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We systematically investigated perfect state transfer between antipodal nodes of discrete
time quantum walks on variants of the cycles C4, C6 and C8 for three choices of coin op-

erator. Perfect state transfer was found, in general, to be very rare, only being preserved
for a very small number of ways of modifying the cycles. We observed that some of our

useful modifications of C4 could be generalised to an arbitrary number of nodes, and

present three families of graphs which admit quantum walks with interesting dynamics
either in the continuous time walk, or in the discrete time walk for appropriate selec-

tions of coin and initial conditions. These dynamics are either periodicity, perfect state

transfer, or very high fidelity state transfer. These families are modifications of families
known not to exhibit periodicity or perfect state transfer in general. The robustness of

the dynamics is tested by varying the initial state, interpolating between structures and

by adding decoherence.

Keywords: quantum walks, quantum information, quantum transport

Communicated by: R Jozsa & G Milburn

1 Introduction

The development of quantum walks was inspired by classical random walks. Quantum walks

were first introduced by Aharonov et al [1] and the concept was developed for specific appli-

cations by Meyer [2, 3] and Watrous [4]. The walks were then examined in their own right by

Ambainis et al [5] on the line and Aharonov et al [6] on a general graph. Since their introduc-

tion, both discrete and continuous time quantum walks have provided much fruitful research,

see [7, 8] for overviews. In this paper we consider two particular aspects of the transport

properties of quantum walks: periodicity and perfect state transfer. The problem of quan-

tum state transfer was first posed by Bose [9] who considered using spin chains to transmit

quantum states in quantum computers. Since then, quantum, and in particular perfect state

transfer has been shown to be of interest for other reasons. It is a necessary ingredient in

the quantum walk implementation of the universal quantum gate set, developed initially by

Childs [10] for the continuous time walk, then by Lovett et al [11] for the discrete time walk.

Quantum walks with good transport properties when undergoing decoherence may provide a

model for exciton transport in photosynthetic complexes, as suggested by Mohseni et al [12].

For modelling charge and energy transfer, the important factor is total transmitted ampli-

tude, the phase does not also have to be transmitted. Other forms of interacting quantum

walks, such as those with two walkers, are proposed to simulate collective excitations of many

417



418 Periodicity and perfect state transfer in quantum walks on variants of cycles

particles [13]. These were found in [13] to form bound states which can be interpreted as a

molecule.

Further notable aspects of quantum transport include scattering and localization. These

aspects have been studied, for example, on the line [14, 15, 16] where the introduction of

defects in the position basis have been shown to produce localization effects and enable control

of the scattering properties of the walk [15].

Most efforts to classify when perfect state transfer can occur have used the continuous time

quantum walk model, as the addition of the coin states to the discrete time model makes for

more difficult analytical solutions. The purpose of the work presented here is to investigate

how strongly the presence of perfect state transfer depends on the precise graph structure

that the walk takes place over, and look for particular structural modifications of graphs

which do not affect their perfect state transfer properties. Both discrete and continuous time

walks were investigated. The focus on small graphs is intended to limit the physical resources

required to instantiate the walk, and the families of graphs presented in the main results

section are generalisations of some of the small graphs investigated.

Whether we are looking for perfect state transfer or high amplitude transfer, the basis

of the problem is the same. We wish to find graphs with pairs of points between which the

desired transport takes place. The graphs considered in this paper are all unweighted and

we focus on those built from some of the simplest families of graphs: complete graphs Kn,

cycles Cn, and paths Pn. As a starting point we focused on variations of cycles known to

exhibit perfect state transfer in the discrete time walk. Unweighted graphs are abstractions of

unmodulated spin systems, with the edges representing coupling between spins. Periodicity

is closely related to perfect state transfer. A graph that has perfect state transfer will also be

periodic [17] for any continuous time walk, as well as for discrete time walks over symmetric

graphs.

The paper proceeds as follows: we introduce the relevant background theory relating to

quantum walks and graphs in Section 2; then prior results relating to the graphs of interest in

this paper are briefly outlined in Section 3; finally in Sections 4 and 5 we present our results

and discuss their robustness.

2 Background

2.1 Basic Graph Theory

A graph G = {E, V } is a set of vertices V and a set of edges E of the form (i, j) where i, j ∈ V .

The adjacency matrix AG of G has ones in the entries (i, j) if vertex i is connected to vertex j

and zeroes elsewhere. A graph is complete if every vertex is joined by an edge to every other

Fig. 1. Examples of graphs, from left to right: the complete graph with 2 vertices, K2 = P2, the
path with 2 vertices; the complete graph with 3 vertices K3 = C3 the cycle with 3 vertices; the
complete graph K4; the cycle C9 and the path P7. The open circles indicate potential end points

for examining transport properties.
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vertex. Some common graphs, which will be used in this paper are Kn, the complete graph

with n vertices; Pn, the path of n vertices; and Cn, the cycle of n vertices, which differs from

the path by only one edge. Examples of these graphs are shown in Figure 1. The degree of a

vertex is the number of vertices it is joined to.

The complement of a graph G, denoted by G, shares the same vertices as G but its set

of edges is E = {(i, j) | (i, j) /∈ E}. The join of graphs G and H is denoted G + H and its

adjacency matrix is given by:

AG+H =

(
AG J
J AH

)
, (1)

where J is the all ones matrix of the relevant dimensions. The join therefore links all nodes of

G to all nodes of H. The notion of the adjacency matrix can be generalised to allow it to have

entries not equal to either 0 or 1, which varies the strength with which vertices are joined. A

graph with only integer values in its adjacency matrix is called an integral graph. Classically,

integral graphs with adjacency matrices whose entries are greater than one represent multiple

edges between nodes. If the diagonals of AG are integers, then G is interpreted as having self

loops. Self loops add one to the degree of a vertex.

2.2 Quantum Walks

A discrete time quantum walk over a graph structure G = {E, V } is controlled by a quantum

‘coin.’ The coin is a unitary operator applied at each vertex v ∈ V , and its dimension is d×d
where d is the degree of the vertex. The state of the quantum walk must describe both the

position of the walker, and the configuration of coin states. A general state is written

ψ(T ) =
∑
v,c

αv,c(T )|v, c〉 (2)

where αv,c ∈ C and |v, c〉 denotes a basis state on vertex v with coin state c.

After the coin toss, a shift operation is applied. This is simply a permutation between

the relevant coin states at different vertices, and is hence a unitary transformation. The shift

operator acts like S|v, c〉 = |w, d〉, so moves amplitude from the cth coin state of v to the dth

coin state of w [18]. The probability of the walker being measured at position v after T steps

is the summation over coin states at v, p(v, t) =
∑

i |v, ci|2.

Coin operations which will be particularly relevant to this paper are the Grover operator:

Gd =



2−d
d

2
d · · · 2

d

2
d

2−d
d · · · 2

d

...
...

. . .
...

2
d

2
d · · · 2−d

d


(3)

and the unitary Discrete Fourier Transform (DFT), specified by:
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DFT =
1√
d


ω0×0
d ω0×1

d . . . ω
0×(d−1)
d

ω1×0
d ω1×1

d . . . ω
1×(d−1)
d

...
...

. . .
...

ω
(d−1)×0
d ω

(d−1)×1
d . . . ω

(d−1)×(d−1)
d

 (4)

with ωd = e
−2πi
d . The d = 2 version of the DFT is more commonly known as the Hadamard,

H. If the columns of H are swapped around we have H2:

H =
1√
2

(
1 1
1 −1

)
H2 =

1√
2

(
1 1
−1 1

)
(5)

Various attributes of discrete time quantum walks are of potential interest, such as the limiting

distribution, [19, 6], and hitting time, [20, 21, 22]. The aspect of interest for this paper is

whether it admits perfect state transfer, defined in Section 2.3 below.

A continuous time quantum walk evolves over graph G = {E, V } according to the Schrödinger

equation. The adjacency matrix AG gives rise to the Hamiltonian, which is taken to be

H = γAG where γ is the hopping rate. As there is no coin space, the walk evolves entirely in

the position basis. These walks were introduced by Farhi and Gutmann [23] who showed they

exhibited exponentially faster transport over glued binary trees than the classical versions.

This walk was analysed further by Childs et al in [24].

In units where γ = ~ = 1, the state of a continuous time walk at time t is given by

|φ(t)〉 = e−iAGt|φ(0)〉. (6)

The amplitude at vertex v at time t is 〈v|φ(t)〉.
Unlike in the discrete time case, where multiple coin states can accommodate multiple

edges between the same two vertices, there can be at most one edge between vertices of G
in the continuous time case. Varying the value of the entry AG(i, j) gives rise to a weighted

edge between vertex i and vertex j, which is equivalent to repeating an edge when the value

is made greater than one.

2.3 Perfect State Transfer Conditions

For the continuous time walk, there is perfect state transfer between vertices v and w at time

t if the following condition is met:

〈w|e−iAGt|v〉 = 1 (7)

where |v〉 and |w〉 are unit vectors at vertices v and w respectively and t > 0. If the perfect

state transfer condition holds for some v, w ∈ V then we say the graph G has perfect state
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transfer. A special case of perfect state transfer occurs when v = w, in which case the graph

G is periodic.

In the discrete time quantum walk, perfect state transfer occurs between vertices v and w

after T steps if

∑
c,d

〈w, d|(SC)T |v, c〉 = 1. (8)

It is clear from this definition that we are not concerned about whether the coin states are

in the same configuration at vertex w as they were at vertex v, which enables perfect state

transfer between vertices of different degrees. For the definition of periodicity, the stricter

requirement of returning to the same configuration of coin states is made:

∑
c

〈v, c|(SC)T |v, c〉 = 1. (9)

The perfect state transfer conditions may be stricter than necessary for some applications,

in which case one can look for high amplitude transfer instead. A lower bound λ for the

transmitted amplitude must be selected. For the numerical work in this paper we take λ = 0.9,

and we require that

∑
c,d

〈w, d|(SC)T |v, c〉 ≥ λ 〈w|e−iAGt|v〉 ≥ λ (10)

in the discrete and continuous time cases respectively.

2.4 Decoherence in Quantum Walks

Decoherence is modelled in the standard way, using projection operators. A detailed account

of how to model uncorrelated environmental interactions in various types of quantum walks

can be found in Kendon [8]. For the discrete time quantum walks, there are two potential

types of decoherence: in the coin basis and in the position basis. In both cases the density

operator notation must be used, so the state of the quantum walker is written

ρ =
∑
v,c

∑
v′,c′

= ρv,c,v′,c′ |v, c〉〈v′, c′| (11)

Decoherence in either basis can be modelled using a map

U :→
∑
j∈Θ

PjSCρC†S†P†j (12)

where the projection operators Pj can project either in the coin basis, the position basis, or

both. The set of projection operators Θ has cardinality one if the evolution is unitary, as Pj

must be the identity in this case. The evolution of the quantum walk, with probability of a

decoherence event occurring during a given timestep p is then given by



422 Periodicity and perfect state transfer in quantum walks on variants of cycles

ρ(t+ 1) = (1− p)SCρC†S† + p
∑
j

PjSCρC†S†P†j . (13)

In the continuous time case, the purely quantum time evolution in density matrix notation

is given by

dρ(t)

dt
= −i[AG , ρ] (14)

and when there is Markovian noise present the density matrix evolves according to

dρ(t)

dt
= −i[AG , ρ(t)]− pρ(t) + p

∑
j

Pjρ(t)P†j (15)

The effect of decoherence in both walks is that the off-diagonals of the density matrix,

the coherences, decay. In the long time limit, or with decoherence rate p = 1, the classical

walk is recovered. This property allows us to consider the quantum walk to be the quantum

analogue to the classical random walk.

3 Prior Results

The graphs discussed in Section 5 below are composed from the graphs Kn, the complement

of the complete graph with n nodes, specifically K2; Pn, the path with n nodes and Cn, the

cycle with n nodes. In this section, previous results concerning these graphs are discussed. It

is clear that as there are no edges joining the vertices of Kn, quantum walks on this structure

do not evolve in the position basis. The complete graph Kn has been shown not to exhibit

perfect state transfer, but this can be achieved by the removal of an edge [25].

3.1 Discrete Time Quantum Walk

The quantum walk on the path Pn with n =∞, or n > 2T if the amplitude is initially situated

at the middle vertex, is simply the quantum walk on the line [5]. The dynamics of the walk

on the line are well known. The effect of varying the initial coin state, and coin operator,

is investigated analytically by Bach et al in [26] and discussed by Tregenna et al in [19]. It

is found that for a given coin, the whole range of dynamics available to the quantum walk

on the line can be observed by varying the initial state. The evolution on the infinite line is

solved exactly by Ambainis et al [5]. The most notable fact about the walk on the line is that

the standard deviation of the position of the walker varies proportionally to T , as opposed to

with
√
T in the classical case.

Discrete time quantum walks along finite paths Pn do not in general admit perfect state

transfer for non trivial coin operators, i.e., those not equal to the Pauli X operator, which is

also the 2 dimensional Grover operator. Inspired by the results from [27] indicated in Section

3.2 below, for the continuous time case, we added self loops to the ends of paths to see if this

improved transport. Though adding self loops to the ends of P4 created a walk with perfect
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state transfer, and hence due to symmetry, periodicity, adding self loops in general did not

improve transport across the paths.

As very few cycles admit perfect state transfer for either the continuous, [28, 29], or discrete

time walk, [30], the dynamics on Cn is more often analysed in terms of mixing times, which

are not of interest in this paper.

Periodicity in cycles was first noted for C4 [30]. In cycles with even n ≤ 10 and a suitable

coin, periodicity is observed and perfect state transfer occurs halfway through the period.

Varying n can have a dramatic effect on the dynamics of the walk, doubling it to go from

n = 8 to n = 16 turns periodic evolution into highly irregular evolution.

Fourier techniques have been widely used to analyse the discrete time quantum walk,

for instance they are used by [5] for the walk on the line, as well as many other types of

graphs with a high degree of structure such as hypercubes [31], Cayley graphs, infinite d-

dimensional lattices [32] and many others, see, for example [33, 34, 35]. For our investigation,

where we wished to examine a large number of structures, these techniques are not suitable.

This is because each structure induces a different shift operation, so each would require a

separate analytical investigation. Furthermore, Fourier techniques are powerful because for

many structures the shift operator has a simple represenatation in Fourier space. This is not

the case for the variety of irregular structures discussed in this paper. In the cases where

perfect state transfer and periodicity are observed, there are simple analytical solutions in

real space, as shown in Section 4.2 below.

The effects of decoherence in both the walk on the line and walks on various cycles were

examined by Kendon and Tregenna in [36], where they conclude that decoherence at a suitable

rate enhances some qualities of the walk. Decoherence is shown to give rise to a uniform

distribution if the correct rate for the number of timesteps is used, as discussed in further detail

by Maloyer and Kendon [37]. The distribution generates a central ‘cusp’ if the decoherence

is in the coin basis [38]. The sensitivity of the walk to decoherence at rate p grows linearly

with the number of timesteps T that the walk undergoes.

3.2 Continuous Time Quantum Walk

The investigation of perfect state transfer along paths was initiated by Bose [9] where a string

of coupled qubits was considered. Later results, by Christandl et al [27], show that there is

no perfect state transfer between antipodal points on paths of length ≥ 4 with unweighted

edges.

Cycles are a type of graph known as an integral circulant. Integral circulants were first

examined by So in [39], and results concerning their perfect state transfer properties were

developed by Saxena et al [28] and built upon by Bašić et al [29]. Integral circulants with

odd numbers of nodes cannot have perfect state transfer [28]. The only n-even cycle with

perfect state transfer is C4, in contrast to the discrete time case where it is exhibited up to

C10.

Kendon and Tamon [40] review many results, both analytic and numeric, concerning

perfect state transfer in the continuous time walk, as well as some for the discrete time case.

Kay [41] reviews the necessary and sufficient conditions for systems with nearest neighbour

interactions to exhibit perfect state transfer and how these can be used to design systems

which implement other protocols.
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a) b)

c) d)

Fig. 2. The basic diamond chain, (a), and the variants investigated. Vertices with self loops have

degree 3.

4 Discrete time quantum walks over small structures

We did numerical simulations of discrete time quantum walks over a variety of structures

based on graphs known to exhibit perfect state transfer under some circumstances, in order

to see if related structures displayed similar properties. All of the walks were run for 100

steps using 3 types of coin operator:

• O1 = DFT at every node

• O2 = Grover at every node

• O3 = H at nodes of degree two and Grover at other nodes

O2 and O3 will be identical in graphs with no vertices of degree two. To assess the sensitivity

of perfect state transfer to the initial state, walks using 1500 initial states with different

configurations of coin states at a particular node, uniformly distributed according to the Haar

measure [42], were run for 100 steps. This number of steps is sufficient to determine whether

behaviour such as periodicity is exhibited for graphs of this size. The number of initial

conditions was selected after preliminary investigations revealed that increasing the number

of initial conditions beyond 1500 did not affect the results. Whilst we did not investigate

whether more initial conditions are needed for larger graphs, we would expect this to be the

case. This is because as the size of the graph increases, so does the number of states accessible

to the quantum walker. Therefore whether these states are indeed accessed may be far more

sensitive to the precise initial condition.

4.1 Diamond Chains

Chains of n diamonds where all amplitude is initially equally distributed between the coin

states at an end vertex are known to exhibit perfect state transfer after 2n steps when the

Grover coin operator is used [40]. This is because on structures of even degree, if the amplitude

is initially equally distributed between half of the coin states, then it will be transferred into

the remaining coin states. This observation enables many other structures exhibiting perfect

state transfer to be specified. For example, the graph formed by combining chains of diamonds

to create a rectangular structure will exhibit perfect state transfer if all amplitude is initially

equally distributed between the coin states at the edge of the structure. Three variants of the

diamond chain, shown in Figure 2, were investigated.

The perfect state transfer in the diamond chain was found to be highly dependent on both

the structure and the choice of coin operator. For operators O1 and O3, no perfect state

transfer occurs. The only variant of the chain tested found to have high amplitude transfer,
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a) b) c)

Fig. 3. Generation of the variants of cycles, shown in the case of C4: a) attach individual node to
an existing node b) attach new node to every existing node c) combine each of these graphs, and

add links between new nodes. Dotted lines indicate other connections added for a single node, the

rest are omitted for clarity

with cutoff λ = 0.9, was that depicted in Figure 2 (b), with self loops at either end of the

chain. This transfer occurred for only 35 out of 1500 initial states tested, so even the addition

of a single edge to the end nodes along the chain destroys the perfect state transfer. This

is because the additional coin state at the initial node makes achieving the required equal

superposition between the other two coin states impossible. If an additional self loop is added,

then the initial node has even degree so perfect state transfer would be recovered. The other

variants of the diamond chain did not exhibit perfect state transfer or periodicity for any

selection of operator tested, and the maximum probability observed at the end of the chain

decreased roughly as n increased. The results are summarised in Appendix A.

4.2 Variants of Cycles

Very few simple structures are known to exhibit perfect state transfer in the discrete time

walk [40] so more complex structures were investigated. As noted in Section 3.1, even cycles

with n ≤ 10 have periodicity. In particular, cycles C4 and C8 are periodic when the Hadamard

operator is used for the coin, and perfect state transfer occurs half way through the period.

The cycle C6 is periodic when a biased coin operator is used [19]. In order to test the sensitivity

of this perfect state transfer to the structure we first investigated how a small set of specific

modifications affects the perfect state transfer: none of these admitted perfect state transfer,

the results are briefly outlined in Appendix B.

Following this preliminary investigation we systematically simulated walks over structures

based on C4, C6 and C8. We modified the structures by adding up to four new nodes. This

modification worked in the following way: First, a single node was added, in turn, to each

existing node of the cycle. Technically this creates the same graph each time, but as we always

started with amplitude at the same node, the dynamics of the walk will be different depending

on the node of the cycle that the new node has been added to. We then generated further

edges between that new node, and the nodes of the existing cycle. After structures including

each new node added to the cycle in every possible way, see Figure 3 (b), it was necessary to

combine these structures so that the new nodes were joined not only to the cycles, but to each

other. This was performed by taking the sets of adjacency matrices which join each new node

to the existing cycle (which are technically for identical graphs, but when combined will lead

to new structures) and combining each of them in turn, then joining the new nodes to each

other, see Figure 3 (c). We do not claim that this is the most efficient way to generate these

structures, as many duplicates of adjacency matrices, which were removed before simulations
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were run, and permutations of the same graph are created. However we were more concerned

with implementing a systematic study than a computationally efficient one.

Operator O2 resulted in the most walks with high amplitude transfer, this is due to the

fact that it simply performs a swap at nodes of degree 2 and the graphs are symmetrical. Some

variants of cycles found to have perfect state transfer between antipodal nodes are examples

of the three families of graphs discussed in Section 5. As we were particularly interested in

perfect state transfer between antipodal nodes, we now turn to the results relating specifically

to this aspect of the walks in turn. The limitation of our attention to perfect state transfer

between antipodal nodes was motivated by further preliminary studies where an arbitrary

node was examined instead. Whilst this study was not sufficiently systematic to make any

conclusive remarks (using all examined variants of C6 and C8 and examining a single node),

it yielded no perfect state transfer.

4.2.1 Results

The results were very similar for C4, C6 and C8 so we discuss them together. The only

operator we tested leading to perfect state transfer on the variants of cycles was O2. As it

is clear that any variant of an even cycle which adds nodes only to the target node will have

perfect state transfer after a number of steps determined by the size of the cycle using this

operator, we do not discuss these results. In fact, the only variants of cycles found to exhibit

perfect state transfer were those with modifications to the antipodal nodes. As it is already

known that on structures with even degree, if amplitude populates half the coin states and

is equal in magnitude and phase, then the Grover operator perfectly transmits the amplitude

to the other half of the coin states [40], walks which reproduced these results are also not

discussed. Two sets of graphs based on C4 found to exhibit perfect state transfer can be

generalised to families, these are discussed in detail in Section 5 below. After pruning and

generalising the results, this leaves us with three new variants of C4 exhibiting perfect state

transfer, shown in Figure 4. Two of the variations also lead to perfect state transfer in C6

and C8 for the correct choices of initial conditions. The low number of positive results implies

that perfect state transfer is heavily sensitive to the graph structure used for the walk.

Further analysis on these variants has been performed analytically, rather than numeri-

cally. Perfect state transfer occurs for the graph shown in Figure 4 (a) with initial states:

|ψ+,−〉 =

 0
(−) 1√

2

(−) 1√
2


Where ψ+ has a minus sign for the first populated coin state and ψ− for the second. The

coin states are represented in the order shown in Figure 4. This perfect state transfer occurs

after 50 steps. As the coin states at the target node are not identical to the initial state, this

perfect state transfer does not lead to periodicity.

For the graph shown in Figure 4 (b) the following initial states lead to perfect state transfer

after 20 steps:

|ψ+,−〉 =

(−) + 0.705
(+)− 0.709
(+)− 0.005


Where the unbracketed signs refer to |ψ+〉 and those in brackets occur in |ψ−〉 and the coin
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states are represented in the order indicated on the figure. The decimal expansions for this

set of initial conditions do not appear to have any simple algebraic forms. Again, as the coin

states at the target node do not replicate the initial conditions, this perfect state transfer does

not lead to periodicity. Additionally this variation admits perfect state transfer for any even

cycle after the correct number of steps if the initial conditions are selected such that after the

coin flip, only the coin states directing amplitude around the cycle are populated. If we call

the amplitude in the coin states on the cycle x and y, and require that xx∗ + yy∗ = 1 then

the initial states leading to this perfect state transfer can be written:

|ψ〉 =

 2y−x
3

2x−y
3

2{ 2x−y
3 + 2y−x

3 }


For example, if we select x = y = 1√

2
then the initial condition leading to perfect state

transfer will be:

|ψ〉 =


1
3

1√
2

1
3

1√
2

4
3

1√
2


This case is one of an entire class of cases, another example would be joining antipodal

nodes by a single edge, where the initial condition is selected in order to guarantee that no

amplitude is in the coin state for the new edge after the coin flip. In other words, the initial

condition is selected so that the new structure does not affect the evolution. Clearly this

will only preserve the initial perfect state transfer achieved by deterministically traversing the

cycle, and after this, the additional coin states will affect the evolution.

The final graph we discuss, in Figure 4 (c), exhibits perfect state transfer for all initial

conditions. We denote these a and b as there are two coin states at the initial node. There

is the expected perfect state transfer after two steps. Then after ten steps the state at the

target node is:

|ψtarget〉 =


1
2b−

1
2a

1
2a−

1
2b

1
2a+ 1

2b
1
2a+ 1

2b

 (16)

Unlike the other walks found, this walk is periodic, after a further two steps the initial

condition is recovered. As the form of Equation 16 does not depend on the length of the cycle,

any even cycle with this modification will lead to perfect state transfer, with a corresponding

scaling of period and perfect state transfer time.

4.2.2 Continuous time walk on these structures

Whilst the purpose of this section of the paper is to investigate perfect state transfer in

the discrete time walk over small structures, simulations of the corresponding continuous

time walks were also run. In the continuous time walk, considerations regarding numerical

accuracy are more important. To this end, results from simulations obtained from Python

were compared to the corresponding simulations in MATLAB. The results of this comparison,

where 1.000 in Python became 0.997 in MATLAB, indicate that our methods are not suitable
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Fig. 4. Variants of C4 leading to non-trivial perfect state transfer between antipodal nodes. The

edge labels correspond to the coin states they represent when the state at that vertex is written
as a vector

for studying perfect state transfer in the continuous time walk. However, the methods used

can help in narrowing down which graphs to look for perfect state transfer in. For example,

the families in Section 5 were highlighted by these simulations, and with further analytic

work we were able to prove in one case that perfect state transfer did take place. As the

cut-points used to test for perfect state transfer were the same in the discrete and continuous

time case, we were able to draw one comparison– namely that very high amplitude transfer

is more common in the continuous time walk than the discrete time walk, for instance being

admitted by 16 variants of C4. Whilst there were commonalities between these 16 variants,

such as the majority having a constant number of nodes along any path joining the initial

and target node, without knowing precisely whether they admit perfect state transfer concrete

conclusions cannot be drawn.

As the continuous time walk undergoes Schrödinger evolution, whereas the time evolution

of the discrete time walk is determined by the choice of coin operator, we would not expect

similarities between discrete and continuous time walks. Where there were similarities, we

would expect them to hold for specific choices of coin operator only. In the limit, discrete

and continuous time quantum walks have been shown to be equivalent [43, 44], but the proofs

provide little intuition regarding their relation after an arbitrary number of time steps. These

equivalences are also not direct. In [44] the discrete time walk gives rise to two copies of

the continuous time walk. In [43] the equivalence is shown via an intermediate model, the

lazy quantum walk. A more detailed comparison of the discrete and continuous time walk is

beyond the scope of this paper.

5 Three related families of graphs

a) b) c)

Fig. 5. The three families a) K2 + Kn b) K2 + Pn and c) K2 + Cn. The nodes highlighted with
open dots indicate the initial and target nodes, due to the symmetry of the graphs, it does not

matter which is which.

In this section we discuss three families of graphs depicted in Figure 5. These have the
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same number of nodes, and all include a join with the graph K2. The family K2 +Pn has no

notable transport properties in the discrete time walk, but exhibits perfect state transfer in

the continuous time walk for some choices of n.

5.1 Periodicity and perfect state transfer on the graph K2 +Kn

Due to the fact that the 2-dimensional Grover coin is simply a swap operator, it is obvious

that K2 +Kn exhibits perfect state transfer between the nodes of K2 in two steps when the

Grover coin is used at all nodes and all amplitude is initially at one vertex of K2. For this

state transfer, it does not matter how the amplitude is distributed between the coin states at

the initial vertex, or whether any of this amplitude has an associated phase.

Periodicity can be achieved using less trivial operations, as outlined for various cases in

Table 1 below. Perfect state transfer to the target vertex is not observed half way through

the period of the walk, except in special cases, usually with n = 2 where the graph is equal

to C4. If the DFT coin is used at the nodes of K2 + Kn, but with half of the Hadamards

replaced by H2, all the amplitude returns to the initial vertex when t is half the period, with

the state being the DFT of the initial state.

5.2 Periodicity and perfect state transfer in K2 + Cn

If the Grover coin is used at all vertices, the discrete time quantum walk over graph K2 +Cn

is periodic, with a period of 12. The walk has perfect state transfer after 6 + 12m steps,

where m ∈ Z≥0, from one vertex of K2 to the other, provided the initial state is an equal

superposition of all coin states at the initial vertex.

The initial state is an eigenvector of the Grover coin, with eigenvalue 1, so is unchanged

by the first coin operation. After the first step the state at each of the nodes of Cn is of the

form:

γ√
n|γ|


1
0
0
0

where γ ∈ C (17)

After six steps of the walk perfect state transfer is achieved. From the symmetry of K2 +Cn

it can be seen that the evolution is periodic, with period 12. The choice of coin operator is

important in acheiving this perfect state transfer, using only a DFT coin for quantum walks

Table 1. The periods of walks with various coins over K2 + Kn with all amplitude initially in one
of the vertices of K2.

Coins used at each vertex Initial state used Period
All DFT Any 8

Any unitary at K2, G2 in Kn Any 4

Gn at K2, H at Kn Any 4

Gn at K2, H, H2 at half nodes each, n > 2,
even

See below* 8

*Equal superposition over all coin states and all amplitude initially in one coin state.
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over K2 +Cn does not result in any notable transport properties. For the walk over K2 +Cn

starting with an equal superposition at one vertex of K2, the probabilities on the nodes of

K2 do not depend on n when n > 1. The initial state is also important, as we now discuss.
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Fig. 6. Robustness of perfect state transfer to variation in a) initial phase and b) amplitude
for one coin state. The size of Cn is n, θ is the phase and δ is the defect in Equation 18.

5.3 Robustness of perfect state transfer in graphs from K2 + Cn

Numerical investigations were carried out to test the robustness of the first instance of perfect

state transfer, after 6 steps, to variation in initial conditions. The transport was shown to be

very robust to variations in initial condition of the form:

|ψint〉 =
1√

(n− 2δ + δ2)


1
1
...

1− δ

 (18)

As n increases, the robustness increases too, even in the case where δ = 1, where the state is

of a qualitatively different form to the standard initial state. Taking δ > 1 adds a phase to

the perturbed initial coin state. The robustness of the perfect state transfer to variation in

phase of one of the initial coin states was also investigated, with similar findings, see Figure 6.

Though the perfect state transfer is much less robust to variation in phase, with probability

going down to 0.19 for n = 5 when we have a phase factor of π, we can again increase the

robustness of the transfer by increasing n. For n > 35 the probability at the target vertex

after 6 steps does not go below 0.9 for any phase. The robustness increases with n because an

equal superposition amongst n coin states is used for the initial state, and hence perturbing

one part of that superposition results in a smaller relative perturbation as n increases. If the

initial state is instead varied by perturbing each coin state by a random 0 ≤ δ ≤ 1 then the

robustness decreases slightly with n. For n = 3 the amplitude at the target node goes down

to 0.82, averaged from 1000 runs, at the perfect state transfer time. As n increases the value

tails off at 0.77.
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Fig. 7. Variation of fidelity of state transfer during Interpolation between a) Graphs K2 +Kn and
K2 + Pn; and b) K2 + Pn and K2 + Cn. n is the number of nodes in Kn, Pn or Cn and c is the

weighting of the edges that these graphs differ by. The orientations of the graphs are selected for
clearest viewing.

The robustness of the transport with respect to decoherence was also tested. The effects

of decoherence in the coin state and decoherence in the position state are both independent

of n, and probability at the target vertex decays smoothly as the rate increases, recovering

the classical distribution for decoherence rate p = 1 as expected.

5.4 Interpolation between the three families

It is possible to interpolate between graphs with the same vertices but different edges by

weighting the edges. To perform quantum walks on such graphs, coins reflecting this edge

weighting are required. The coin should be the Grover operator of dimension (d − t) when

no edge is present, and that of dimension d when the edge is fully present. Although walks

using the Grover coin over both K2 +Kn and K2 +Cn display perfect state transfer, adding

the edges they differ by gradually by using a coin that interpolates between Grover operators

of different dimensions in the way described in [45] destroys this perfect state transfer. The

coin is specified by

Gd,t =



a b b . . . b c c c . . . c
b a b . . . b c c c . . . c
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
b b b . . . a c c c . . . c
c c c . . . c e f f . . . f
c c c . . . c f e f . . . f
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
c c c . . . c f f f . . . e



, (19)

where a . . . f ∈ R and there are (d − t) ‘normal’ edges giving rise to blocks of size (d − t)
containing a′s and b′s and t ‘added’ edges with transitions specified by the block containing

e′s and f ′s. This coin enables an edge to be ‘turned on’ with strength c. The effect of turning

on the additional edges to go from K2 +Kn to K2 +Cn does not depend on n. The amplitude

at the target vertex at the perfect state transfer time decays quickly with c, and rises again

very slowly as c → 1. One can also interpolate between K2 + Kn and K2 + Cn by going

via K2 + Pn. This interpolation does not improve the transport properties of the walk over

K2 + Pn, as can be seen in Figure 7.
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Fig. 8. Time evolution of probability at the target node for a) graph K2 + Pn with n = 11 (solid)
and n = 10 (dotted); b) graph K2 + Pn with n = 21 (solid) n = 22 (dotted).

5.5 The continuous time walk on K2 +Kn, K2 + Cn and K2 + Pn

In general, a graph exhibiting periodicity, high probability, or perfect state transfer for a

specific coin in the discrete time walk is no indication that this will occur for the continuous

time walk over the same graph. However, for the three families of graphs discussed in this

section, the continuous time walks exhibit perfect or very high fidelity state transfer.

The continuous time walk on K2 + Kn displays perfect state transfer for any n, and is

hence periodic due to the symmetry of the graph. The perfect state transfer time can be tuned

by adjusting n, as n increases, the period decreases. An analytic expression for the period

in terms of n was deduced by inspection of the eigenvectors. The eigensystems of the graphs

K2 +Kn have only two nonzero eigenvalues of the form
√

2n, hence only two components of

the analytic expression for the time evolution determine the period, regardless of the initial

state used. The period of the graph is 2π/
√

2n, giving a perfect state transfer time between

vertices of Kn of π/
√

2n. The time evolution over K2 + Kn with initial state |ψ〉 = |n + 1〉,
with n+ 1 being one vertex of K2, is given by:

|ψ(t)〉 =



1√
2n

(−i sin(
√

2n t))
...

1√
2n

(−i sin(
√

2n t))
1
2 (cos(

√
2n t) + 1)

1
2 (cos(

√
2n t)− 1)

 (20)

where the first n entries are the vertices of Kn, the (n + 1)th entry is the initial vertex, and

the (n + 2)th entry is the final vertex. This expression applies for any n, including n = 0

where the vertices of Kn are not connected, so no evolution can occur. The cases for n = 1

and n = 2, giving rise to the graphs P3 and C4 respectively are already known [27].

There is little difference between the evolution over the graphs K2 + Pn and K2 + Cn, as

might be expected given that they differ by a single edge. Both exhibit oscillatory motion at

the initial and target vertices, as depicted in Figure 8, with the oscillations peaking at very

high probabilities or unity. Clearly from the choice of n’s plotted, perfect state transfer does

not occur for every n, so there is no simple relationship between the evolutions for different
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n’s. As for K2 + Kn, the periods of the oscillations get smaller as n increases. Decoherence

in these walks quickly smears out the oscillatory behaviour, destroying the periodicity and

perfect state transfer.

6 Discussion

We investigated discrete time quantum walks over small graphs for a variety of choices of

coin operation. The graphs were variations of graphs known to exhibit perfect state transfer

under some circumstances, most notably diamond chains and cycles of length 4, 6 and 8. We

have systematically investigated how a range of specific variations, namely the addition of up

to four nodes, affects the perfect state transfer. We found that in general, varying the graphs

in this way destroys the perfect state transfer. There are a small number of simple ways

in which adding new nodes to the graph structure does not affect the perfect state transfer.

Apart from that depicted in Figure 4(a), these held for each of the cycles tested as they only

involved modification of antipodal nodes. As long as the modifications do not add new paths

between the antipodal nodes, the number of interim nodes in the cycle will only affect the

number of timesteps required to obtain perfect state transfer for operator O2 rather than

whether that transfer occurs. No dramatically new ways of achieving perfect state transfer

were found, despite many of the structures investigated having properties shown analytically

to be important for perfect state transfer– namely symmetry in the graph structures and coin

operators [20, 21]. As some of these results [21] were obtained for graphs fulfilling very strict

criteria, it is not surprising that these properties do not, in general lead to the specification

of walks with perfect state transfer.

In terms of future work, if we intend to limit the size of the graphs examined, there is little

point in adding further nodes to the graphs tested. The effects of adding extra connections

between the existing vertices of the cycle were not examined. As all of the cases in which

perfect state transfer was not destroyed relied on the fact that our operator O2 is simply a

swap operator at nodes of degree 2, increasing the degree of these nodes does not appear

to be a good way of varying the structure for the purposes of investigating perfect state

transfer. A systematic study of all graphs upto a certain size may be required in order to

obtain some potentially more interesting results. Whilst there is also the freedom to vary

the coin operators, our choices are natural as they arise in many discussions of the quantum

walks [19, 46, 22, 8].

Though many of the graphs exhibited high amplitude transfer to some node for a limited

subset of initial conditions tested, we were looking for perfect state transfer between antipodal

nodes occurring for a variety of initial conditions. Some of the graphs found to have perfect

state transfer between antipodal nodes could be generalised into families of graphs, and the

dynamics of quantum walks on these families were investigated in detail. Two of the families

of graphs, for the right choices of coin operator in the discrete time walk, exhibit periodicity,

and in some cases perfect state transfer. We found that these families also exhibit very high

amplitude transfer, or perfect state transfer, in the continuous time case. In the case of the

discrete time walk over K2 + Cn it was found that increasing n improved robustness of the

perfect state transfer to variations in one coin state of the initial state, but not to decoherence.

In the continuous time case, n can be used to tune the perfect state transfer time.

Characterising the graphs which admit perfect state transfer remains an ongoing project,
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as is understanding which structural properties of graphs give rise to perfect state transfer.

We have found cases where adding an arbitrary number of nodes to a particular graph in

the right way preserves its state transfer properties. Ideally, general methods of determining

whether a graph has perfect state transfer, such as that outlined in [17] for the continuous

time case, are required. Due to the coin degrees of freedom, and the wide choice in coin

operator, this is a far more difficult task in the discrete time case.
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Appendix A

Summary of the numerical results relating to state transfer to the end of a diamond chain,

results for 4 ≤ n < 10 are omitted as they follow the trend indicated in Section 4.1:

Coin n Chain (a) max Chain (b) max Chain (c) max Chain (d) max

O1 2 0.52 0.52 0.24 0.30
3 0.27 0.23 0.18 0.33
10 0.05 0.04 0.06 0.26

O2 2 1.00 0.99 0.69 0.77
3 1.00 0.99 0.70 0.46
10 1.00 0.98 0.12 0.23

O3 2 0.35 0.25 0.78 0.71
3 0.14 0.14 0.46 0.64
10 0.07 0.13 0.22 0.20

The perfect state/high amplitude transfer for chains (a) and (b) using operator O2 occur

after 2n timesteps.

Appendix B

Summary of the maximum state transfer achieved numerically between highlighted nodes of

graphs in Figure B.1:
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Graph Coin (1) max Coin (2) max Coin (3) max
(a) 0.99 0.96 0.96
(b) 0.97 0.96 0.96
(c) 0.97 0.96 0.96
(d) 0.83 1.00 0.90
(e) 0.42 1.00 0.70
(f) 0.62 0.95 0.48
(g) 0.51 0.98 0.60
(h) 0.44 0.75 0.75
(i) 0.44 0.77 0.77
(j) 0.20 0.40 0.40
(k) 0.74 0.73 1.00

Typically the high amplitude transfer observed is very sensitive to initial conditions, for all

variants but (a); with high amplitude transfer fewer than 3% of initial states tested exhibited

this property.


