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We develop several algorithms for performing quantum phase estimation based on basic

measurements and classical post-processing. We present a pedagogical review of quantum

phase estimation and simulate the algorithm to numerically determine its scaling in
circuit depth and width. We show that the use of purely random measurements requires

a number of measurements that is optimal up to constant factors, albeit at the cost of

exponential classical post-processing; the method can also be used to improve classical
signal processing. We then develop a quantum algorithm for phase estimation that

yields an asymptotic improvement in runtime, coming within a factor of log∗ of the

minimum number of measurements required while still requiring only minimal classical
post-processing. The corresponding quantum circuit requires asymptotically lower depth

and width (number of qubits) than quantum phase estimation.
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1 Introduction

Quantum algorithms promise computational speed-ups over their classical counterparts. Quan-

tum phase estimation is a key technique used in quantum algorithms, including algorithms

for quantum chemistry [1, 2] and quantum field theory [3], Shor’s algorithm for prime factor-

ization [4], and algorithms for quantum sampling [5, 6]. It can be used to find eigenvalues of

a unitary matrix efficiently.

There are two main approaches to quantum phase estimation: (1) invoking an inverse

Quantum Fourier Transform (QFT) [7, 8, 9] to extract information about the phase or (2)

performing a basic measurement operation followed by classical post-processing in place of

the QFT [10, 11]. An advantage of approach (2) is that it uses classical post-processing in

place of quantum operations, trading off an expensive resource for an inexpensive classical

computation. In particular, the QFT requires many small controlled-rotations, each of which

must be approximated to precision ε by a sequence of basic quantum operations of length
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O(log(1/ε)) [12]. In practice, we may want to significantly reduce the circuit depth of the

phase estimation algorithm in exchange for a small increase in circuit width, i.e., the number

of qubits. Therefore, we focus on approach (2) and rely primarily on quantum measurements

to infer information about the phase.

We begin by outlining the goal of quantum phase estimation and explaining the basic

measurement operation that is used as a subroutine to do this, and contrast this problem

with the classical Fourier transform. We then describe various phase estimation algorithms;

these algorithms all call the same basic measurement operation, but use different parameters

to do this.

We first present in Section 3 a technique based on random measurements to infer the phase;

this technique uses the fewest number of measurements of any we know (and we prove that

it is within a constant factor of optimal), but it requires impractical classical post-processing

for use in, say, Shor’s algorithm [4], with a complexity that is exponential in the number of

bits being inferred. However, this technique may be practical in certain classical noisy signal

processing and inference applications, where the number of bits being inferred is smaller. We

explain these applications in this section and give some extensions of the technique that may

be useful in inferring very noisy, sparse signals.

In Section 4, we review a quantum phase estimation algorithm based on the same mea-

surement operation, but the measurements are not random and the classical post-processing

can be done efficiently [10, 11]. We simulate this algorithm and determine its complexity,

circuit depth, and circuit width for various sizes of input.

In Section 5, we improve upon this phase estimation algorithm by considering inference

across multiple qubits. We show that this technique requires asymptotically fewer measure-

ments, and in turn has a correspondingly (asymptotically) smaller circuit width and depth,

while still allowing efficient classical post-processing.

We compare the circuit constructions for Kitaev’s phase estimation algorithm and the fast

phase estimation algorithm in Section 6. Three models of computation are discussed: the

first is a sequential model with limited parallelism, the second is a highly parallel model, and

the third is a model based on a cluster of quantum computers.

2 Phase Estimation and the Basic Measurement Operation

We begin by reviewing the goal of quantum phase estimation and the basic measuring opera-

tor, following the algorithm of Kitaev [10] (see Ref. [11] for complete details). We derive the

steps slightly differently, in anticipation of our extension in the later sections.

Assume that we have a unitary operator U and we would like to estimate the eigenvalues

λk of U given U and the eigenvectors |ξk〉:

U |ξk〉 = λk|ξk〉, (1)

where the eigenvalues take the form λk = e2πi·ϕk . The phase ϕk is a real number modulo 1,

which can be represented as a unit-length circle: ϕk = k
t mod 1, ϕk ∈ R/Z, 0 ≤ k < t < 2m

(while it may seem more natural at first to instead consider numbers that range between 0

and 2π, rather than choosing a number between 0 and 1 and multiplying by 2π as we do here,

we choose the latter because it will be more natural when later considering an expansion of
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ϕk as a binary fraction). By measuring the eigenvalues of U , we can obtain an estimate of

the phase ϕk; this process is called quantum phase estimation. d

The goal of all phase estimation algorithms is to take a state of the form |ξk〉 and determine

the corresponding eigenvalue λk. The measurement operation described below commutes with

U , so we can apply it multiple times to the same state with different parameters to improve

our knowledge of the eigenvalue. There are two parameters in the measurement result: (1)

the precision δ and (2) the probability of error ε. That is, we obtain some estimate α of ϕk
where, with probability at least 1 − ε, |α − ϕk| mod 1 < δ, where mod 1 is the distance on

the unit circle. If ϕk is chosen from a discrete set of angles k
t with fixed t and unknown k, our

goal is to make the precision smaller than δ = 1
2t so that we can determine ϕk exactly from

this set. In Section 3, we slightly simplify the problem by directly inferring the angle ϕk from

the discrete set of possible angles, without bothering to introduce a real number precision; in

this case ε is the probability of error in our discrete inference.

2.1 Basic Measurement Operation

We begin by constructing a measuring operator such that the conditional probability depends

on ϕk, that is, upon measuring this operator, we learn some information about ϕk. This

construction relies on the fact that if |ξk〉 is an eigenvector of U , then it is also an eigenvector

of powers M of U :

UM |ξk〉 = λMk |ξk〉 (2)

= e2πiM ·ϕk |ξk〉 .

The operator takes as input two quantum registers: one initialized to |0〉 and the other

initialized to the eigenvector |ξk〉. The operator depends upon two parameters, a “multiple”

M and an “angle” θ, where M is an integer between 1 and t − 1 (to make it practical to

implement, we restrict to positive integers M) and θ is a real number between 0 and 2π.

The measuring operator used to measure the eigenvalues is as follows:

ΞM,θ(U) (3)

=
∑
k

1

2

[
1 + e2πiM ·ϕk+iθ 1− e2πiM ·ϕk+iθ

1− e2πiM ·ϕk+iθ 1 + e2πiM ·ϕk+iθ

]
⊗ |ξk〉〈ξk|

=
1

2

[
1 + UM exp(iθ) 1− UM exp(iθ)
1− UM exp(iθ) 1 + UM exp(iθ)

]
,

which acts on the quantum states by the following transformation:

|0〉 ⊗ |ξk〉
ΞM,θ(U)7→ (4)(

1 + e2πiM ·ϕk+iθ

2
|0〉+

1− e2πiM ·ϕk+iθ

2
|1〉
)
⊗ |ξk〉.

The corresponding circuit, with measurement, is shown in Fig. 1. The gate Z(θ) corresponds

to the unitary:

Z(θ) =

[
1 0
0 eiθ

]
. (5)
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|0〉 H Z(θ) • H

|ξk〉 / UM

Fig. 1. Circuit to perform the measurement operation.

It follows that the measurement outcome probabilities are given by:

PM,θ(0|k) =

∣∣∣∣1 + e2πiM ·ϕk+iθ

2

∣∣∣∣2 =
1 + cos(2πM · ϕk + θ)

2
, (6)

and

PM,θ(1|k) =

∣∣∣∣1− e2πiM ·ϕk+iθ

2

∣∣∣∣2 =
1− cos(2πM · ϕk + θ)

2
. (7)

We write these probabilities as conditional probabilities to emphasize that they depend upon

the unknown k.

2.2 Relation To Classical Fourier Transform and Generalizations

With Eqs. (6,7) in hand, we can see that if we apply a large number of measurements using

the same M at both θ = 0 and θ = π/2, we can accurately estimate cos(2πM · ϕk) and

sin(2πM ·ϕk). Using a sufficiently accurate estimate of these cosines and sines at two different

values of M allows us to determine ϕk accurately. This is the problem of reconstructing a

sparse signal (in this case, composed of a single Fourier mode) from its value at a small

number of different “times” (i.e., different values of M). However, the accurate determination

of cos(2πM · ϕk) would require a very large number of measurements, polynomial in t, while

other methods require many fewer measurements. The reason is that the large number of

measurements at a fixed value of M means that each measurement imparts little additional

information. By varying M , we are able to obtain accurate results from a much smaller

number of measurements.

This relates to a problem of reconstructing the Fourier transform of a signal from very

noisy measurements. The quantum phase estimation problem involves a signal with a single

Fourier mode. However, this gives rise to a natural generalization of reconstructing a problem

with a small number of Fourier modes from very noisy measurements. We consider this

problem at the end of the next section.

3 “Information Theory” Phase Estimation

Recently, classical inference techniques have been increasingly used to estimate unknown

frequencies [13, 14, 15] or phases [16, 17]. One procedure for estimating the phase (or angle)

is to perform a series of random measurements and then solve a hard classical reconstruction

problem. We measure the operator at a set of randomly chosen multiples Mi and angles θi
and classically reconstruct the angle 2πϕk. In this section, we show that we can determine

ϕk with only O(log(t)) measurements; we also show that this result is tight.

dIn the context of Shor’s algorithm, the corresponding eigenvector is defined as |ξk〉 = 1√
t

∑t−1
n=0 e

−2πi·nϕk |an〉.
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We randomly select Mi for each measurement i between 1 and t − 1, and also assume

a small randomized offset noise θi = 2πr, where r is a random double. The conditional

measurement probabilities for this measuring operator on the ith measurement are given by:

Pi(0|k) =
1 + cos(2πMi · ϕk + θi)

2
, (8)

and

Pi(1|k) =
1− cos(2πMi · ϕk + θi)

2
= 1− Pi(0|k). (9)

Let vi be the outcome of the ith measurement. Since different measurements are indepen-

dent events, the probability of getting a given sequence of measurement outcomes is

P (v1, . . . , vs|k) =

s∏
i=1

Pi(vi|k). (10)

Assuming a flat a priori distribution of k, the probability distribution of k given the mea-

surement sequence is proportional to P (v1, . . . , vs|k). The algorithm then to compute k given

a sequence of s measurements is simple: for each k compute the probability P (v1, . . . , vs|k),

outputting the k which maximizes this. The post-processing time required is of order st,

which is exponentially large in the number of bits inferred since the value of k that it outputs

can be written with dlog2(t)e bits.

The information theory phase estimation algorithm is given in Algorithm 1.

Algorithm 1 Information Theory Phase Estimation

1: for i = 1 to s do
2: Choose random Mi. Choose random θi.
3: Perform basic measurement operation with multiple Mi and angle θi.
4: end for
5: Maximize

P (v1, . . . , vs|k) =

s∏
i=1

Pi(vi|k)

over all choices of k.
6: return k/t, the estimate of the phase.

To illustrate, we simulated the probability of inferring the given angle 2πϕk among t = 104

equally distributed possible angles. Figures 2a–2e plot the inferred probability distribution as

a function of angle after s measurements, where s = {10, 20, 30, 40, 50}. The black diamond

on each plot indicates the peak at the correct angle. From the plots, we see that after 10–20

measurements, the inference is very noisy, while after 40 or more measurements it has inferred

some information about the correct angle, and after 50 measurements it is very precise.

In Figure 3, we plot simulation results for inferring the given angle 2πϕk among t =

{101, 102, 103, 104, 105} equally distributed possible angles. The x-axis is the number of ran-

dom measurements s and the y-axis is the probability that the k which maximizes Eq. (10)

after s measurements is the correct angle. Clearly, as t increases, the number of measurements

increases, following an O(log(t)) behavior.
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(a) 10 random measurements.

(b) 20 random measurements. (c) 30 random measurements.

(d) 40 random measurements. (e) 50 random measurements.

Fig. 2. Results of simulating the probability of inferring a given angle among t = 10000 equally
distributed possible angles. Plots are of the inferred probability distribution as a function of angle

after 10–50 random measurements. The correct angle is marked by a black diamond.
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Fig. 3. Results of simulating “information theory” phase estimation for t =

{101, 102, 103, 104, 105} equally distributed possible angles. The x-axis is the number of ran-

dom measurements s; the y-axis is the probability that the most likely angle after s measurements
is the correct angle.

3.1 Bounds on s

We now show that O(log(t)) measurements suffice to estimate the angle with high probability.

This number of measurements required is asymptotically optimal (up to constant factors), as

clearly blog2(t)cmeasurements are required to have an error probability greater than 1/2: after

s measurements, there are at most 2s possible outcomes for the sequence of measurements, so

to select an angle from a set of t choices with probability greater than 1/2, we need 2s > t/2.

A more sophisticated entropic argument would likely be able to improve the constant in front

of this lower bound.

The next theorem implies that the number of measurements to obtain error probability

at most ε is log1/c(t/ε) for some constant c < 1.

Theorem 1: Suppose we choose the multiples Mi and angles θi at random as above. Suppose

the measurement outcomes are chosen with probabilities given in Eqs. (8,9) for k = k0. Then,

the probability ε that the algorithm described above chooses a k′ 6= k0 as the choice with

maximal likelihood is bounded by tcs for some numerical constant c strictly less than 1 (c

does not depend upon t).

Proof: We first consider a given k′ 6= k0 and estimate the probability that after s mea-

surements, the probability P (v1, . . . , vs|k′) =
∏s
i=1 Pi(vi|k′) is greater than or equal to

P (v1, . . . , vs|k0). Consider the expectation value

E
[P (v1, . . . , vs|k′)1/2

P (v1, . . . , vs|k0)1/2

]
, (11)

where the expectation value is over measurement outcomes and choices of Mi and θi. This



K.M. Svore, M.B. Hastings, and M. Freedman 313

equals

E{Mi,θi}

[∑
{vi}

P (v1, . . . , vs|k′)1/2

P (v1, . . . , vs|k0)1/2
P (v1, . . . , vs|k0)

]
= E{Mi,θi}

[∑
{vi}

P (v1, . . . , vs|k′)1/2P (v1, . . . , vs|k0)1/2
]
,

where the sum is over all 2s possible sequences v1, . . . , vs of measurement outcomes and the

expectation value is now over all choices of θi,Mi. This equals(
EM,θ

[∑
v

PM,θ(v|k′)1/2PM,θ(v|k0)1/2
])s

, (12)

where EM,θ[...] is the expectation value over M, θ. A direct calculation, given at the end of this

proof, shows that for all k′ 6= k, the term in parenthesis EM,θ[
∑
v PM,θ(v|k′)1/2PM,θ(v|k0)1/2]

is bounded by some constant c < 1 for all t. Thus, the expectation value (11) is bounded by

cs. Thus, for a given k′, the probability that P (v1, . . . , vs|k′) ≥ P (v1, . . . , vs|k0) is bounded

by cs, as can be shown by applying Markov’s inequality to P (v1,...,vs|k′)1/2
P (v1,...,vs|k0)1/2

.

Thus, the probability that there is a k′ such that P (v1, . . . , vs|k′) ≥ P (v1, . . . , vs|k0) is

bounded by tcs.

Finally, here is the claimed bound on EM,θ[
∑
v PM,θ(v|k′)1/2PM,θ(v|k0)1/2]. Let cM,θ =

(cos(2πMφk′+θ)+cos(2πMφk0+θ))/2 and let dM,θ = (cos(2πMφk′+θ)−cos(2πMφk0+θ))/2.

Then

EM,θ[
∑
v

PM,θ(v|k′)1/2PM,θ(v|k0)1/2]

= EM,θ[
∑

σ∈{−1,+1}

1

2
(1 + σcM,θ + σdM,θ)

1/2(1 + σcM,θ − σdM,θ)
1/2]

= EM,θ[
∑

σ∈{−1,+1}

1

2

(
(1 + σc2M,θ − d2

M,θ

)1/2

≤ EM,θ[
∑

σ∈−1,+1

1

2

(
1 + σc2M,θ −

1

2

d2
M,θ

(1 + σc2M,θ)
1/2

)
]

= EM,θ[1−
∑

σ∈{−1,+1}

1

4

d2
M,θ

(1 + σc2M,θ)
1/2

]

≤ EM,θ[1−
1

2
d2
M,θ] ≤ 7/8.

�

We have not bothered to optimize the estimate in Theorem 1; it is possible that a tighter

bound could be considered by estimating the expectation value E[
(
P (v1,...,vs|k′)
P (v1,...,vs|k0)

)a
] for some

constant 0 < a < 1 and optimizing the choice of a in the spirit of the Chernoff bound.

Finally, we remark that while we have selected θ randomly between 0 and 2π in Algorithm

1 and in Theorem 1, in fact it would suffice to pick θ randomly from the set of angles {0, π/2},
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or indeed from any set of a pair of angles that do not differ by exactly π (for example, the set

{0, π} would not work). The proof of the theorem would be essentially the same in this case,

and restricting to such a smaller set of angles may be more convenient for implementation on

a quantum computer.

3.2 Classical Inference of Multiple Fourier Modes

The results above suggest a natural generalization of the problem. Define a classical channel

E(x) which maps from a real number x between −1 and 1 to an output consisting of a single

bit. We fix the output probabilities of this channel:

P (0|x) =
1 + x

2
, (13)

P (1|x) =
1− x

2
. (14)

Then Eqs. (8,9) can be interpreted as follows: for θi = 0, for any Mi, we take the number

cos(2πMi · ϕk) and input this number into the channel and the output of the channel is the

measurement outcome, while for θi = 1, we instead input sin(2πMi · ϕk).

This then suggests a natural generalization. Consider a classical signal written as a sum

of Fourier modes:

f(M) =
∑
k

a(k) exp(2πiM · ϕk). (15)

Here, M is an integer and the function is periodic with period t.

Then, we have the natural classical problem:

Problem 1: We begin by stating assumptions on a function f and a channel C:

• Assume that f(M) is K-sparse, meaning that at most K of the coefficients a(k) are

non-zero.

• Assume that the non-zero a(k) are chosen from a discrete set S of possible values

(typically we will be interested in |S| being small), with mina6=b,a∈S,b∈S |a − b| ≥ dmin
for some dmin. The a(k) may be complex.

• Let the maximum of |f(M)|, over all such K-sparse a(k) and over all M , be bounded

by some quantity which we denote Amax.

• Assume that we have some channel C(x) which maps from a real number in the range

[−Amax, Amax] to an output chosen from a discrete set (the channel C(x) need not be

the same as that given above in Eqs. (13,14)). For this channel to be useful in inferring

x from measurements of the output, we will require that different input numbers lead to

different output probabilities, and we will quantify this more precisely below in Eq. (16).

Given these assumptions the problem is to infer the coefficients a(k) given some set

of measurement outcomes; these are outcomes of measurements of either C(Re(f(Mi))) or

C(Im(f(Mi))) for some chosen set of Mi.

This problem can be interpreted as inferring a classical sparse signal from noisy measure-

ments at several different “times” (interpreting each Mi as a time at which to infer the signal).
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We now show, given suitable assumptions on C(x), that this problem can be solved using a

number of measurements that is O(log(Nchoices)), where Nchoices is the number of possible

choices of K-sparse f(M). As before, this number of measurements is asymptotically optimal.

Note that for K << t, log(Nchoices) ≈ K log(t|S|).
The procedure we describe is similar to that previously: we select random Mi and ran-

domly choose whether to measure C(Re(f(Mi))) or C(Im(f(Mi))) at each time. After s

measurements, we select the choice of a(k) which has the maximal a posteriori likelihood,

assuming a flat initial distribution. Interestingly, since the number of measurements we need

is asymptotically much smaller than
√
t (indeed we only need O(log(t)) measurements if

K = O(1)), this means that this random procedure typically does not ever pick Mi = Mj for

i 6= j. That is, interpreting the Mi as “times”, this means that we do not ever measure the

signal twice at the same time.

Note that we have assumed that the non-zero coefficients are chosen from a small set S of

possible values. As the number of possible values of S increases, the number of measurements

increases for two reasons. First Nchoices increases. Second, the values in the set become more

closely spaced (dmin becomes smaller compared to Amax), and the measurement outcomes

probabilities hence become less sensitive to the particular value of a(k). This second problem

is actually the more serious one. Suppose that we have a signal that is 1-sparse, and we

even know that the only non-zero a(k) is at k = 0. The question is to infer the magnitude

of a(0). Every measurement then consists of sending a(0) into the channel C(x). Using the

channel C(x) before, it takes 1/ε2 measurements to infer a(0) to precision ε. This number

of measurements is exponential in the number of bits of precision in a(0). That is, it takes

many more measurements to infer the amplitude of a Fourier coefficient than it does to infer

its frequency.

Theorem 2: Suppose we choose the multiples Mi at random as above and randomly choose

whether to measure C(Re(f(Mi))) or C(Im(f(Mi))) at each time. Suppose also that C(x)

has the property that for any x, y ∈ [−Amax, Amax] we have∑
v

P (v|x)1/2P (v|y)1/2 ≤ 1− c0|x− y|2 (16)

for some constant c0, where the probabilities P (v|x) are the probability that the channel C

gives output v given input x. Then, the probability ε that the algorithm described above

chooses a k′ 6= k0 as the choice with maximal likelihood is bounded by Nchoicesc
s, where

c ≤ 1− c0
(dmin

2

)2 d2
min

16A2
max

. (17)

Proof: Assume the correct choice of a(k) is given by a0(k). We consider a given sequence

a′(k) (such that for at least one k, a′(k) 6= a0(k)) and estimate the probability that after s

measurements, the probability P (v1, . . . , vs|a′(k)) is greater than or equal to P (v1, ...vs|a0(k)),

where v1, . . . , vs are the measurement outcomes of the channel.

Let

f0(M) =
∑
k

a0(k) exp(2πiM · ϕk) (18)
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and

f ′(M) =
∑
k

a′(k) exp(2πiM · ϕk). (19)

Consider the expectation value

E
[ P (v1, . . . , vs|a′(k))1/2

P (v1, . . . , vs|a0(k))1/2

]
, (20)

where the expectation value is over measurement outcomes and choices of Mi and choices of

real or imaginary part. This equals

E{Mi,Ri}

[∑
{vi}

P (v1, . . . , vs|a′(k))1/2

P (v1, . . . , vs|a0(k))1/2
P (v1, . . . , vs|a0(k))

]
= E{Mi,Ri}

[∑
{vi}

P (v1, . . . , vs|a′(k))1/2P (v1, . . . , vs|a0(k))1/2
]
,

where the sum is over all possible sequences v1, ..., vs of measurement outcomes and the

expectation value is now over all choices of θi and of real or imaginary part (Ri = 0, 1 is used

to denote a measurement of real or imaginary part). This equals

{1

t

t−1∑
M=0

(P (v|Re(f0(M)))1/2P (v|Re(f ′(M)))1/2

2

+
P (v|Im(f0(M)))1/2P (v|Im(f ′(M)))1/2

2

)}s
. (21)

Below, we will use the assumptions on C(x) to show that the term in parenthesis in

Eq. (21) is bounded by some constant c < 1 for all t. Using this bound, the expectation value

(20) is bounded by cs. Thus, for a given a′(k), the probability that P (v1, . . . , vs|a′(k)) ≥
P (v1, . . . , vs|a0(k)) is bounded by cs. Thus, the probability that there is an a′(k) such that

P (v1, . . . , vs|a′(k)) ≥ P (v1, . . . , vs|a0(k)) is bounded by Nchoicesc
s, as claimed.

We now bound the term in parenthesis in Eq. (21). Consider 1
t

∑
M |f ′(M) − f0(M)|2.

This is greater than d2
min. Also, for every M , |f ′(M)− f0(M)|2 ≤ 4A2

max. So, for randomly

chosen M , the probability that |f ′(M)−f0(M)|2 is greater than or equal to d2
min/2 is at least

d2
min/8A

2
max. So, the probability that if we randomly choose M and randomly choose whether

to measure real or imaginary part, that the corresponding part (i.e., either real or imaginary)

of f ′(M)− f0(M) is greater than dmin/2 in absolute value is at least d2
min/16A2

max. Hence,

by the assumption (16) on C(x), we have that the term in parenthesis in Eq. (21) is bounded

by

c ≤ 1− c0
(dmin

2

)2 d2
min

16A2
max

. (22)

�
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4 Kitaev’s Phase Estimation Algorithm

Recall from Section 2.2 that if we apply a large number of measurements using two different

values of M at both θ = 0 and θ = π/2, we can accurately estimate cos(2πM · ϕk) and

sin(2πM ·ϕk), and therefore determine ϕk. In this section, we review Kitaev’s phase estimation

algorithm to determine ϕk with exponential precision [10] (for complete details, we refer the

reader to Sec. 13.5 in Ref. [11]). This algorithm relies on obtaining accurate measurements

at multiples of ϕk. We begin by reviewing how to accurately measure a given multiple of ϕk
with constant precision, building up to estimating the phase with exponential precision. We

also simulate the algorithm to determine how many measurements are required in practice.

4.1 Estimating ϕk with Constant Precision

Recall that ϕk = k
t mod 1, where ϕk ∈ R/Z and 0 ≤ k < t < 2m. Let θi = {0, π/2} at

random. Using the measurement operation given in Section 4.1 and Eqs. (6,7), the conditional

probability when measuring multiple M = 1 is given by:

P (0|k) =
1 + cos(2π · ϕk + θi)

2
(23)

We now solve for the conditional probability P (0|k):

2P (0|k)− 1 (24)

= cos(2π · ϕk + θi)

= cos(2π · ϕk) cos θi − sin(2π · ϕk) sin θi.

We make s measurements, choosing θi ∈ {0, π/2} randomly, to obtain approximations P ∗cos

and P ∗sin close to cos(2π · ϕk) and sin(2π · ϕk), respectively. Let there be Nc measurements

with θi = 0. Let Nc(0) denote the number of these measurements having outcome 0 and let

Nc(1) denote the number having outcome 1. Then, let

P ∗cos =
Nc(0)−Nc(1)

Nc
. (25)

If there are Ns measurements with θi = π/2, with Ns(0) of them having outcome 0 and Ns(1)

having outcome 1, then let

P ∗sin =
Ns(1)−Ns(0)

Ns
. (26)

Given P ∗cos, P
∗
sin, our best estimate of ϕk is obtained by taking an arctangent of P ∗sin/P

∗
cos,

choosing the appropriate quadrant.

Equivalently, we can determine multiples Mi of ϕk in the same manner by measuring and

obtaining the probability

P (0|k) =
1 + cos(2πMi · ϕk + θi)

2
, (27)

and computing similar estimates P ∗ and again taking an arctangent.

In practice, how many measurements s are needed to accurately determine Mi · ϕk? This

is analyzed in the next two sections.
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4.2 Estimating ϕk with Exponential Precision

To efficiently achieve exponential precision in our estimate of ϕk, we measure multiples Mi

of ϕk. Then we use the measurement results in a classical inference technique to enhance the

precision of the estimate. We begin by measuring multiple M0 = 2m−1, then M1 = 2m−2,

increasing the precision as we move to Mm−1 = 20. Each measurement gives us an estimate

of Miϕk mod 1.

To achieve the desired precision and probability of error, we measure each multiple s times,

where in this section, s refers to the number of measurements per multiple for both cosine and

sine, so that the total number of measurements required is 2ms. The estimate of 2j−1 · ϕk,

using methods of Sec. 4.1, is denoted as ρj .

We introduce binary fraction notation, where .α1 . . . αj =
∑j
p=1 2−p αp, αp ∈ {0, 1}. The

output of the algorithm is α = .α1 . . . αm+2, which is an exponentially precise estimate of ϕk:

|α− ϕk| <
1

2m+2
. (28)

Kitaev’s phase estimation algorithm [10] is given in Algorithm 2.

Algorithm 2 Kitaev’s Phase Estimation [10]

1: for j = m to 1 do
2: Set ρj to the estimate of 2j−1 · ϕk using O(s) measurements per j.
3: end for
4: Set .αmαm+1αm+2 = βm, where βm is the octant value { 0

8 ,
1
8 , ...,

7
8} closest to ρm.

5: for j = m− 1 to 1 do
6: Infer αj :

αj =

{
0 if |.0αj+1αj+2 − ρj | mod 1 < 1/4.
1 if |.1αj+1αj+2 − ρj | mod 1 < 1/4.

7: end for
8: return α, the estimate of the phase.

Note that in Algorithm 2, we modify the inference step in line 6 to use ρj , as opposed to

using βj as done in Ref. [11].

4.3 Simulation Results

How large does s need to be to estimate ϕk to exponential precision? The probability that a

given estimate of 2j−1ϕk differs by more than a given amount from the true value is exponen-

tially small in s, as shown in Ref. [11] using a Chernoff bound. This implies that to accurately

compute the word (the entire sequence of bits α), we need s to scale logarithmically with m.

We ran 10000 independent simulations of Algorithm 2, for words of lengthm = {1000, 10000}.
These word lengths are of particular interest since Shor’s algorithm promises computational

speed-ups over its classical counterpart for words longer than 1000 bits [18]. We considered

performance of the algorithm as we varied the number of measurements s of each multiple.

Figure 4 shows the numerical results. The x-axis is the number of measurements s. The

y-axis is the probability, where we plot both the probability of a given bit being wrong (blue)

across all bits and simulation runs, and the probability of a given word being wrong (red)
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(a) 1000 Bits. (b) 10000 Bits.

Fig. 4. The number of measurements s versus the probability of a given bit being wrong (blue)

and a given word being wrong (red), meaning probability that a given word has at least one bit

wrong. (a) Simulation results for words of length 1000 bits. (b) Simulation results for words of
length 10000 bits.

across all simulation runs (i.e., the probability that at least one bit in the word is wrong). For

both word lengths, we see that s scales logarithmically in m, and does not exceed 64. The

number of measurements required thus scales as O(m log(m)). The corresponding classical

post-processing circuit scales as O(m) size and O(log(m)) depth.

5 Fast Phase Estimation

In this section, we extend Kitaev’s algorithm for phase estimation by considering inference

across multiple bits simultaneously. We begin by describing an algorithm that improves the

number of measurements O(m log(m)) in the previous section to O(m log(log(m)). This algo-

rithm consists of two “rounds”, where the first round is similar to Kitaev’s algorithm, but the

second round infers multiple bits simultaneously. Having described this algorithm, we then de-

scribe how to further improve it by considering more rounds, requiring O(m log(log(log(m))))

measurements for three rounds, and so on, ultimately describing an algorithm that requires

O(m log∗(m)) measurements, where log∗(m) is the iterated logarithm and is bounded for all

practical purposes by 5. These algorithms all require only an amount of computational time

for classical post-processing that is O(m log(m)) as discussed at the end of the section.

The algorithms in this section can be motivated as follows: the limitation of Kitaev’s algo-

rithm is that it infers single bits at a time, and requires logarithmically many measurements

per bit. So, a natural generalization is to consider multiples M that are not powers of two,

so that we can infer multiple bits at a time. The information theory method does this, by

using random M , but requires lots of post-processing. So, in this section we consider “sparse”

M , in that the M will be a sum of a small number of powers of two. There is a tradeoff,

in that as the “density” (defined to be the number of powers of two) increases, the number

of measurements required is reduced, but the postprocessing becomes more complicated. So

to make the inference efficient, we use a bootstrapping procedure with multiple rounds, with

the density increasing from one round to the next. The early rounds yield only imperfect

inferences, but they give enough information to simplify the inference in later rounds.

5.1 Two Round Algorithm

The measurements that we use in the first round of the two-round algorithm are equivalent

to those of Kitaev’s algorithm, except that the parameter s will be chosen differently. We
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set s = s1 for some s1 chosen later (we call this quantity s1 as in the second round we will

have an s2, and so on). Using a Chernoff bound estimate as in Ref. [11], we can bound the

probability that the difference between 2j−1 · ϕk and our best estimate of 2j−1 · ϕk is greater

than 1/16 by exp(−cs1) for some constant c > 0. For notational simplicity, we will use one

piece of notation that was used in Kitaev’s original algorithm: for each j, we will let βj be

the closest approximation in the set { 0
8 , ...,

7
8} to the estimate of 2j−1 ·ϕk. So, the probability

of an error larger than 1/8 in βj is bounded by exp(−cs1).

In the original Kitaev algorithm, we then combine these βj to estimate ϕk. Instead, our

goal in the first round of the two-round algorithm is to give, for almost every j, a quantity

called ρj that will be an estimate of 2j−1 · ϕk to a precision δ1, where the subscript 1 is to

indicate that this is the precision on the first round. This quantity δ1 will be much larger

than the final precision δ of our two-round algorithm, but will be much smaller than 1. We

say “almost every” j because, as we will see, we will only be able to give this precise estimate

ρj for 0 ≤ j < m − log(1/δ1); however, since log(δ1) will be much smaller than m, this will

indeed be most of the j. To compute ρj , we use βj+l for l = 0, ..., log(1/δ1) in a Kitaev-style

inference procedure to compute log(1/δ1) + 2 bits in the binary expansion of ρj . That is, we

obtain the three lowest order bits in the binary expansion from βj+log(1/δ1). We then sharpen

the estimate, obtaining the lth bit in the binary expansion from βj+l−1 and from the l + 1th

and l + 2th bits, proceeding iteratively. We can bound the probability of error in ρj by

Pr
[∣∣∣ρj − 2j−1 · ϕk

∣∣∣
mod 1

≥ δ1
]
≤ log(1/δ1) exp(−cs1). (29)

The factor of log(δ1) occurs because to obtain an error less than δ1 requires log(1/δ1) bits of

precision. This estimate of the probability of error is essentially the same as the estimate of

the probability of having an error in Kitaev’s original algorithm, except that instead of having

m + 2 bits in the expansion, we have log(1/δ1) + 2 bits. The event of having large error for

some given j is uncorrelated with the event of having large error for bits j′ if |j′ − j| is large

enough compared to log(1/δ1). This will play an important role in analyzing the algorithm

later, allowing us to neglect certain correlations (we will explain this below, although we will

not give a mathematical proof of this). The fact that we have only obtained the accurate

estimate of ρj for j ≤ m − log(1/δ1) will not pose a difficulty in what follows; this will be

only a minor technical detail. For one thing, most “sets of measurements” (as defined below)

do not “contain” (also defined below) the j for which we do not have an accurate estimate.

Alternatively, we can simply on the first round infer all ρj for j ≤ m accurately by running

the first round on m+ log(1/δ1) + 2 bits.

The second round uses s2m “sets” of measurements, for some parameter s2 chosen later,

where each set of measurements will consist of repeating the same measurement a total of C

times, for some constant C. We also introduce a parameter S, called the “density” in this

round. For the ith set of measurements, we pick S different random values of j in the range

1 ≤ j ≤ m, calling these values ji1, ..., j
i
S . We will require that these values ji1, ..., j

i
S all be

distinct from each other in a given measurement (if any two are equal, we simply generate

another S-tuple of values; we will have S <<
√
m so a random tuple will have distinct entries

with probability close to 1). Then we estimate(
2j
i
1−1 + 2j

i
2−1 + ...+ 2j

i
S−1
)
ϕk, (30)
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calling this estimate σi. We do this estimate using C applications of the basic measurement

operation, with Mi = 2j
i
1−1 + ...+ 2j

i
S−1 for each measurement and θi being chosen randomly

in {0, π/2}. The constant C will be chosen so that

Pr
[∣∣∣Mi · ϕk − σi

∣∣∣
mod 1

> 1/32
]
≤ 1

8
. (31)

The constant C is of order unity and does not depend upon m.

This completes the description of the measurements in the two-round algorithm. We

now describe the classical post-processing phase. We will explain below how to estimating a

quantity β′j for each j. This quantity will be an approximation to 2j−1ϕk, chosen from the

set { 0
8 , ...,

7
8}. The goal of the algorithm is to obtain an estimate such that for all j we have

Pr
[∣∣∣2j−1 · ϕk − β′j

∣∣∣
mod 1

> 1/16
]
≤ ε

m
, (32)

for some constant ε. Thus, by a union bound, the probability of an error greater than 1/8 in

any of the β′j will be bounded by ε. We then use the β′j to determine the αj using a procedure

similar to Kitaev’s algorithm. This procedure is given in Algorithm 3, steps 13 − 17. If

indeed the error is bounded by 1/8 for all β′j , then the estimate of the phase will be accurate

to 2−(m+2), because at every step of the inference procedure the correct value of αj will be

inferred; an incorrect value of αj can only be inferred if there is an error larger than 1/8 in β′j
for the same reason that in the Kitaev algorithm, algorithm 2, an incorrect value of αj will

only be inferred if there is a large error in the ρj defined in that algorithm.
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Algorithm 3 Fast Phase Estimation

1: First Round:
2: for j = m to 1 do
3: Estimate 2j−1 · ϕk using O(1) measurements per j.
4: end for
5: Later Rounds:
6: for r = 2 to Number of Rounds do
7: Set density, S, and number of measurements per bit, sr, for given round.
8: for i = 1 to srm do
9: Set Mi to a sum of S different powers of two, choosing these powers of two

at random or with a pseudo-random distribution. Perform O(1) measurements
with given Mi and random or pseudo-random θ.

10: end for
11: end for
12: Perform multi-bit inference to determine estimate of β′j = 2j−1 ·ϕk for all j. Use estimates

from previous round to give starting point for inference in next round. See text for details.

13: Set .αmαm+1αm+2 = β′m;
14: for j = m− 1 to 1 do
15: Infer αj :

αj =

{
0 if |.0αj+1αj+2 − β′j | mod 1 < 1/4.
1 if |.1αj+1αj+2 − β′j | mod 1 < 1/4.

16: end for
17: return α, the estimate of the phase.

To estimate 2j−1 ·ϕk for a given j, consider all sets of measurements such that one of the

random values of ja was equal to j; we say that such a set of measurements “contains j”. On

average, there will be s2S such sets of measurements. Let us first proceed by assuming that

there are indeed exactly s2S sets of measurements and then later deal with the fluctuations

in the number of sets of measurements. On the ith set of measurements, we obtain some

estimate of σi. Suppose this set contains j. Without loss of generality, let us suppose that

j1 = j. Then, given only σi and ρj2 , ..., ρjS , our best estimate of 2j−1 · ϕk is:

σi − ρj2 − ρj3 − ...− ρjS (33)

We now bound the probability that the estimate is off by more than 1/16. We do this

by bounding the probability that our value of σi differs by more than 1/32 from the correct

value using Eq. (31) and also bounding the probability that our estimate of
∑S
l=2 ρjl differs

by more than 1/32 from the correct value. To bound that probability, we have

Pr
[∣∣∣( S∑

l=2

ρjl − 2jl−1 · ϕ
)∣∣∣

mod 1
≥ 1

32

]
≤ S log(32S) exp(−cs1), (34)

where we have taken δ1 = 1/32S in Eq. (29) so that if each quantity ρjl − 2jl−1 ·ϕ is accurate

to within δ1 then the sum is accurate to within 1/32. We then use a union bound: if the

probability that any given measurement is inaccurate is bounded by log(1/δ1) exp(−cs1),
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then the probability that at least one measurement is inaccurate is bounded by S times that

quantity.

We choose s1 ∼ log(log(m)) and S ∼ log(m) so that the right-hand side of Eq. (34) is

bounded by 1/32. Then, using Eqs. (31,34), the probability that the quantity in Eq. (33)

differs by at least 1/16 from 2j−1 · ϕk is bounded by 1/4. We get roughly s2S different

estimates of 2j−1 ·ϕk, one for each set of measurements involving the given j. Let us assume

the independence of certain events between different sets of measurements, namely the event

that the quantity in Eq. (33) differs by more than 1/32 from 2j−1 ·ϕk (we discuss this further

below). Then, we can combine these measurements to obtain an estimate of β′j by picking

the value of β′j which is most frequently within 1/16 of
∑S
l=2

(
ρjl − 2jl−1 ·ϕ

)
; i.e., it is within

1/16 of that value for the greatest number of sets of measurements containing j.

The probability of error in β′j by more than 1/16 is then bounded by exp(−c′s2S) for some

constant c′ > 0. Picking s2 ∼ 1, we find that the probability of error is 1/poly(m) for any

desired polynomial, with the power depending upon the ratio between S/ log(m), so we can

ensure that this probability is small compared to ε/m. The number of measurements required

by this procedure is O(m log(log(m))).

We now discuss several issues of correlations and fluctuations that were left open in the

above analysis. First, consider the fluctuation in the number of sets of measurements that

contain j, for any given j. On average this quantity is s2S, but there may be some fluctuations.

However, the probability that there are fewer than s2S/2 different such sets of measurements

is exponentially small in s2S, and hence for the given choice of s2S, the quantity is bounded

by 1/poly(m) and so can be made negligible (in fact, this probability, being exponentially

small in s2S, has a similar scaling as the probability that we incorrectly infer a given 2j−1 ·ϕk
given s2S sets of that contain j, as that probability is also exponentially small in s2S). So,

with high probability all j are contained in at least s2S/2 measurements, and so we can double

S and apply the analysis above.

It is possible that a better way to deal with fluctuations in the number of measurements

is to change the distribution of choices of jia, and anti-correlate the choices in different sets of

measurements to reduce the fluctuations in the number of sets of measurements containing a

given j. This will at best lead to a constant factor improvement.

Another kind of correlation that we must deal with is correlation between the events that

the quantity in Eq. (33) differs by more than 1/16 from 2j−1 ·ϕk. For a given j, let us assume

for a given set of measurements we have ji1 = j. Let us refer to ji2, ..., j
i
S as the “partners” of

j. For a given j, the different sets of measurements involving that j will typically have wildly

different partners of j; that is, for two different sets of measurements, m,n, we will typically

have |jma − jnb | & m/S2 >> log(S) for a, b 6= 1. So, for most sets of measurements, these will

be independent. Similarly, in a given measurement we will typically have |jma −jmb | >> log(S)

so we can ignore correlations between errors in different ρja .

Of course, the above is not a rigorous proof, but we expect that such a proof can be

provided without any significant difficulty. Note that if for a given j we have a large number

of (roughly) independent sets of measurements containing that j, then adding a small number

of correlated sets of measurements will not prevent the inference from working.



324 Faster phase estimation

5.2 Multiple Round Algorithm

We can improve this procedure by increasing the number of rounds. In the first and second

rounds we proceed as before, though the constants s1, s2, S will be changed. Let us write

S = S2 for the second round. The third round of the procedure is the same as the second

round, except that we do s3 sets of measurements, and in each measurement we pick S3

different random values of j. On the third round, as in the second, we repeat each set of

measurements C times; it is only the first round where the quantity C does not appear, for

the reason that in that round, each measurement is already being repeated s1 times. We can

increase the number of rounds indefinitely. In each round, we can exponentially increase the

density compared to the previous round, while keeping all constants sa of order unity. The

number of measurements required is then proportional to the number of rounds. Since S

increases exponentially in each round and we need S ∼ log(m) in the last round, the number

of rounds required is ∼ log∗(m) and the total number of measurements is ∼ m log∗(m).

5.3 Classical Post-processing Time Required

The simplest implementation of the algorithm above requires a timeO(m log2(m)). We discuss

this first and then discuss how to improve to O(m log(m)). Each bit is contained in ∼ log(m)

sets of measurements (indeed, the fact that it is contained in this many sets of measurements

is the whole point of the algorithm). To compute the quantity in Eq. (33), the sum on the

right-hand side require summing over S different quantities, and for S ∼ log(m), this means

that it takes time ∼ log(m) to do the computation for each bit for each set of measurements

containing that bit. So, with m bits, each contained in log(m) sets of measurements, the

time is O(m log2(m)).

However, we can slightly improve this by noting that Eq. (33) can be written as

σi −
(
ρj1 + ρj2 + ...+ ρjS

)
+ ρj1 . (35)

The quantity in parentheses can be computed once for each set of measurements, and re-used

in inferring each of the ρji for i ∈ {1, ..., S}, and then it only requires O(1) time to do the

arithmetic for each of these i. This improves the total time to O(m log(m)).

6 Analysis of Quantum Circuit Depth and Width

The fast phase estimation algorithm offers an asymptotic improvement in the number of

measurements required to estimate the phase with exponential precision. How does the cor-

responding quantum circuit scale, in terms of depth, width and size? We define the depth of

a quantum circuit as the number of timesteps, where gates on disjoint qubits can occur in

parallel in a given timestep. Here we assume that a given n-qubit gate takes one timestep.

The width of a quantum circuit is the number of qubits. The size of a quantum circuit is the

total number of non-identity quantum gates. We analyze the circuits given three different

computing settings, to emphasize tradeoffs in depth and width depending on resource avail-

ability. Table 1 contains a summary of the circuit resources required for each algorithm given

the setting.

First, consider the setting where each measuring operator is performed sequentially. That
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Table 1. Table of circuit depth, width, and size for Kitaev’s quantum phase estimation and fast

phase estimation.

Type
Kitaev’s Phase Estimation [11] Fast Phase Estimation

Depth Width Size Depth Width Size
Sequential O(m log(m)) O(m log(m)) O(m log(m)) O(m log∗(m)) O(m log∗(m)) O(m log∗(m))

Parallel O(log(m)) O(m log(m)) O(m log(m)) O(log(m)) O(m log∗(m)) O(m log∗(m))
Cluster O(log(m)) O(m2) O(m log(m)) O(log∗(m)) O(m2) O(m log∗(m))

|0〉 H Z(θms) • · · · H

...
. . .

...

|0〉 H Z(θ2) · · · • H

|0〉 H Z(θ1) · · · • H

|A〉 / UMms · · · UM2 UM1

Fig. 5. Quantum circuit for sequential phase estimation.

is, the circuit is given by the sequence of gates (shown in Fig. 5)

H⊗ms Z(θM1
)Λ1(UM1)[q1, A]Z(θM2

)Λ1(UM2)[q2, A] . . .

Z(θMms
)Λ1(UMms)[qms, A]H⊗ms, (36)

where Λn(U)[q1, q2] denotes n-qubits in register q1 controlling the application of gate U to

register q2. The quantum register containing the eigenvector state is denoted by |A〉 and

consists say of a qubits. Each phase estimation algorithm performs O(ms) measurements,

resulting in a circuit of depth and size O(ms). The circuit requires O(ms) ancilla qubits,

one per measurement, plus a additional qubits. For Kitaev’s phase estimation and fast phase

estimation, s equals O(log(m)) and O(log∗(m)), respectively. Thus in the sequential setting,

fast phase estimation offers an asymptotic improvement in circuit depth and size, as well as

in the number of ancilla qubits.

Second, consider a more parallel setting obtained by decreasing circuit depth at the cost

of increasing circuit width. We can parallelize quantum phase estimation using techniques

presented in Refs. [11, 19]. The idea is to apply one multi-controlled gate instead of the

sequence in Eq. (36), by evolving as

|M〉 ⊗ |A〉 → |M〉 ⊗ UM |A〉 , (37)

where M is given by the sum of the multiples:

M =

ms∑
j=1

Mjqj . (38)

The sum can be computed using a quantum addition circuit based on a 3-2 quantum adder

(also called a carry-save adder) [11, 20, 21], which reduces the sum of three m-bit numbers
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|0〉 / H Z(θ) ADD • ADD† H

|A〉 / UM

Fig. 6. Quantum circuit for parallel phase estimation. Each wire represents a register of qubits.

to a sum of two encoded numbers in O(1) depth, with width O(m) and size O(m). Consider

M to be a sum of s m-bit integers. The circuit first uses a log(s)-depth tree of 3-2 adders to

produce two encoded numbers, and then adds these two numbers in place using a quantum

carry-lookahead adder [22] with O(m) ancillae, O(m) size, and O(log(m)) depth. In total, the

addition requires a quantum circuit of O(ms) ancillae, O(log(s) + log(m)) depth, and O(ms)

size.

The circuit for performing parallel phase estimation is shown in Figure 6. The circuit

begins with a quantum register containing qubits initialized to |0〉. Each qubit qi undergoes

a Hadamard operation, followed by a phase rotation by angle θi about the z-axis. An addi-

tion circuit is applied to determine |M〉. A controlled UM operation is applied, followed by

an addition circuit to uncompute |M〉. Finally, O(ms) Hadamard operations and measure-

ments are applied, which can be done in depth O(1). The complete circuit for parallel phase

estimation requires O(ms) size and O(log(s) + log(m)) depth, up to the implementation of

the multi-controlled UM gate. Again, s equals O(log(m)) for Kitaev’s phase estimation and

O(log∗(m)) for fast phase estimation yielding a significant reduction in circuit size and width

to O(m log∗(m)).

Third, consider access to a cluster of quantum computers containing m nodes, where each

node contains the same superposition of eigenstates. Each node performs s measurements,

resulting in a depth of O(s), with a size and width per node of O(s) gates and O(s + a)

qubits, respectively. The cumulative cost across all m nodes is O(s) depth, O(ms) size,

and O(ms + ma) qubits. Again, fast phase estimation yields asymptotic improvements in

all dimensions, and results, for all practical purposes, in a constant-depth phase estimation

circuit. One potential advantage of the cluster model is that errors do not accumulate on the

eigenvector state |A〉, since subsets of measurements are done on separate nodes. This could

be advantageous when designing a fault-tolerant phase estimation algorithm.

Table 1 summarizes the circuit size, depth, and width for the various settings of the two

algorithms. Fast phase estimation yields asymptotic improvements in each dimension.

7 Conclusions and Future Work

We have presented several algorithms for quantum phase estimation based on a basic mea-

surement operation and classical post-processing. Both our “information theory” algorithm

and our fast phase estimation algorithm depend upon a randomized construction of which

measurements to take, and have applications to classical signal processing and quantum phase

estimation. Our fast phase estimation algorithm achieves asymptotic improvements in cir-

cuit depth, width, and size over Kitaev’s phase estimation, resulting in significant reductions

in resource requirements including circuit depth and size, and the number of ancilla qubits.
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|0〉 H Z(θs) • · · · H

...
. . .

... Node m

|0〉 H Z(θ1) · · · • H

|A〉 / UMs · · · UM1

...

|0〉 H Z(θs) • · · · H

...
. . .

... Node 1

|0〉 H Z(θ1) · · · • H

|A〉 / UMs · · · UM1

Fig. 7. Quantum circuit for parallel phase estimation across a cluster consisting of m nodes.

Remarkably, when using an m-node cluster of quantum computers, our algorithm requires

essentially constant time. It is an interesting question for future work to de-randomize these

algorithms.
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