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In this paper, we present a scheme for implementing a multiqubit phase gate with one
control qubit simultaneously controlling n target qubits in the ion-trap system. In our

scheme, there is no energy exchange between the internal and external degrees of freedom
in the course of operation, and the vibrational mode is only virtually excited. The
system is insensitive to changes in the vibrational motion. The proposed scheme is
experimentally feasible based on the present ion-trap techniques.
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1 Introduction

Quantum gates could be implemented using various types of qubits [1, 2], quantum simulators

[3], and hybrids [4]. Over the past decade, quantum gates have arisen much attention, and

many schemes for realizing various types of one-qubit and two-qubit quantum gates via vari-

ous physical systems were proposed [5, 6, 7, 8, 9, 10, 11, 12]. One-qubit gate and two-qubit

controlled-phase gate are universal in constructing a quantum computer. The implementa-

tion of quantum algorithms and quantum error-correction protocols may involve multiqubit

quantum gates. However, the procedure of decomposing multiqubit gates into a sequence

of one-qubit gates and two-qubit controlled-phase gates becomes complicated as the number

of qubits increases [13]. A direct implementation of a multiqubit gate without decomposing

it into a series of one-qubit and two-qubit logic gates is an alternative approach with high

efficiency. One of the principal multiqubit operations is multiqubit phase gate, which plays a

key role in quantum computation. There are two types of multiqubit phase gates. One is a

multiqubit phase gate with n-control qubits acting as one target qubit. During the past few

years, several methods have been developed for directly constructing the multiqubit phase

gate in cavity QED [14, 15] or ion traps [16, 17]. Another one is a multiqubit phase gate

with one qubit simultaneously controlling n target qubits (NTCP). More recently, Yang et al

presented a proposal to implement a NTCP gate in a cavity via three-step operations [18],

and then gave a protocol for implementing a multiqubit tunable phase with one qubit simulta-

neously controlling n target qubits in a cavity [19]. Among various physical systems, ion-trap

system is a qualified candidate for realizing quantum computation due to the long-lived inter-

nal states and precise manipulation of ionic inner states. NTCP gates for the ion-trap system

have not been studied till now. In this study, the three-step operations similar to those in

Ref [18] were used to implement the NTCP gates in an ion-trap system. The merit of our
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scheme is that no requirements are needed for the quantum information transfer from the

internal degree of the ions to the external degree, and the vibrational mode is only virtually

excited. The system is robust against decoherence, which is of importance for experimental

implementation.

The paper was organized as follows. In section 2, the model and its evolution were in-

troduced. In section 3, we gave a scheme to implement the NTCP in the ion-trap system.

Finally, we analyzed the implementation of experiment and summarized the conclusions.

2 Model and unitary evolution

We consider that N identical two-level ions, which have a ground state |g〉 and an excited

state |e〉, are confined in a linear trap. Then, the N ions are driven by a laser field with

a frequency of ω0, where ω0 is the frequency of the transition |e〉 → |g〉. In addition, we

simultaneously excite the N ions with two lasers of frequencies ω0 + v + δ and ω0 − v − δ.

Herein, v is the frequency of the center-of-mass mode of the collective motion of the ions, and

δ is the detuning. Suppose v ≫ δ, and thus we can neglect other vibrational modes. In this

case, the Hamiltonian for the system is given [20, 21] by

Hi = va+a+ ω0

N
∑

j=1

σ+
z,j +

[Ω1e
−iΦ1

N
∑

j=1

σ+
j e

iη(a++a)e−iω0t +

Ω2e
−iΦ2

N
∑

j=1

σ+
j e

iη(a++a)e−i(ω0+v+δ)t +

Ω3e
−iΦ3

N
∑

j=1

σ+
j e

iη(a++a)e−i(ω0−v−δ)t] +H.C.,

(1)

where a+ and a are the creation and annihilation operators for the collective vibrational mode.

σ+
j = |ej〉 〈gj | and σ−

j = |gj〉 〈ej | are the spin flip operators. η is the Lamb-Dicke parameter.

Ωl and Φl (l=1,2,3) are the Rabi frequency and the phase of the l -th laser. Furthermore, we

consider the resolved sideband regime, where the vibrational frequency v is much larger than

other characteristic frequencies [22]. In this case, we discard the rapidly oscillating terms and

obtain the Hamiltonian in the interaction picture,
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Hi = Ω1e
−iΦ1e−η2/2

N
∑

j=1

σ+
j

∞
∑

n=0

(iη)2n

(n!)2
a+nan +

Ω2e
−iΦ2e−η2/2

N
∑

j=1

σ+
j

∞
∑

n=0

(iη)2n+1

n!(n+ 1)!
a+(n+1)ane−iδt +

Ω3e
−iΦ3e−η2/2

N
∑

j=1

σ+
j

∞
∑

n=0

(iη)2n+1

n!(n+ 1)!
a+nan+1eiδt] +H.C..

(2)

In the Lamb-Dicke regime, i.e., η

√

−
n + 1 ≪ 1, with

−
n as the mean phonon number of

the center-of-mass mode, the interaction Hamiltonian of Eq.(2) can be approximated by the

expansion to the first order in η

Hi = Hi1 +Hi2, (3)

where

Hi1 = Ω1

N
∑

j=1

(σ+
j e

−iΦ1 + σ−
j e

iΦ1), (4)

Hi2 = iηΩ2e
−iΦ2

N
∑

j=1

σ+
j a

+e−iδt +

iηΩ3e
−iΦ3

N
∑

j=1

σ+
j ae

iδt +H.C.. (5)

We assume that the Rabi frequencies and the phases of the second and third lasers are

equal, i.e., Ω2 = Ω3 = Ω, and Φ2 = Φ3 = π/2. Then the Hamiltonian Hi2 reduces to

Hi2 = ηΩ

N
∑

j=1

(σ+
j + σ−

j )(a
+e−iδt + aeiδt) (6)

When δ ≫ ηΩ, for Hi2, the energy conserving transitions are |ejekn〉 ←→ |gjgkn〉 and

|gjekn〉 ←→ |ejgkn〉, where n is the quantum number for the relevant vibrational mode of the

trap. Fig.1 shows the energy conserving transition paths within a pair of ions. The transition

of |ejekn〉 ←→ |gjgkn〉 is mediated by the states of |gjekn± 1〉 and |ejgkn± 1〉. The contri-

butions of |gjekn± 1〉 are equal to those of the states of |ejgkn± 1〉. The corresponding Rabi

frequency is given by λ = 2(ηΩ)2/δ. Since the transition paths interfere destructively, there

is no transfer of population in states with different vibrational excitation and thus the Rabi

frequency is independent of the vibrational quantum number [20, 21]. The Rabi frequency of

|gjekn〉 ←→ |ejgkn〉 mediated by |ejekn± 1〉 and |gjgkn ± 1〉 is also given by λ = 2(ηΩ)2/δ.
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Fig. 1. Energy-level diagram for a pair of ions sharing an oscillator degree of freedom. The energy
conserving transitions are from |gjgkn〉 to |ejekn〉 (left) and from |ejgkn〉 to |gjekn〉 (right).

Therefore, the effective Hamiltonian for Hi2 can be described by [20, 21, 23]

He2 = λ

N
∑

j,k=1,j 6=k

σx,jσx,k. (7)

Herein, σx,j = σ+
j + σ−

j , the operator σx satisfies the eigenequation: σx,j |±j〉 = ±|±j〉, and
|±〉 is defined by |±〉 = (|g〉 ± |e〉)/

√
2. Under the conditions δ ≫ ηΩ and δ ≫ Ω1, the

evolution of the whole system is governed by the effective Hamiltonian

He = Ω1

N
∑

j=1

(σ+
j e

−iΦ1 + σ−
j e

iΦ1) + λ

N
∑

j,k=1,j 6=k

σx,jσx,k

. (8)

3 Implementation of a NTCP gate

We now show how to utilize the above model to implement a NTCP gate in the ion-trap

system. The three-step operations previously presented by Yang et al [18] were used during

the implementation process. Assuming (n+1) ions are confined in a linear trap. Firstly, we

simultaneously excite the (n+1) ions using three lasers with frequencies ω0, ω0 + v + δ and

ω0 − v − δ, respectively. The Rabi frequencies and phases of the second and third lasers are

equal, i.e., Ω2 = Ω3 = Ω and Φ2 = Φ3 = π/2. The evolution of the whole system is governed

by the Hamiltonian Eq.(8). When the phase Φ1 is zero, the corresponding evolution operator

U(τ) for an interaction time τ is

U(τ) = exp[−iτ(Ω1

n+1
∑

j=1

σx,j + λ
n+1
∑

j,k=1,j 6=k

σx,jσx,k)]. (9)

During the second stage, similarly, we simultaneously excite the ions 2, 3,..., n+1 using

three lasers with frequencies ω0, ω0 + v + δ
′

and ω0 − v − δ
′

, respectively. The interaction is

also described by the Hamiltonian Eq.(8). With the choice of Φ1 = π, the evolution operator
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of this system for an interaction time τ
′

can be expressed as

U(τ
′

) = exp[iτ
′

(Ω1

n+1
∑

j=2

σx,j − λ′

n+1
∑

j,k=2,j 6=k

σx,jσx,k)],

(10)

where λ
′

= 2(ηΩ)2/δ
′

. Set the detunings δ
′

= −δ and τ
′

= τ , after the above two steps, the

joint time-evolution operation of the whole system can be written:

U(2τ) = exp[−iτ(Ω1σx,1 + λσx,1

n+1
∑

j=2

σx,j)]. (11)

At last, the first ion is excited by a laser with a frequency of ω0, the Rabi frequency of

Ω
′

1,and the phase of Φ
′

1. And, the other ions, 2, 3,..., and (n+1) are excited by another laser

with a frequency of ω0, the Rabi frequency of Ωr, and the phase of Φr. In doing this way, the

interaction Hamiltonian for the qubit system and the pulses is given by

∼

Hi = Ω
′

1(σ
+
1 e

−iΦ
′

1 + σ−
1 e

iΦ
′

1) +

Ωr

n+1
∑

j=2

(σ+
j e

−iΦr + σ−
j e

iΦr ). (12)

Let Φ
′

1 = Φr = π, then the corresponding evolution operator
∼

U(τ) for a duration τ is

∼

U(τ) = exp[iτ(Ω
′

1σx,1 +Ωr

n+1
∑

j=2

σx,j)]. (13)

It can be seen that after the three-step operation, the joint time-evolution operator of the

qubit system is

U(3τ) = exp[iτ(Ω
′

1 − Ω1)σx,1 + iτΩr

n+1
∑

j=2

σx,j −

iτλσx,1

n+1
∑

j=2

σx,j ]. (14)

Under the following conditions,

Ω
′

1 − Ω1 = nλ = 2n(ηΩ)2/δ,Ωr = λ = 2(ηΩ)2/δ, (15)

Eq.(14) can be written as follows:

U(3τ) = Πn+1
j=2U(1, j), (16)
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where U(1, j) = exp[iτλ(σx,1 + σx,j − σx,1σx,j)]. According to the operator U(1, j), the

evolution of the four computational basis states |+1〉|+j〉, |+1〉|−j〉, |−1〉|+j〉 and |−1〉|−j〉
can be obtained as follows,

U(1, j)|+1〉|+j〉 = |+1〉|+j〉,
U(1, j)|+1〉|−j〉 = |+1〉|−j〉,
U(1, j)|−1〉|+j〉 = |−1〉|+j〉,
U(1, j)|−1〉|−j〉 = e−i4λτ |−1〉|−j〉. (17)

Herein, an overall phase factor eiλτ is omitted. Let 4λτ = π, then we can get the following

equation:

U(1, j)|+1〉|+j〉 = |+1〉|+j〉,
U(1, j)|+1〉|−j〉 = |+1〉|−j〉,
U(1, j)|−1〉|+j〉 = |−1〉|+j〉,
U(1, j)|−1〉|−j〉 = −|−1〉|−j〉. (18)

It shows that a two-qubit controlled phase gate U(1, j) for the qubit pair (1, j) is achieved.

According to Eqs.(16) and (18), we can simultaneously implement n two-qubit controlled

phase gates for the qubit pairs (1, 2), (1, 3),..., and (1, n+1) in the ion-trap system. Note

that each qubit pair contains the same control qubit (qubit 1) and a different target qubit

(qubit 2, 3,...,or n + 1).

4 Discussion and conclusions

We address the experimental feasibility of the proposed scheme. The level configuration

under our consideration can be found in 40Ca+. One Zeeman level of the S1/2 ground state

of 40Ca+ ions acts as the ground state, and one Zeeman level of the metastable D5/2 state

can act as the excited state [24]. The lifetime of the metastable state τl , is about 1.16s. Set

Ω = 0.1v, η = 0.1 and δ = 0.1v, so the condition, v ≫ δ ≫ ηΩ, can be satisfied. The scheme

requires the condition of the Lamb-Dicke regime, i.e. η

√

−
n + 1≪ 1. Set

−
n = 3, then we have

η

√

−
n + 1 = 0.2. The effective Hamiltonian of Eq. (8) is valid if the mean phonon number

does not exceed 3. In our protocol, the condition of the detunings, δ
′

= −δ, can be met

with via adjusting the frequencies of excited lasers. It is easy to implement experimentally.

With the accessible center-of-mass mode frequency, v = 1.2MHz [25], the time of the gate

operation is 3τ = 3π/4λ = 3πδ/8(ηΩ)2 ≈ 9.81 × 10−4s, which is much shorter than τl.

Thus, the loss due to the ionic spontaneous emission can be neglected. Furthermore, with

the advanced development of ion-trap techniques [24, 25, 26], it is achievable to control the

laser-illuminating time and locate the ions in a trap with high accuracy.

In summary, we first presented an efficient scheme for the implementation of a multiqubit

phase gate via one control qubit simultaneously controlling n qubits in the ion-trap system.

Our work indicates that the transfer of quantum information from the internal degrees of the

ions to the external degree is not required. The vibrational mode is only virtually excited. The
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scheme is insensitive to both the initial vibrational state and changes in the vibrationl motion,

which is of importance from the experimental point of view. Furthermore, the gate time is

independent of the number n of the qubits. Therefore, the proposed scheme is realizable with

current techniques and will be extremely helpful for quantum computation.
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