pauli group.

2 Heuristic physical description

In this Section, we provide a heuristic physical description of the problem of interest, and of

the numerical tools we have developed to solve it. A more detailed mathematical description

is presented in Section 3.



G. Duclos-Cianci and D. Poulin 723

α β γ

δ ε

(a)

N

EW

S

α

(b)

Fig. 1. (a) A 2D topological code is cut into unit cells α, β, ... Gauge lines representing the

non-trivial cycles (solid red lines) are chosen arbitrarily. Computing the flow of charge through
the gauge lines is equivalent to decoding. (b) Each region has four boundaries that we label north

(N), east (E), south (S) and west (W ).

2.1 Decoding problem

Consider a 2D sheet of topological matter supporting Abelian anyons. For simplicity, suppose

that the system has periodic boundary conditions, so it forms a torus. The information is

encoded in the degenerate ground state of the system. Excitations above the ground state

manifold are localized Abelian anyons—they carry conserved charges {a, b, c, . . .} that obey

“deterministic” fusion rules, e.g. a × b = c. The information in the ground state can be

modified by creating a particle-antiparticle pair (a, ā), dragging one of the particle around a

topologically non-trivial cycle, and fusing it with its original partner a× ā = 1.

In the presence of errors, such a process could occur spontaneously. For instance, the

creation of a particle-antiparticle pair could result from a thermal fluctuation. Once created,

additional errors could cause the particles to diffuse on the sheet. To prevent corruption of the

memory, we must therefore keep track of the homology of the particles’ world-lines. Periodic

measurements of the particles’ location yield partial information about their trajectories,

and the decoding problem becomes one of statistical inference: it sets to determine the most

likely homology of the particles’ world-lines given two consecutive snapshots of their locations.

Concretely, we can arbitrarily choose two gauge lines representing the two non-trivial cycles

of the torus [c.f. Fig. 1(a)], and the decoding problem consists in determining the net flow

of charge, or current, across these two gauge lines. For Abelian anyons, matching excitations

and returning the system to its ground state is not a difficult problem: the difficulty lies in

doing so in a way that leads to a trivial net flow of charge across the gauge lines.

2.2 RG algorithm

In [7, 8], we proposed a renormalization group technique to tackle this problem. First, we

break the lattice into 2 × 2 sublattices, or “unit cells”, as illustrated on Fig. 1(a). Given a

cNote that we have used our algorithm in a fault-tolerant setting in [12], but did not provide any details of
the implementation.
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Fig. 2. Structure of the RG cells. A unit cell is composed of four regions (unit cells of the

previous RG iteration). In each unit cell (red square), the charge of only three of the four regions
is measured (green squares); the south-east corner is not measured, leaving the total charge of the

unit cell undetermined. This missing measurement is replaced at the following RG iteration by
a measurement of the entire unit cell (red square), which is now a region of a renormalized unit

cell (blue square). Note that this modification of the charge measurement does not need to be

implemented physically, it only reflects a change in bookkeeping.

microscopic noise model, we can compute the probability for the value of the current across

each of the four walls [North, South, East, West, c.f. Fig. 1(b)] of each cell, conditioned

on the charge configuration observed inside this cell. This produces a probability distribu-

tion Pα(Nα, Eα, Sα,Wα) for each cell α, where Nα, Eα, Sα,Wα take values representing the

possible currents.d

Concretely, the presence of a charge, say, in the north-east corner of the unit cell would

lead to the assignment of a probability O(p) to a current through the northern or eastern walls,

and a probability O(p2) for the southern or western walls, reflecting the fact that the first two

cases require only one error process while the second two cases require two error processes.

Here, p represents the probability of an error process such as particle creation, annihilation,

or displacement. The big-O hides multiplicative factors accounting for the distinct error

processes resulting in the same currents, as well as higher order processes. In any case, these

probabilities can be computed exactly given an underlying local noise model.

After having computed these current probability distributions for every cell, we merge

groups of four neighbouring unit cells into renormalized cells (c.f. Fig. 2) and iterate the

procedure: we sum over all the bulk processes that lead to a given current across each of the

four renormalized boundaries of each cell. This is done as explained above, except that the

error probability p is not uniform on the lattice, but is given by the current variables of the

previous RG iteration. By successive iteration, (and assuming for simplicity that the lattice

linear dimension is a power of 2) we arrive at a situation where the Northern and Western

walls actually correspond to the gauge line representing the non-trivial cycles of the torus.

dTo specify the mathematical structure of the current variables, we can choose a minimal set {a1, a2, . . . ak}
of k “elementary” charges that generate all other charges under fusion. Then, any charge can be written as
aα1
1 × aα2

2 × . . . aαkk , or more succinctly represented by the vector (α1, α2, . . . , αk) ∈ Zh1 × Zh2 × . . .Zhk
where hj is the order of charge aj , meaning that hj copies of aj always fuse to the identity. Then, the current
variables NA, SA, EA, and WA each take value in Zh1 × Zh2 × . . .Zhk . In the case of the toric code for
instance, there are two elementary charges, e and m, and their order is 2 since e× e = m×m = 1.
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Determining the current across these walls is equivalent to decoding, as explained above.

The difficulty with the procedure we outlined above is that charge conservation imposes

strong correlations between the current variables, so their exact joint probability cannot be

computed efficiently. To see this, note that the current variables are subject to two constraints.

(a) The sum of the current entering a cell must be equal to the total charge inside the region.

This leads to a conservation equation Nα + Sα + Eα + Wα = cα for each cell α, where cα is

the total charge contained in α, and is known from observation (error syndrome). (b) The

currents associated to juxtaposed walls of neighbouring cells must be equal and opposite, e.g.

Sα = −Nδ when δ is the cell directly to the south of cell α, see Fig. 1(a). This simply follows

from the fact that, e.g. Sα and Nδ are actually associated to the same physical boundary.

Constraints (a) correlate the variables of a given cell while constraint (b) correlate variables

between different cells, so the distribution is globally correlated.

Thus, approximations are required to solve this problem efficiently, as we now explain.

First, just as a matter of bookkeeping, each cell stores only the random variables associated to

its northern and western walls, the other ones are redundant from constraint (b). This does not

affect the correlated nature of the problem however since (a) becomes Nα+Wα−Nδ−Wβ = cα
[c.f. Fig. 1(a)], and (b) now says that e.g. Pα(Nα,Wα, Nδ,Wβ) and Pβ(Nβ ,Wβ , Nε,Wγ)

must be the marginals of one global distribution P(Nα,Wα, Nδ, Nβ ,Wβ , Nε,Wγ). To simplify

the problem, we relax this condition to a “mean-field” condition, demanding that the two

distributions yield the same marginals along the wall they share, i.e. Pα(Wβ) = Pβ(Wβ),

where the marginals are defined the usual way

Pα(Wβ) =
∑

Wα,Nδ,Nα

Pα(Nα,Wα, Nδ,Wβ) (1)

Pβ(Wβ) =
∑

Nβ ,Nε,Wγ

Pβ(Nβ ,Wβ , Nε,Wγ). (2)

These mean-field conditions are enforced heuristically using belief propagation [17].

Since mean-field approximations are not reliable in strongly correlated systems, we make

one more modification to the problem. Charge conservation imposes a hard constraint (a)

to the current variables, which is unlikely to ever be fulfilled in a mean-field approximation.

To circumvent this problem, we let the charge cA inside each cell fluctuate, i.e., we treat

it as a random variable. To describe this procedure, recall that each unit cell is composed

of a collection of four regions (i.e. unit cells of the previous RG iteration). Measuring the

charge distribution inside the unit cell amounts to measuring the total charge in each of these

regions, which clearly fixes the total charge of the unit cell. In the modified procedure, we

measure the charge of all but one of the regions, say the south-east region. As a consequence,

the total charge of the unit cell is undetermined, which relaxes the constraints on the current

variables as desired. This procedure is illustrated on Fig. 2. The charge of the unit cell is

only fixed at the following RG iteration.

2.3 Fault-tolerant decoding

Our description of the problem so far assumes that the charge measurements are perfect. A

realistic noise model would also include faulty measurements, i.e. every charge measurement

has some probability of reporting the wrong charge. To alleviate this problem, measurements
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(a) (b)

Fig. 3. Space-time diagram of the fault-tolerant error-correction procedure; time flows vertically
(a) A space-like error is an error that affects a qubit in between two measurements. It creates

excitations in the two cubic cells with which it overlaps. (b) A time-like error is caused by a faulty

measurement. It creates excitations in the two cubic cells separated by that measurement.

can be repeated in time. A different outcome between two consecutive measurements can then

be caused either from an actual error having occurred in the time between the measurements—

e.g. a particle has moved in this region—or by an error in one of the two measurements.

Consider the space-time cube enclosed between two consecutive local charge measurements

(c.f. Fig. 3). We can associate a topological charge to this cube equal to the difference between

the charges revealed by the two measurements enclosing it. If the charge of a cube is non-

trivial, it means that the two consecutive measurements did not yield the same result. As

explained above, this could be caused by a “space-like error” taking place between the two

measurements, or a “time-like error” affecting the measurements themselves, see Fig. 3. In

any case, the total current across the six walls of the cube must be equal to the charge of the

cube. We then see [5] that the decoding problem becomes that of determining the world-line

homology of the particles in space-time.

Thus, the fault-tolerant decoding problem differs from the decoding problem with perfect

measurements only in respect of the lattice dimension. Hence, the RG decoding algorithm

outlined above can be applied directly.

3 Formal description for Kitaev’s toric code

In this Section, we describe more rigorously the concepts introduced in the previous Section

for the special case of Kitaev’s toric code (KTC). We begin with the 2D scenario as it is

technically simpler, yet conceptually equivalent to 3D. The system is a ` × ` square lattice,

Λ, with periodic boundary conditions. We assume that ` is a integer power of 2. Each site

Λi,j (0 ≤ i, j < `) holds two qubits, Λi,j,α (α ∈ {H,V }, where H and V stand for horizontal

and vertical, respectively). The KTC on the torus is a stabilizer code [18] and we assume

familiarity with this class of codes.

3.1 Model

The stabilizer group of KTC is generated by two types of operators. On every site, Λi,j , define

a site operator, Ai,j = Xi,j,HXi,j,VXi,j−1,HXi−1,j,V , and on every plaquette, define a plaquette

operator, Bi,j = Zi,j,HZi,j+1,V Zi+1,j,HZi,j,V (see Fig. 4). Let Sg = {Ai,j , Bi,j} be the set of

all plaquette and site operators. Note that it is invariant under translation. The codespace
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Fig. 4. a) One site, Λi,j , of the square lattice, Λ, on which is defined KTC. Qubits, Λi,j,H and

Λi,j,V , live on the edges and are associated to sites with the convention depicted. b) Site operator

Ai,j = Xi,j,HXi,j,VXi,j−1,HXi−1,j,V . Blue strings represent X operators. c) Plaquette operator
Bi,j = Zi,j,HZi,j+1,V Zi+1,j,HZi,j,V . Green strings represent Z operators.

is defined to be the simultaneous +1 eigenspace of all the stabilizer operators. Equivalently,

we can define the Hamiltonian H = −
∑
Q∈Sg Q, and the codespace is the degenerate ground

space of H. There are n = 2`2 qubits on the lattice but only 2`2 − 2 independent generators,

i.e. Sg is overcomplete. Indeed, one can easily verify that the stabilizer generators obey the

two global constraints
∏
i,j Ai,j = 1l and

∏
i,j Bi,j = 1l. This implies that two logical qubits

are encoded in the codespace.

The logical X and Z operators acting on the encoded qubits are non-trivial homological

cycles (i.e loops around the torus) of X operators on the dual lattice and Z operators on the

direct lattice. We arbitrarily choose the bare logical operators to be

Z0 =
∏
j

Z0,j,H Z1 =
∏
i

Zi,0,V (3)

X0 =
∏
i

Xi,`−1,H X1 =
∏
j

X`−1,j,V .

These correspond to the gauge lines introduced in the previous section, c.f. Fig. 1(a).

Errors are modeled by random Pauli operators affecting the qubits. A Pauli operator will

in general anti-commute with a subset of the elements of Sg, causing their eigenvalues to flip

from +1 in the codespace to -1. An element of Sg with -1 eigenvalue corresponds to a local

excitation, an Abelian anyon. We refer to a plaquette excitation as a magnetic flux and to

a site excitation as an electric charge. It is useful to associate binary matrices, ai,j (bi,j) to

an excitation configuration, with entries 0 if the eigenvalue of Ai,j (Bi,j) is +1 and entries 1

otherwise. Thus, the excitation configuration associated to the product of two errors is the

binary sum of their respective excitation configurations—the two distinct topological charges

are their own inverse.

Since the Pauli operator Xi,j,H anti-commutes with plaquettes (i− 1, j) and (i, j), we see

that X operators can create a pair of magnetic fluxes, move a magnetic flux to a neighbouring

plaquette, and annihilate a pair of neighbouring magnetic fluxes. The Z Pauli operator

plays an equivalent role for electric charges. Thus, the microscopic noise model describing

the dynamics of the anyons can be specified by a memoryless Pauli channel Pi,j,α(Q), Q ∈
{I,X,Z, Y = iXZ}—i.e., a probability distribution over the four Pauli operators for each

qubit of the lattice. In this model, the errors E affecting the system are thus elements of

the n-qubit Pauli group Gn. The probability of an error E =
⊗

i,j,αQi,j,α is simply given by
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P(E) =
∏
i,j,α Pi,j,α(Qi,j,α).

3.2 Decoding problem

When an error E ∈ Gn affects the system initially in codespace, the task of error-correction

is to bring the system back in the codespace by matching every excitations in pairs—thus

annihilating them all—without changing the encoded information. This is realized by apply-

ing a correction operator, C ∈ Gn. If the total operator EC is homologically non-trivial, a

logical operation is implemented as the system is brought back to the codespace, so the infor-

mation will be corrupted. To be successful, the correction C must therefore be homologically

equivalent to the error E.

The decoding problem can be formulated in terms of this equivalence. Given an error

syndrome—i.e., an excitation configuration—the decoder must find a Pauli operator that is

homologically equivalent to the error that has created this syndrome. This is a statistical

inference problem. One approach to this problem is to find, among all errors that are consis-

tent with the observed excitation configuration, the one with the highest probability. When

the noise model is independent and uniform, this error is simply the lowest weight operator

consistent with the excitation configuration, where the weight of C is the number of non-

trivial single-qubit Pauli operators in C. The Perfect Matching Algorithm (PMA) performs

this task with a O(`6) complexity [5, 6].

This turns out not to be the optimal solution however. To understand this, let t denote

an operator with the correct excitation configuration. We suppose that t is chosen in some

canonical way, so it is in one-to-one correspondence with excitation configurations. The

probability that the error E is homologically equivalent to t is simply proportional to the sum

of the error probability P(Q) over all errors Q equivalent to t. Since the equivalence relation

is generated by elements of the stabilizer group S, this is
∑
s∈S P(ts). On the other hand,

t could differ from the actual error E by a combination of logical operators Eq. (3), i.e. a

non-trivial cycle. Thus, we can use the group generated by the logical operators Eq. (3) to

label the equivalence classes of errors. Generalizing the above reasoning, the probability that

the error E is homologically equivalent to tl defines the probability associated to the class

l ∈ 〈Xi, Zi〉 conditioned on the excitation configuration (or equivalently conditioned on t):

P(l|t) =
1

P(t)

∑
s∈S
P(tls) (4)

where the normalization factor is P(t) =
∑
l,s P(tls). The optimal decoding consists in

choosing the l that maximizes Eq. (4) (so the normalization P(t) is not relevant). The

product tls is a specific Pauli operator and P(tls) is the probability of this operator as given

by the noise model. This computation is intractable because |S| scales exponentially with the

system size.

The type of mathematical manipulation leading to Eq. (4) will be used extensively by the

algorithm and in the following discussion, so Appendix 1 provides some formal background

and examples that should be consulted before reading the next sections.

3.3 RG decoding algorithm

The RG algorithm decomposes the lattice into unit cells. We choose them to be 2×2 squares

enclosing four plaquette and four site generators, see Fig. 5. As explained in the previous
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Fig. 5. Left: Choice of a 2 × 2 unit cell used to perfom the RG on the KTC. Green disks

represent plaquette operators, blue squares represent site operators, and edges represent qubits.
The two generators which are left out are represented by an empty square and a circle. Orange

lines are used to emphasize the boundaries through which the charge flow is calculated. Right:

The RG yields a renormalized lattice. Disks, squares and edges represent plaquette operators, site
operators and renormalized “charge flow variables”, respectively. The eigenvalue of a renormalized

operator corresponds to the total charge of the region (on the left) and the renormalized noise

model corresponds to the net flow of charges through the boundaries (eq. 6).

section, the RG decoder requires knowledge of all but one of the magnetic and one of the

electric operators it encloses. By symmetry, we choose to leave out the south-east plaquette

operator and the north-west site operator. As a consequence, the scheme will follow our

description of Section 2 for the magnetic fluxes, but for the electric charges the lattice is

rotated by 180o relative to our description of Section 2 . We include in the cell all the qubits

that participate in the measured operators, so a cell contains 12 qubits in total. Some of the

qubits are shared between neighbouring cells, and this will be responsible for the constraint

(b) that correlates their current variables.
To set up calculations, we define the following basis for the 12 qubits of the unit cell, see

Fig. 6 for qubit labeling (see also [8] for a visual representation of these operators).

S0 = X0X2X3X8 T0 = Z0 E0 = X6X10 X0 = X2X6

S1 = X1X4X5X9 T1 = Z1 E1 = X7X11 X1 = X5X7

S2 = X3X4X6X7 T2 = Z0Z3 E2 = Z0Z8 Z0 = Z0Z2

S3 = Z0Z1Z3Z4 T3 = X4X7 E3 = Z1Z9 Z1 = Z1Z5

S4 = Z2Z3Z6Z10 T4 = X6 E4 = X8

S5 = Z4Z5Z7Z11 T5 = X7 E5 = X9 (5)

E6 = Z10

E7 = Z11

The physical interpretations of these operators are the following. The stabilizer generators

Sj are the six excitation measurement operators used in the unit cell; they are plaquette

and site operators. The Tj are the associated canonical pure errors in the sense that t =

T
ai,j+1

0 T
ai+1,j

1 T
ai+1,j+1

2 T
bi,j
3 T

bi,j+1

4 T
bi+1,j

5 produces the excitation configuration ai,j bi,j inside

the cell, without inducing any magnetic flow through the northern or western wall or any

electric flow through the southern or eastern wall. The logical operators Xi and Zi monitor

respectively the magnetic current across the north (i = 0) and west (i = 1) wall and the

electric current across the east (i = 0) and south (i = 1) wall. Thus, they correspond to the

current variables used in Section 2. Lastly, the Ej are errors that change the charge of the
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Fig. 6. Two neighbouring unit cells labeled L and R. Each shows the labeling of the qubits used

in Eq. (5). Note that since these two cells are neighbours, they share qubits. In particular, qubits
6 and 10 in cell L are the same as qubits 9 and 1, respectively, in cell R.

site and plaquette operators that have been left out of the cell. For instance, E0 brings a

magnetic flux through the eastern wall into the south-east corner.

An RG iteration takes an excitation configuration and a probability distribution over the

Pauli group of the qubits contained inside the unit cell, and outputs a current probability

distribution obtained by summing over all equivalent processes that are consistent with the

observed excitation configuration. For example, the operator X0 (see Fig. 6 for labeling) is

equivalent to the operator X2X3 as it corresponds to a flow of one magnetic flux through

the north boundary and into the north-west plaquette. This is more directly seen when

decomposed in the basis Eq. (5): X0 = T3X0S0S2E4 and X2X3 = T3X0S2 since both de-

compose into the logical operator X0, which is associated to the magnetic current through

the northern wall, and the pure error T3 which is conjugate to S3, the north-west plaquette.

Thus, if a magnetic flux was indeed observed in the north-west corner, both of these errors

should contribute to the probability of a magnetic flow through the northen boundary. More

generally, the probability of a current l ∈ 〈Xi, Zi〉 conditioned on a charge configuration

t = T
ai,j+1

0 T
ai+1,j

1 T
ai+1,j+1

2 T
bi,j
3 T

bi,j+1

4 T
bi+1,j

5 is given by

P(l|t) ∝
∑
s,e

P(tles) (6)

where s ∈ 〈Si〉 relates topologically equivalent trajectories and e ∈ 〈Ei〉 changes the value of

the undetermined charge, and we left out the normalization factor P(t).

3.4 Belief propagation

In the unit cell of Fig. 6 we see that there are eight qubits that belong to two unit cells;

they are labeled 0, 1, 6, 7, 8, 9, 10 and 11. For instance, qubit 1 of cell R is the same as qubit

10 of cell L immediately to its left. As for any other qubits, knowledge of the excitation

configuration affects the error probability of these qubits. For instance, suppose that the

system contains only two magnetic fluxes, one in the north-east corner of cell L and one in

the north-west corner of cell R. In cell L, the presence of the magnetic flux should yield a

high probability of X error on qubits 2 and 10. In cell R, the presence of the magnetic flux

should yield a high probability of X error on qubits 1 and 0. But since qubits 10 of cell L and

1 of cell R are actually the same, this charge configuration should globally result in a very

peaked probability of an X error on that qubit: it sits in between the two magnetic fluxes.

But locally, given only knowledge of the charge configuration on a unique cell, this conclusion

cannot be reached.
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More generally, given a probability distribution over the Pauli group of the unit cell

P(tles), we can compute the marginal error probability Pq(tles|q) for each qubit q, obtained

by taking a marginal of P(tles) (c.f. App. 1).eWhen a qubit is shared between two cells, e.g.

such as in the above example, its marginal conditional distributions obtained from different

cells will typically differ. This is a manifestation of a violation of constraint (b) described in

Section 2. As explained there, the exact solution would be to demand that the conditional

probability distribution assigned by each cell be consistent with one global probability distri-

bution. Because of global correlations this problem is intractable, so we settle for a relaxed

condition that the marginal probability distributions all agree.

This condition is enforced by a belief propagation algorithm. This is a local message pass-

ing algorithm where messages are exchanged between neighbouring cells, there is one message

per shared qubit. Initially, the outgoing messages at a cell mout
q (p) are equal to Pq(tles|q)

computed in that cell. These outgoing messages are then exchanged between neighbouring

cells, and become incoming messages, e.g. a cell L sends to its right neighbour R the message

mout
1 that becomes min

10 in R, and receives from R the message mout
10 that becomes min

1 in L.

Subsequent rounds of messages can be calculated using the received messages, following the

prescription

mout
q (p)←

∑
l,s,e

δ(tles|q, p)
P(tles)

Pq(tles|q)
∏
q′ 6=q

min
q′(tles|q′), (7)

Here, q, q′ ∈ {0, 1, 6, 7, 8, 9, 10, 11}, tles|q is the restriction to qubit q of the Pauli operator

tles, and Pq is the marginal on qubit q of the noise model as above (c.f. App. 1). BP can be

iterated a few times (e.g. three rounds) before executing a RG step. The messages are used

to update the prior error probability, effectively replacing Eq. (6) by

P(l|t) ∝
∑

e∈〈E0,E1〉

∑
s∈〈S0S1S2〉

P(tles)
∏
q

min
q (tles|q). (8)

3.5 Fault-tolerant decoding

The prescription given for the 2D decoding problem can be applied relatively straightforwardly

to the 3D problem arising from fault-tolerant decoding in the presence of faulty syndromes.

To simplify the description, we will assume that there are only bit-flip errors (X errors), so

we only need to consider magnetic fluxes. The exact same method applies to Z errors and

electric charges, and moreover both type of errors can be considered simultaneously (including

Y errors). Including Y errors roughly squares the decoding time of each unit cell, since the

decoder manipulates probability distributions over (1l, X, Z, Y ) instead of two independent

distributions over (1l, X) and (1l, Z).

We label by 0 ≤ k < τ the time at which the charge measurements are performed, where

τ is the total duration of the computation (e.g., here we typically set τ = ` to obtain a

space-time cube). Errors affect the qubits in between measurements, and we use the label

k for an event that occurs in between measurement k − 1 and k. There are now two types

of errors to be considered. Space-like errors ηk (ηki,j,α ∈ Z2) result in the application of the

eThe base error prior is independent on each qubit, in which case this marginal consists in the noise model
on qubit q. But because the RG can create a correlated noise model inside a unit cell, we need this more
sophisticated notion of marginal, see App. 1.
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Pauli operator Ek =
∏
i,j,αX

ηki,j,α to the qubits between measurements k−1 and k. Time-like

errors µk (µki,j ∈ Z2) result in inverting the measurement outcome at space-time coordinate

(i, j, k) when µki,j = 1.

The excitation configuration measured at time k results from the accumulation of space-

like errors at times prior or equal to k, plus the measurement errors at that time, i.e. bk =

µk +conf(
∏
k′≤k E

k′) = µk +
∑
k′≤k conf(Ek

′
). Thus, the difference between two consecutive

rounds of measurements is ∆bk ≡ bk−1 + bk = µk−1 + µk + conf(Ek). In other words,

∆bki,j = µk−1i,j +µki,j + ηki,j,H + ηki,j,V + ηki+1,j,H + ηki,j+1,V . This defines a local space-time cubic

check operator.

In this 3D picture, a ∆bti,j = 1 plays the role of a magnetic flux. Note that each single

error—either spatial or temporal—creates a pair of fluxes. In particular, the set of all errors

can be viewed as a product of strings with magnetic fluxes located at their endpoints.

To formalize this description, define a 3D cubic lattice of bits, Λ, with sites Λi,j,k, holding

three bits, Λi,j,k,α (α ∈ {H,V, T}) with the convention that bits live on faces (see Fig. 7).

The error history, E, on the 3D lattice is the combination of all space-like errors η and

time-like errors µ, i.e. Ei,j,k,α = ηki,j,α (α ∈ {H,V }) and Ei,j,k,T = µki,j . The excitation

configuration associated to E is ∆bki,j . In the following, we consider periodic boundary con-

ditions in the spatial dimension to simplify the presentation. Then, as in the 2D case, two

error histories are equivalent if they have the same excitation configuration and their product

is homologically trivial on the three-torus.

The decoding problem thus stays qualitatively the same: find the most likely equivalence

class of error histories consistent with the error syndrome. One subtle difference has to do with

homologically non-trivial time-like loops, which do not carry the same physical meaning as

space-like homologically non-trivial loops (logical operations). This difference is only caused

by the unphysical boundary conditions that were chosen to simplify the presentation and the

numerical simulations, and would not occur with open boundaries. In any case, a time-like

logical error should not be regarded as a true memory corruption.

As in 2D, perfect matching [6] can be used to solve an approximate version of this problem,

that consists of finding, among all error histories consistent with the excitation configuration,

the one with highest probability.

The optimal solution however consists in finding the most likely equivalent class of errors,

and this problem can be approximated with RG techniques. The RG decoding has the same

logical structure as in 2D. The lattice is broken into 2 × 2 × 2 unit cells. Each of these unit

cells contain eight check operators (one of which is left undetermined) and 33 qubits, nine of

which are shared. The current distribution over the three walls H, V , and T are computed

by summing over the bulk error configurations consistent with a given current and excitation

configuration.

There is obviously a computational cost associated to summing over the bulk processes of

a unit cell. This cost grows exponentially with the number of qubits contained inside the cell.

For this reason, decoding a 2 × 2 × 2 unit cell involves summing over 26-bit configurations

(the cell contains 33 qubits and has seven check constraints), which is fairly demanding. For

this reason, we choose to work with smaller unit cells.
To make the renormalization method for fault-tolerance practical, we consider asymmetric

decoding. The simplest unit cell has dimensions 2 × 1 × 1 (see Fig. 8). In this case, the
cell contains one magnetic flux operator and renormalizes only one dimension of the lattice:
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Fig. 7. Convention chosen for axis and unit cell of the 3D cubic lattice Λ. Bits are located on

faces.
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Fig. 8. Exploded view of 2 × 1 × 1 unit cell. Qubits live on the faces. Qubits 1, 2, 6 and 7 are

shared between cells and so participate in BP. See Eq. (9) for the operator basis.

` × ` × ` → `/2 × ` × `. For the next step, rotate the cell to renormalize another direction,
e.g. `/2× `× `→ `/2× `/2× `. Finally, considers a second rotation to renormalize the third
direction: `/2 × `/2 × ` → `/2 × `/2 × `/2. For this cell, we choose the following operator
basis

S0 = X1X3X4 T0 = X3 E0 = X3X6 L0 = X0X3

S1 = X2X3X5 E1 = X3X7 L1 = X4 (9)

L2 = X5,

with the same physical interpretation as in the 2D case. We have also considered a 2× 2× 1
unit cell with the following operator basis (see Fig. 9):

S0 = X0X3X5 T0 = X5X9 E0 = X9X12 L0 = X3X9

S1 = X5X6X9X11 T1 = X9 E1 = X11X13 L1 = X10

S2 = X2X6X8 T2 = X11 E2 = X5X9X14 L2 = X8X11

S3 = X1X4X5 E3 = X9X15 (10)

S4 = X7X10X11 E4 = X11X16

S5 = X1X6X7.

4 Numerical results

The 2D version of this RG decoding algorithm was numerically benchmarked in [7, 8] for

Kitaev’s toric code, and in [16] for the Zd generalization of the toric code. Here, we present



734 Fault-tolerant renormalization group decoder for abelian topological codes

0

1 2

3

4 5

6

7 8

9

10 11

12

13

15

14

16

Fig. 9. Exploded view of a 2×2×1 unit cell. Qubits 0, 1, 2, 4, 7, 12, 13, 14, 15 and 16 are shared.

See Eq. (10) for the operator basis.

numerical results obtained for the 3D fault-tolerant case (see also [12]). We consider the

isotropic case where every qubit is independently subject to a bit-flip noise with probability

p and likewise measurements are subject to independent noise that flips their outcome with

probability p. We use standard Monte Carlo techniques to estimate the fault-tolerant storage

threshold. Our results are shown in Fig. 10 for the 2 × 1 × 1 cell and and Fig. 11 for the

2 × 2 × 1 cell. Thresholds are observed at pth ∼ 1.8(2)% and pth ∼ 1.9(4)% respectively:

for p ≤ pth, the failure probability of the decoding algorithm decreases as the lattice size

increases. These values should be compared to the 2.9% value obtained via PMA [6] with the

same error model.

Note that the 2 × 2 × 1 unit cell is only compatible with lattice sizes that are powers

of four. Moreover, due to the large size of the unit cell, decoding is relatively slow in this

case, which limits us to small lattices ` = 16 and ` = 64 in practice.fThe crossing point of

the corresponding two curves gives us little confidence that we have correctly identified the

threshold. For this reason, we also simulated lattice sizes ` = 8 and ` = 32 using an hybrid

techniques where the 2 × 2 × 1 cell was used until the very last step, where a 2 × 1 × 1 call

was used. The crossing point of all four curves agrees very well. This is not surprising since

below threshold, we expect the error model to flow to a noiseless fixed-point, and therefore

the failure rate should be largely independent of how decoding is performed at the last few

RG iterations—the first RG iterations are the critical ones in determining the threshold. This

observation also gives us confidence that RG could handle various lattices shapes by combining

different unit cell shapes in the appropriate way deep in the RG flow.

One might suspect the threshold to be anisotropic—given the asymmetry in the RG, e.g.

fThe complexity of the RG scheme is proportional to the space-time volume of the lattice, while the complexity
of PMA scales with the cube of this volume. However, the constant factor of the RG scheme is exponential
with the volume of each unit cell. Although this is independent of the lattice size, the constant can be
quite prohibitive for large unit cells. Note also that RG can be straightforwardly parallelized to run in time
logarithmic with the space-time volume of the lattice, but we have not implemented this parallel version.
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Fig. 10. Monte Carlo estimation of the decoding error probability as a function of bit-flip channel

strength, p using a 2× 1× 1 unit cell. A threshold is observed at ∼ 1.82% (sample size: 104 per
point).

the direction that is renormalized first might exhibit a lower threshold. We analyzed the data

by looking at the marginal error rate in the three different directions and saw no significant

anisotropy. It is possible that the threshold is insensitive to such details, but that they

have more subtle effects such as leading to different scaling exponents. In both cases, better

statistics would be needed to give a quantitative answer.

5 Conclusion and outlook

We have given a detailed presentation of a renormalization group algorithm for fault-tolerant

decoding of topological quantum error-correcting codes supporting Abelian anyonic excita-

tions. This extends our previous work [7, 8] in an essential way, permitting error correction in

the presence of faulty measurements. We have numerically benchmarked this algorithm and

found that it achieves a fault-tolerant error threshold of nearly 2%, in the same ballpark as

the other leading techniques.

5.1 Relation to other work

Since the publication of our algorithm [7, 8], there has been a number of decoding algorithms

proposed for topological codes that we now briefly review.

Sarvepalli and Raussendorf (SR) [19] have conceived a RG decoder for topological color

codes that resembles ours in many ways. To our understanding their algorithm is conceptu-

ally identical to ours. Their presentation differs in one central way. Because some stabilizer

generators unavoidably overlap with two different cells we were forced to share qubits between

unit cells, which led to inter-cell correlations. Instead of this, SR split those stabilizer gener-

ators into two parts, each supported on a unique cell, and assign a binary random variable to

the value of each part. The sum of these two random variables must equal the value of the
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Fig. 11. Monte Carlo estimation of the decoding error probability as a function of bit-flip channel

strength, p using a 2× 2× 1 unit cell. A threshold is observed at ∼ 1.9(4)%. We note some finite
size effects for ` = 8, but not for the other three curves. Sample size varies from 3× 103 to 104.

syndrome associated to the stabilizer. These auxiliary binary variables play a role analogous

to the shared qubits in our description. For the color code, their decoder achieves a threshold

of 7.8%, compared to 8.7% achieved by mapping the code to multiple copies of KTC and

decoding them with our RG algorithm [13].

Bravyi and Haah (BH) [20] have proposed a RG decoder suitable for any topological

code supporting localized Abelian anyons. It crucially differs from our approach by being

based on hard decisions, while our approach uses soft decisions. In other words, the optimal

recovery is only decided at the very last step of our RG iterations. At intermediate iterations,

probabilities are assigned to various recoveries, but none of the options is ever ruled out

until the very end. In contrast, in the BH scheme, decisions are taken to fuse certain pairs

of excitations at intermediate iterations of the RG scheme. Hard decoders are conceptually

simpler, and so lend themselves to more rigorous analysis. Indeed, BH were able to prove

that their decoder achieves a finite threshold, while we can only provide numerical evidences

for our algorithm. On the other hand, it is well known in classical coding theory that soft

decoders achieve better performances [21]. In the quantum setting, it has been shown that

soft decoders can achieve a higher threshold and greater noise suppression below threshold

[22]. Their algorithm achieves a threshold of 6.7%.

Wootton and Loss (WL) [23] used Monte Carlo sampling to estimate the sum in Eq. (4),

thus directly estimating the probability of each equivalence class of errors conditioned on the

error syndrome. Since Monte Carlo is exact within statistical error, given a sufficiently large

sample, this technique is optimal and consequently outperforms all other decoding algorithms.

Indeed, they achieve a threshold of 18.5%, compared to 16.4% using our method with the

same noise model. Its main drawback is that it is very slow compared to other methods, its

runtime scales (morally) exponentially with the lattice size.
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Lastly, Fowler, Whiteside and Hollenberg (FWH) [24] have implemented a parallelized

version of Edmonds’ perfect matching algorithm [11] (PMA), which was the first algorithm

used to decode topological code [5]. This implementation runs in constant average time with-

out any performance loss compared to the original PMA. Our understanding of this algorithm

is that it is of Las Vegas type, meaning that its run-time is not pre-determined. For instance,

in this parallel implementation, it is possible that one node of the cluster requires more time

than other nodes. On a very large lattice, these fluctuations could become important, i.e. the

probability that at least one node takes a time superior or equal to any finite T approaches

one. Thus, care must be taken in the interpretation of this constant average runtime.

5.2 Extensions

It is possible to combine these techniques in various ways to obtain tradeoffs between runtime

and error correction. For instance, the RG algorithm of BH can conceptually be seen as a

degradation of our algorithm where probabilities on current variables P(l) are rounded up to

the closest binary distribution

P ′(l) =

{
1 if l maximizes P(l)
0 otherwise

. (11)

Because of this simplicity, it is much faster than our algorithm. There exist intermediate

degradations that could interpolate between these two extreme schemes. For instance, we

could round up the distribution to the closest trinary distribution

P ′(l) =

 1 if P(l) ≥ 1− ε
0 if P(l) ≤ ε
F otherwise

(12)

where the flag symbol F is used to signal a potential error. Such a scheme was used by Knill

[25] in the context of concatenated codes, which can be seen as a degradation of the scheme

of [22] that uses the exact probability distribution. One could also consider keeping only the

first few largest probabilities, and rounding all other to zero.

As we have seen, larger unit cells lead to better error correction, but the exact summation

Eq. (6) of bulk processes inside a unit cell scales exponentially with the volume of the cell.

One possibility would be to sum the bulk processes inside the unit cell only approximately.

This would enable RG decoding using much larger unit cells. For instance, we could use

WL’s Monte Carlo scheme to estimate this sum. Alternatively, we could use tensor-network

techniques [26] to approximate this sum. Even without approximations, a transfer matrix

approach could be used to decrease this complexity from exponential in the area of the cell

(or volume in 3D) to exponential in its linear size (or area in 3D). For the small cells we

considered here, these more elaborate techniques are of no use.

Lastly, we note that the description of our algorithm presented in Section 2 applies equally

well to subsystem codes [27] that have local stabilizer generators in 2D, such as the topological

subsystem color codes [15] (but excludes e.g. Bacon-Shor codes [28]). Indeed, the stabilizer

generators of these codes reveal excitations that carry topological charges and the decoding

problem consists of inferring the world-line homology of these excitations. The main differ-

ence is that not all topological charges can corrupt the encoded information. Some of the

topological charges—that we called gauge charges in [13]—can be dragged along a non-trivial
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cycle without changing the ground state of the system. Thus, the current associated to these

charges does not need to be monitored. Thus, Eq. (6) should contain an extra sum corre-

sponding these harmless processes. We have used this technique for the topological subsystem

color code in [13] and obtained a threshold of 1.95%.
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Appendix A Manipulating probabilities over Gn

In this Appendix we provide some mathematical background for manipulating probabilities

over the n-qubit Pauli group Gn. This should be useful to understand the details of Section 3

or to implement the RG algorithm.

Let P(E) be a probability distribution over the n-qubit Pauli group Gn, e.g. corresponding

to a physical noise model. Given a generating set {Qi} of Gn, we can express any E ∈ Gn as

E =

2n∏
i=1

Qxii (A.1)

where xi ∈ {0, 1}. This allows us to interpret P(E) as a distribution over 2n binary variables

P(x1, ..., x2n) = P(E =
∏2n
i=1Q

xi
i ). Standard Bayesian calculus can then be used to define

marginal distributions, conditional distributions, etc. For instance, the marginal distribution

over x1, x2, and x3 is given by P(x1, x2, x3) =
∑
x4,...x2n

P (x1, x2, . . . x2n). The probability

of x1 and x2 conditioned on x3 is given by P(x1, x2|x3) = P(x1, x2, x3)/P(x3). These proba-

bilities implicitly depend on a basis choice {Qi}, and we can perform such manipulations for

any basis of Gn.

These definitions extend straightforwardly to more variables. With the isomorphism

Eq. (A.1), we can relabel these probabilities P(Q1, Q2, Q3) = P(x1, x2, x3), and so forth.

We can create coarse grained variables associated to subgroups of the Pauli group. For

instance, let K = 〈Q1, Q2, Q3〉 and T = 〈Q4, Q5〉 be two subgroups of Gn. An element K of K
can be decomposed as K = Qx1

1 Q
x2
2 Q

x3
3 , and similarly an element T of T can be decomposed

as K = Qx4
4 Q

x5
5 . The joint, marginal, and conditional probabilities can then be defined in a
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natural way

P(K,T ) = P(KT ) = P(x1, x2, x3, x4, x5) (A.2)

P(K) = P(x1, x2, x3) (A.3)

P(T ) = P(x4, x5) (A.4)

P(K|T ) = P(x1, x2, x3|x4, x5). (A.5)

These are the formal definitions behind Eqs. (4,6,7).

Lastly, we can convert any of these probabilities—joint, marginal, and conditional—to a

different basis. For instance, let 〈Q′1, Q′2, Q′3〉 be a different generating set for K. We can

express these generators in terms of the previous ones Q′i =
∏
j=1,2,3Q

yij
j with yij ∈ {0, 1}.

Suppose that we have computed P(K|T ) = P(x1, x2, x3|x4, x5) using the basis {Qi}, and now

wish to compute P(K|T ) for K = Q′z11 Q′z22 Q′z33 . Since

K =
∏

i=1,2,3

(
∏

j=1,2,3

Q
yij
j )zi (A.6)

=
∏

j=1,2,3

Q
∑
i=1,2,3 yijzi

j , (A.7)

we see that P(K|T ) = P(z1, z2, z3|x4, x5) = P(x1, x2, x3|x4, x5) for xj =
∑
i=1,2,3 yijzi. These

probabilities can then be used to compute marginals over a subgroup of K specified in terms

of the primed generators. For instance, for F ∈ 〈Q′1, Q′2〉 we have P(F |T ) = P(z1, z2|x4, x5).

Thus, we see the usefulness of performing basis changes: it is used to adapt the probability

to the particular subgroup we are interested in.

We will be using this type of manipulation in the special case where the basis {Q′j}
actually corresponds to the basis of single qubit Pauli operators {Xi, Zi}. In that case, for

K =
∏
iX

αj
i Zβii we will be using the special notation K|q to represent X

αq
q Z

βq
q , i.e. the

Pauli operator on qubit q in K. These are the formal definitions behind many mathematical

expressions of Subsection 3.4.


