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The security of a high speed quantum key distribution system with finite detector dead

time τ is analyzed. When the transmission rate becomes higher than the maximum

count rate of the individual detectors (1/τ), security issues affect the scheme for sifting
bits. Analytical calculations and numerical simulations of the Bennett-Brassard BB84

protocol are performed. We study Rogers et al.’s scheme (further information is available

in [D. J. Rogers, J. C. Bienfang, A. Nakassis, H. Xu, and C. W. Clark, New J. Phys. 9,
319 (2007)]) in the presence of an active eavesdropper Eve who has the power to perform
an intercept-resend attack. It is shown that Rogers et al.’s scheme is no longer guaranteed
to be secure. More specifically, Eve can induce a basis-dependent detection efficiency

at the receiver’s end. Modified key sifting schemes that are basis-independent and thus

secure in the presence of dead time and an active eavesdropper are then introduced.
We analyze and compare these secure sifting schemes for this active Eve scenario, and

calculate and simulate their key generation rate. It is shown that the maximum key
generation rate is 1/(2τ) for passive basis selection, and 1/τ for active basis selection.
The security analysis for finite detector dead time is also extended to the decoy state

BB84 protocol for one particular secure sifting scheme.
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1 Introduction

Quantum key distribution (QKD) [1, 2] can be used to generate a secret key (random bit

string) between two distant parties, Alice and Bob. This holds true even in the presence of

a technologically-unbound eavesdropper, Eve. The security of the key is guaranteed by the

laws of quantum mechanics; the process of measuring a quantum system generally disturbs

it, thus allowing Alice and Bob to detect Eve’s presence. For a review of QKD, see [3, 4, 5].

A commonly used protocol for QKD is the Bennett-Brassard 1984 (BB84) [1]. In BB84,

Alice and Bob use two conjugate bases to encode the information. However, due to currently

available technology, the BB84 protocol is typically performed with an attenuated laser source

instead of a perfect single-photon source. It is therefore susceptible to the photon number

splitting attack [6], which greatly limits its performance. In this attack, Eve can, in principle,

identify and take advantage of the multi-photon pulses to gain information. However, it is

possible to overcome this limitation by the use of decoy states [7, 8, 9], which can be sent to

better characterize the channel, and as a result, significantly improve the secure key rate.

While the security of QKD has been proven to be unconditionally secure [10, 11, 12], it

rests on the validity of certain assumptions about real-life devices. This includes correctly

identifying and modelling the imperfections in these devices. A failure to take a certain

real-life imperfection into account can completely compromise the security of the protocol.

As the length of the secret key needs to be as long as the message for secure one-time-pad

encryption, the secret key generation rate is a crucial figure of merit. As such, there has

been a lot of recent progress in experimental high speed QKD [13, 14]. It is generally true

that increasing the transmission rate increases the secret key generation rate. However, since

most realistic single photon detectors have a property called dead time—the time interval

right after a detection, during which a detector recovers and cannot detect another incoming

photon—certain security assumptions may be violated if transmission rates are increased

inattentively. In this paper we consider the security of a high speed QKD system with

finite detector dead time, in the regime where the transmission rate is so high that photons

can arrive at Bob’s detectors while one or more detectors are still recovering from previous

detection events. This work builds on the earlier work by D. Rogers et al. [15]. Monte-Carlo

simulations of the BB84 protocol were performed to extend the security analysis to include

an active Eve capable of interfering with the signals.

In Sec. 2, we describe Bob’s detection set-up and detector dead time model. In Sec. 3

we outline a sifting scheme proposed by Rogers et al. for secure operation in the passive

Eve scenario. In Sec. 4, we show that this scheme is no longer guaranteed to be secure

when Eve is able to perform an intercept-resend attack. The main reason of the potential

insecurity of Rogers et al.’s scheme is that its detection efficiency is basis-dependent. In

Sec. 5, we analyze sifting schemes that are basis-independent and thus secure in this active

Eve scenario, and compare the sifted bit rate of these schemes. In Sec. 6, we move onto a

practical scenario with an imperfect source and detector. In particular, we consider a standard

phase randomized weak coherent state source and a standard threshold detector which is non-

photon-number-resolving, and extend the analysis to the decoy-state BB84 protocol for one

particular sifting scheme, (namely SchemeDeactivate introduced earlier in Sec. 5). Sec. 7

contains our concluding remarks.
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2 System Model

We consider polarization encoded BB84 protocol, with a passive polarization detection set-up

[3] shown in Fig. 1. There are two bases, basis 1 and basis 2, defined as follows:

1) Basis 1: Rectilinear (consisting of vertically and horizontally polarized photons) and

2) Basis 2: Diagonal (consisting of 45-degree and 135-degree polarized photons).

We will use this notation throughout the paper.

Fig. 1. Passive polarization detection optics. A 50-50 beam splitter (BS) performs basis selection

and the combination of half waveplate (HWP) and polarizing beam splitters (PBS) perform the
polarization measurement in two bases: basis 1 (V-H) and basis 2 (−45◦, +45◦).

The idealized gain η is given by the overall transmission and detection efficiency [16]:

η = tABηBob = tABtBobηD , (1)

where

tAB = channel transmittance

ηBob = efficiency of Bob’s system

tBob = Bob’s internal transmittance

ηD = detection efficiency.

The channel transmittance can be expressed as:

tAB = 10(−αl/10) , (2)

where α is the loss coefficient in dB/km and l is the channel distance in km.

The list of assumptions about the QKD system is provided below.

Except for Sec. 6 and 7, the source is assumed to be a perfect single photon source. A

number of randomly and uniformly chosen signals sent by Alice are erased to model the loss in

the quantum channel. Fiber loss α is about 0.2 dB/km at the telecom wavelength of 1550 nm.

As such, a typical loss for a 100 km length of fiber in current experiments is of the order of

20 dB.

The detector model is as follows. Except for Sec. 6 and 7, we assume that single photons

arrive at Bob’s detector unit. In Sec. 6 and 7, we will consider the practical case where

both the source and the detector are imperfect. More concretely, the source may be a phase
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randomized weak coherent state and multi-photons may enter Bob’s detectors. Specifically,

we consider a standard threshold detector model where a detector can distinguish a vacuum

from a non-vacuum signal, but cannot tell the difference between one photon and two or more

photons. We assume detectors have a dead time τ . In Si-APDs, during the dead time, the

bias voltage across the p-n junction is below the breakdown threshold and as such, another

photon cannot be detected [17]. This limits their counting rate to 1/τ .

In our simplified model, we assume that an active detector will detect an incoming signal

with some maximum constant detection efficiency ηD, which drops instantaneously to 0 after

a detection event, and undergoes an instantaneous transition back to ηD after the dead time

τ (see Fig. 2). Even though this model does not fully capture the behaviour of the detectors,

it does capture the key feature of the detectors to highlight the dead time problem.

Fig. 2. Detection dead time model. The detector undergoes an instantaneous transition from some
constant maximum value ηD to 0 % efficiency upon being hit by a photon and instantly back again

after a dead time τ .

For Silicon SPADs the typical dead time is of the order of 100 ns [17], which is the value

used in our simulations. All four detectors are assumed to have the same dead time. We

further assume that a photon that strikes the detector while it is recovering does not extend

the recovery time, nor has any effect whatsoever [18]. This makes individual detectors non-

paralyzable systems [19]. Finally, it is assumed that there are no dark counts (except for

Sec. 6 and 7) and the channel is noiseless.

3 Rogers et al.’s Scheme

In this section, it is assumed that Eve is passive. In other words, she does not interfere with

the quantum signals but she can ‘listen’ to the classical channel so that she has full information

about the classical transmission from Bob to Alice (bases used and time of detections) and

Alice to Bob (which detections to sift).

Generally, as the transmission rate increases, the sifted key rate increases. However, since

the detectors have a finite dead time τ , there comes a point where the transmission rate ρ (in

terms of number of transmissions per second) is so high that it exceeds the maximum counting

rate of the individual detectors (1/τ), so that photons can arrive at Bob while one or more

of his detectors are recovering from previous detection events. If two detection events occur

in the same basis within one dead time window, they necessarily correspond to two different

bits [20]. This leads to correlations in the sifted bit string, which is an obvious security flaw.

Each ‘closely-spaced’ detection sequence can thus produce at most a single sifted bit.

Rogers et al. [15] proposed a sifting scheme with the goal of allowing the system to work

in the high-speed regime without compromising the security of the key. The hope is that
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the key can be generated at a rate higher than 1/(2τ) the maximum key rate achievable by

deactivating all detectors upon any detector firing, as we will discuss in Sec. 5.

Rogers et al.’s scheme can be defined as follows. Each basis is treated individually; the

status of the two detectors in the other basis is irrelevant. A basis is defined as active if both

detectors in that basis are active at the expected photon arrival time. Otherwise, if either

one, or both, of the detectors in that basis are dead, the basis is called inactive. P0,0 is used

to denote the probability of a basis being active. Only if a basis is active, the subsequent

detection sequence in that basis will be accepted. The length of an accepted detection sequence

can range anywhere from one (for a single detection) upwards (for overlapping detections

within a basis). A bit can only be sifted from the sequence from a detection event for which

Alice and Bob used the same basis. For each detection in the sequence, Alice and Bob will

have used the same basis with probability of 0.5. Therefore, the probability of sifting the one

possible bit from all the detections in a given sequence depends on whether Alice and Bob

used the same basis at least once, and simply ranges from 0.5 (for a single detection) up to 1

(for a very long detection sequence).

It is useful to consider a quantity k, the number of transmission periods per dead time,

defined by k = ρτ , where ρ is the transmission rate. The transition between the standard and

the high-speed regimes occurs at k = 1, irrespective of channel loss. Rogers et al. [15] showed

that the probability of a basis being active, and thus capable of sifting a bit, tends to zero

as k (and the transmission rate) tend to infinity. This means that high-speed QKD systems

are paralyzable counting systems. This phenomenon occurs from the collective behavior of a

pair of detectors in a given basis which lock up.

Increasing the transmission rate tends to lock up the detectors in each basis, resulting in

a long string of closely spaced detections which allow at most one bit to be sifted. This effect

reduces and eventually outweighs the advantage of transmitting at a higher rate. The point

where these balance gives rise to an optimum transmission rate that maximizes sifted bit rate

production. Plotting the log of transmission rate vs sifted key rate shows a Bell-like curve.

That is to say, the sifted key rate reaches a maximum value at the optimal transmission rate,

after which further increases in transmission rate actually hinder sifted key production. This

maximum key rate achievable with Rogers et al.’s scheme is considerably higher than 1/(2τ),

given approximately by 1.43/(2τ) [15].

4 Problems with Rogers et al.’s Scheme with Active Eve

Rogers et al.’s paper [15] considers a purely passive Eve who can only ‘listen’. Such an

assumption is clearly not valid in any realistic setting where the channel is noisy and Eve can

be active. We extend the analysis by introducing an Eve that can perform an intercept-resend

attack.

The intercept-resend attack is a simple, yet effective, attack that involves Eve intercepting

Alice’s photons individually, measuring them in one of two bases used by Alice and Bob,

and sending new photons to Bob according to the outcome of her measurement. Eve gains

information at the cost of introducing quantum bit errors.

Eve has the ability to intercept any (or all) pulses, and resend one of Alice’s states at will

(also single photons), or none at all (blocking the signal). Eve is assumed to have a 4-detector

set-up like Bob, but her detectors have infinitesimal dead time.
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In what follows, we will show that Rogers et al.’s sifting scheme can no longer be considered

secure with certainty. This is because Eve can force Bob’s detection efficiency to be basis-

dependent. To illustrate this, consider a simple attack by Eve that goes as follows. Eve blocks

Alice’s pulses 1, 2, . . . , N (where N is a large number, which would depend on the channel

loss). In their place, she sends N pulses all in the “vertical” polarization state. Summing

over the corresponding detection events, the probability of basis 1 (rectilinear) being active

is higher than the probability of basis 2 (diagonal) being active. When N is large enough we

reach the stationary distribution.

Intuitively, the attack works as follows. If a photon is detected in basis 1 (rectilinear),

it is necessarily the detector corresponding to the vertically polarized photon that clicks

and becomes inactive for the duration of its dead time. The detector corresponding to the

horizontally polarized photon never clicks, and is therefore always active. Upon recovery the

“vertical” detector is ready to detect another photon, and thus the basis itself becomes active.

In basis 2 (diagonal) however, the situation is quite different. An incoming vertically-polarized

photon is equally likely to trigger and thus disable either detector in this basis. Thus both

detectors in this basis click and recover. However, as time goes on the recovery of one detector

would become randomized with respect to the other one. Therefore, we are more likely to

have a situation where one detector is hit while the other is still recovering, so that the two

detectors are clicking alternately, preventing the basis from becoming active. Our simulation

(see below) confirms our intuition.

Although this specific attack can be easily detected by Alice and Bob in practice (because

Eve’s N “vertical” photons will cause a high error rate), notice that Eve may lower the error

rate she introduces by performing the attack on only part of the signals. Here comes a key

point: Eve’s ability to introduce basis-dependent detection efficiency violates a fundamental

assumption in security proofs [12, 21, 6, 22, 23]. Note that for repetition rate smaller than

1/τ , both bases are active with equal probability.

A simulation was carried out to test for basis dependence on Bob’s side in the case of

this simple attack, with finite detector dead times. Note that in this simulation Bob is only

receiving vertically polarized photons. The probability P0,0 of both detectors being active

in each basis was calculated using Rogers et al.’s scheme for a large number of photons

(N = 5× 106 photons). See Fig. 3.

The result is that basis 1 (rectilinear) is considerably more active than basis 2 (diagonal).

Note that the ratio of P0,0 for basis 2 to P0,0 for basis 1 (equal to 0.67 in this case) approaches

the theoretical value (discussed below) in the limit of large number of pulses. It is not a

transient effect caused by detectors starting off in the active state. We have used the value of

3 dB for the channel loss, which has no special significance; the fundamental result is true for

any value of loss, as well as the lossless case: Bob’s detection efficiency is basis-dependent.

It is instructive to see how this basis dependence varies with k. We want to derive the

dependence of P0,0 on k for each basis. For basis 2, P0,0 has already been derived in Eq. (8)

of Ref. [15], and we quote the result here:

P0,0(basis 2) =

[
1 + (2k′)

(
2p

1− 2p

)
+ (k′2 − k′)

(
(2p)2

1− 2p

)]−1
, (3)

where p is the probability that a particular detector produces a sifted bit on a given clock
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Fig. 3. A simple intercept-resend attack can force a basis dependence of detector efficiency.

Normalized transmission rate k = 10, channel loss = 3 dB, detection efficiency ηD = 100 %,

N = 5×106 photons. The error estimate, taking into account the statistical fluctuations involved,
would not be discernible on the scale that this figure is presented. In the low-speed regime both

bases would be active 100 % of the (expected photon arrival) time.

cycle and k′ is the number of transmission periods per dead time. More concretely, for BB84

with four detectors,

p =
η

8
, (4)

where η is the idealized gain defined in Eq. (1), and the factor of 1/8 accounts for the correct

basis choice (1/2) and the specific detector clicking (1/4). The definition of the normalized

transmission rate used by Rogers et al. [15] is slightly different than in this paper. To account

for this, Eq. (3) has to be adjusted by replacing k′ with k′ = (k−1). Note that Eq. (3) applies

only at integer values of k′.

In Ref. [15], Eq. (3) above was derived for the case where Eve is passive and thus, in

each basis, Bob receives a random bit on average. Notice that, in our case Eve always sends

a vertical photon. Nonetheless, for basis 2, Bob also receives a random bit. Therefore, the

derivation in Ref. [15] carries over directly here.

To find P0,0 for basis 1 we only need to find the probability of detector 1 being active,

since detector 2 is always active. The basis, at any discrete point (expected photon arrival

time), is either active or inactive. Let us assume for the moment that the detection system

comprises only of basis 1. Then, the probability of a click given that the basis is active is

given by the idealized gain for one basis η1. Similarly, the probability of the basis remaining

active is given by 1− η1:

P (click|active) = η1

P (no click|active) = 1− η1 .
(5)

Once in an inactive state, the detection system will evolve in a unique way through a series

of inactive states and take (k − 1) steps to return to the active state. From the active state,

the system at the next step can either remain active (if photon is lost), or become inactive (if

detector 1 is hit) and begin to recover.

We can therefore write the following equations that govern the evolution of the system in

the stationary state, where Pa is the probability that the detection system is active and Tn is
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the probability that the system is inactive after n steps:

Pa = Tk−1 + Pa(1− η)

T1 = Paη1

Ti = Ti−1 (6)

for i = 2, ..., k − 1.

We also know that the system must be in one of these states at any point, and since there

are a total of (k − 1) equally likely inactive states, we have

1 = Pa + (k − 1)T1 = Pa + (k − 1)Paη1 ,

which gives

Pa =
1

1 + (k − 1)η1
. (7)

However, there are two bases. Since only half of the photons that reach Bob will go to

basis 1, we modify Eq. (7) by noting that η1 = (1/2)η, where η is the idealized gain defined

by Eq. (1). This gives the probability P0,0 that basis 1 is active (and hence capable of sifting

bits):

P0,0(basis 1) =
1

1 + 0.5(k − 1)η
. (8)

We can now see how P0,0 changes with k for the two different bases while Eve is doing the

simple intercept-resend attack described above. Fig. 4 (a) shows both the results of Monte

Carlo simulations and theoretical results (given by Eq. (3) and Eq. (8)) derived using Markov

chain arguments. Note that the theoretical values apply only at integer values of k. Fig. 3 is

a snapshot of Fig. 4 (a) for k = 10. It is also interesting to see how the ratio of P0,0 for basis

2 to P0, 0 for basis 1 varies with k, for the same values of η and p. See Fig. 4 (b).

Fig. 4 (a) and Fig. 4 (b) clearly show how detection efficiency becomes more basis-

dependent with increasing k. The reason for the difference between the two bases is as

follows. The two detectors’ dead periods in basis 2 gradually move out of sync with respect

to each other after a series of independent clicks and recoveries. The chance of basis 2 being

active and capable of sifting bits drops as the detectors tend to recover at different times. It

becomes increasingly unlikely to have both detectors recovering at about the same time for

higher values of k. Basis 1 on the other hand never gets locked up and always sifts bit value 1

when (an active) detector 1 is hit. At k = 1 both bases are always active. As k increases, the

% of time each basis is active drops as one would expect, but basis 2 suffers from the extra

effect of detectors locking up, which is more prevalent for higher values of k.

We see that for Rogers et al.’s scheme detection efficiency is basis dependent:

P0,0(basis 1) 6= P0,0(basis 2) . (9)

This contradicts security proof assumptions [12, 21, 6, 22, 23]. Therefore, the current

sifting scheme is potentially no longer safe. Attacks attempting to exploit detection efficiency

mismatch exist [24, 25, 26].
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Fig. 4. (a)Basis dependence worsens with increasing k. Both bases become less active, but basis 2

becomes less active at a higher rate than basis 1. η = 0.5 (channel loss = 3 dB), so that p = 1/16
(as defined in Eq. (4)), N = 5 × 106 photons. The error bars for each point are smaller than the

size of the marker. (b)Ratio of P0,0 for basis 2 to P0,0 for basis 1 decreases from 1 gradually to

0 with increasing k. The ratio of P0,0 for basis 2 to P0,0 for basis 1 drops gradually to 0 with
increasing k from the initial value of 1 in the slow speed regime at k = 1.
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5 Secure sifting schemes

We have investigated alternative sifting schemes to see if it is still possible to have secure

operation for a finite dead time QKD system in the presence of the most general attack based

on the dead time model we consider, assuming the original system without dead time is secure.

Some of these are described below.

(i) SchemeAllActive

This is a purely software implementation and the scheme only sifts a bit if all four

detectors are active. It removes the aforementioned basis dependence, and the sifted

bit string is secure. It is simple to implement as the detectors are free-running.

(ii) SchemeDeactivate In this scheme, all detectors are actively disabled (or pulses ac-

tively blocked) for a period of time equal to or greater than the dead time, every time

any one of the four detectors is hit [20]. This prevents any bit sifting unless all detectors

are active. Again, the basis dependence is removed, and the scheme is secure. The max-

imum key rate achievable is 1/(2τ); the factor of 1/τ comes from the maximum count

rate of the individual detectors, and the factor of 1/2 comes from the fact Alice and Bob

only use the right basis half the time. As this scheme involves the active disablement of

all detectors, it requires an active component for its implementation.

(iii) Scheme4state This scheme [27, 28] is different from all other considered above in

that it requires only two detectors. Consider the phase-encoded BB84 version of this

design. (This is more practical compared to the polarization-encoded version of this

design as high-speed phase modulators are readily available). Bob actively selects the

measurement basis for each incoming pulse. In addition, he determines which of the

two detectors represents which bit value (0 or 1) for each pulse, by randomly selecting

the phase modulation from a set of four values (0, π/2, π, 3π/2) instead of the usual

two (0, π/2). A diagram representing the detection system is shown below in Fig. 5.

Fig. 5. Schematic diagram of the detection system for phase-encoded version of Scheme4state. BS
= beamsplitter, PM = phase modulator, det 1 and det 2 = detectors 1 and 2.

All detections for which Alice and Bob’s bases match are sifted. As such, as k goes to

infinity, it achieves the highest sifted key rate of all the schemes, equal to 1/τ . The

disadvantage is that the scheme involves more complicated modulation and requires

extra random numbers.
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With regard to security, as noted in Ref. [6, 23], the key point is to establish basis-

independence of the detection efficiency. The three schemes listed here achieve this point.

Specifically, in SchemeAllActive, Bob passively post-selects the detection events when the

four detectors have the same efficiency. In SchemeDeactivate, Bob forces the four detectors

to have the same efficiency by actively controlling their bias voltages. In Scheme4state,

Bob randomly switches the role of each detector, thus averaging out the efficiency mismatch.

Following [6, 23], we note that the three schemes listed above are indeed secure.

We want to compare the sifted key rate achievable by these different schemes. To de-

rive the probability Pa of a detection system being active for both SchemeDeactivate and

Scheme4State, we follow the procedure outlined in Sec. 4.

For SchemeDeactivate, an active detection system constitutes all four detectors be-

ing active. The moment any one of them fires, the detection system becomes inactive.

Pa(SchemeDeactivate) is therefore simply given by:

Pa(SchemeDeactivate) =
1

1 + (k − 1)η
, (10)

where η is the gain, defined by the probability of a click on any of the detectors given that

the detection system is active.

Only those detection events where Alice and Bob used the same bases will contribute to

the sifted key, which means half of the total detection events for BB84. The sifted bit rate

for SchemeDeactivate is therefore given by:

R(SchemeDeactivate) =
1

2
(no. of clicks per second)

=
1

2
ρPa(SchemeDeactivate)P (click|active)

=
1

2
ρPa(SchemeDeactivate)η .

(11)

Note that the idealized gain η is independently present in both the formula for Pa in

Eq. (10) and the formula for the sifted bit rate R in Eq. (11). Once we have an expression

for Pa, we still need to account for channel loss to calculate the sifted bit rate R. Consider

the simple example where η = 0 (all signals lost), so that Pa = 1, and R = 0.

For Scheme4State, since all detections in which Alice and Bob choose the same basis are

sifted, it is easiest to consider the two detectors individually. An active detection system

consists of a specific detector being active. The situation is therefore completely analogous

to the derivation in Sec. 4, and Pa(Scheme4State) is simply given by:

Pa(Scheme4State) =
1

1 + 0.5(k − 1)η
. (12)

where η is the gain, defined by the probability of a click of a specific detector. The sifted bit

rate for Scheme4State is given by combining the bit rate from each of these two detectors:

R(Scheme4State) =
1

2
ρPa(Scheme4State)η . (13)

The factor of a half comes from three factors; 1/2 for Alice and Bob using the same

basis in BB84, 1/2 to account for the photon hitting the correct one of the two detectors
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in an individual detection system, and finally a factor of 2 since there are effectively two

independent detection systems. Again, we have to include the factor of η to account for

channel loss when calculating the sifted bit rate.

The graph below (Fig. 6) shows the sifted key rate as a function of the transmission rate

for the different schemes. The simulation results are based on the Monte Carlo method, while

the theoretical formulas are derived above. Note that the theoretical values apply only at

integer values of k.

Fig. 6. Comparison of key rates for different sifting schemes. η = 0.5 (channel loss = 3 dB), dead

time τ = 100 ns, detection efficiency ηD = 100 %. The graph shows there is an optimum value for

transmission for SchemeAllActive to achieve the maximum sifted key rate. SchemeDeactivate
gives a higher key rate than SchemeAllActive for all values of k higher than 1. Scheme4state

gives a higher key rate than SchemeDeactivate for all values of k higher than 1.

The graph shows that the three schemes are equivalent in the low-speed regime up to

k = 1 (10 MHz on the graph since τ = 100 ns). SchemeDeactivate gives a higher key rate

than SchemeAllActive for all values of k above 1. Scheme4state gives a higher key rate than

SchemeDeactivate for all values of k above 1. The maximum key rate using SchemeAllActive

is achieved by transmitting in the high-speed regime (at a value of k greater than 1), but not

too much (exact value of k depends on the dead time and channel loss). Note that for

SchemeAllActive, the sifted key rate represents a lower bound; we expect there to be a

tighter lower bound since Eve cannot necessarily gain full information on the key.

SchemeDeactivate and Scheme4state do not have a peak transmission rate, but instead

tend towards a constant value, given by 1/(2τ) and 1/τ , respectively, as expected. There is

no peak because in both cases the detectors do not get locked up and so the detection system

is not paralyzable.

6 Decoy State BB84

So far we have considered a single photon source on Alice’s side. Now we move onto a

practical scenario with an imperfect source and an imperfect detector. As mentioned in

the Introduction, here we consider a standard phase randomized weak coherent state source

and threshold detector model in which a detector can tell a vacuum from a non-vacuum
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signal, but cannot tell the difference between one photon and two or more photons. In this

section, for simplicity, we will only consider one particular secure sifting scheme, namely,

SchemeDeactivate.

Single photon sources are not yet practical for high speed QKD. So, weak coherent pulses

(WCP) are often used. Using WCP as the source drastically reduces performance of BB84 due

to multi-photon events which are susceptible to the photon number splitting attack [6].This

has led to the development of the decoy state method [7, 8, 9], which allows for efficient

performance even with an attenuated laser as the source. Since decoy state is now a standard

technique in QKD, we find it helpful to make the connection to this important subject in our

paper.

In decoy state BB84, Alice uses more than one photon number distribution. One of

these photon number distributions is optimized for the key rate. These events, called signals,

constitute most of the pulses sent by Alice. She also sends events, called decoys, created with

different linearly independent photon number distributions. Since Alice knows which events

belong to each distribution, Alice and Bob can measure the gains (overall probability of a

photon detection event for incoming pulses) for each distribution independently. This linear

set of equations is used to ultimately calculate a lower bound on the key rate. Crucially, Eve

must not be able to distinguish between n-photon events arising from different distributions.

Decoy state BB84 is now commonly used in practice after the initial experiments a few

years ago [29, 30, 31, 32, 33]. It is interesting to analyze the security and performance of

decoy state BB84 in the framework of finite detector dead time.

We now allow multi-photon signals to be received by Bob, as this is the realistic scenario

in real experiments. Nonetheless, we still make the assumption that signals that strike the

detector while it is recovering, regardless of whether they are single photons or multi-photons,

do not extend the recovery time, nor have any effect whatsoever. This is a standard but rather

strong assumption. We will discuss the practical validity of this assumption in the Conclusion

section.

To mitigate the effects of dead time we consider using SchemeDeactivate. The security of

the scheme also applies when Bob receives multi-photon pulses, as given by the squash model

of the single photon detector for the BB84 protocol [34, 35, 36, 37].

In Sec. 5, we derived the probability Pa(SchemeDeactivate) that a detection system is

active for SchemeDeactivate (all four detectors are active), and hence capable of sifting bits.

It is given by Eq. (10). This derivation assumes a perfect source and detectors with no false

counts. We can now adjust this to account for WCP source with µ being the average photon

number per pulse, and other imperfections such as background rate Y0 (including dark counts

and stray light).

Let us for the moment ignore the effects of dead time and consider standard decoy state

protocols. We will return to the subject of dead time later. It is useful to define the following

quantities [16]. The single-photon gain Q1 (the joint probability that Bob’s detector clicks,

and that the triggering event was a single-photon) is given by

Q1 = Y1µe−µ , (14)

where µ is the average photon number per pulse and Y1 is the single-photon yield (the con-

ditional probability of a detection at Bob’s side given that Alice sends a single-photon state),
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given by

Y1 ∼= Y0 + η , (15)

where Y0 is the background count rate.

The overall gain Qµ (overall detection probability summed over all individual gains) is

given by

Qµ = Y0 + 1− e−ηµ . (16)

The overall quantum bit error rate (QBER) Eµ is given by

Eµ =
e0Y0 + edet(1− e−ηµ)

Qµ
, (17)

where e0 is the error rate of the background (taken to be 0.5) and edet is the probability that

a photon triggered an erroneous detector (caused by e.g. optical misalignment).

The single-photon error rate e1 (error rate conditioned on single-photon events) is given

by

e1 =
e0Y0 + edetη

Y1
. (18)

Let us now return to the subject of dead time. We can now modify Eq. (10) by replacing

η with Qµ, to account for WCP source and background rate Y0:

P decoya (SchemeDeactivate) =
1

1 + (k − 1)Qµ
. (19)

Note that P decoya (SchemeDeactivate) goes to 0 as k goes to infinity. Provided that we

consider the asymptotic limit of an infinitely long key and the case where the fraction of states

used as decoys is negligible, we can use the following method to calculate the secure key rate

of decoy BB84 with finite detector dead time:

1) Calculate the näıve key rate Rn by assuming dead time τ = 0,

2) Calculate the actual key rate R by simply multiplying the näıve rate by

P decoya (SchemeDeactivate):

R = P decoya (SchemeDeactivate)Rn . (20)

The näıve secure key rate Rn (in the asymptotic limit of an infinitely long key and without

dead time) is given by [16]:

Rn = q{Q1[1−H2(e1)]−Qµf(Eµ)H2(Eµ)} , (21)

where q depends on the implementation (taken to be 0.5 for the BB84 protocol due to the

fact that Alice and Bob use different bases half the time), f(x) is the bi-directional error

correction inefficiency (taken to be 1.22) and H2(x) = x log2 x − (1 − x) log2(1 − x) is the

binary Shannon entropy function.
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The actual secure rate (per bit) with dead time is therefore given by:

R = P decoya (SchemeDeactivate)q{Q1[1−H2(e1)]−Qµf(Eµ)H2(Eµ)} . (22)

Together with ‘GYS’ parameters from an experiment in Ref. [38], we can calculate the

lower bound on the actual secure key rate using Eq. (22) above. Note that in the actual GYS

experiment [38] the standard BB84 protocol was used with InGaAs avalanche photodiodes

operating in gated mode, while the transmission rate was just 2 MHz, so dead time effects

were not significant. The value of µ is taken to be optimized for the given parameters. All

the simulation parameters are summarized in Table 1.

Table 1. Key parameters used in the simulation.

τ (ns) µ α (dB/km) l edet Y0 e0 ηBob f
100 ns 0.48 0.21 50 km 0.033 1.7 × 10−6 0.5 0.045 1.22

Fig. 7 shows how the transmission rate affects the secure key rate both for standard decoy

BB84 (without dead time effects), and decoy BB84 with dead time effects accounted for with

SchemeDeactivate.

Fig. 7. Graph showing how increasing the transmission rate affects the secure key rate. The
dashed green line shows the nave rate relation for standard decoy BB84, without any dead time
effects taken into account. The solid blue line shows the actual secure key rate achievable taking
dead time effects into account using SchemeDeactivate.

At lower transmission rates, the two schemes yield the same secure key rate which scales

linearly with transmission rate as expected. The two start to deviate as dead time effects

become important. The secure key rate (per second) with SchemeDeactivate (solid blue

line) levels off as expected, and is given by:

R = ρP decoya (SchemeDeactivate)Rn , (23)
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where ρ is the transmission rate. As ρ goes to infinity, the secure key rate R approaches the

limiting value of Rn/τQµ.

It should be noted that working with transmission rates of the order of 100 GHz might be

problematic. While this high-speed phase modulation is already possible technologically (and

QKD with clock rates of 10 GHz has been demonstrated [39]), the timing jitter of current

detectors would be a limiting factor for the possible transmission rate. Even a small 50 ps

jitter would limit the rate to approximately 10 GHz.

7 Conclusions

Security concerns associated with detector dead times for QKD systems operating at transmis-

sion rates higher than the maximum count rates of detectors (1/τ) can limit the production

rate of sifted bits. Rogers et al. [15] have proposed a sifting scheme incorporating these

dead time effects that is secure in the case where Eve is completely passive. Monte-Carlo

simulations of a BB84-type QKD system with finite detector dead times were performed and

extended to include an active eavesdropper, capable of interfering with the quantum channel.

It was shown that the sifting scheme proposed in Rogers et al.’s paper [15] is susceptible

to intercept-resend attacks by Eve and is no longer guaranteed to be secure because Eve is

able to induce basis-dependent detector efficiency. The importance of detectors’ dead periods

going out of sync with each other and thus being incapable of sifting bits was highlighted.

Modified sifting schemes (SchemeAllActive, SchemeDeactivate and Scheme4State) were

analyzed and compared. It was shown that a modified sifting scheme that is secure which

sifts a bit only when all four detectors are active (SchemeAllActive) is worse in terms of

maximum sifted key rate than a scheme in which all four detectors are disabled when any one

of them fires (SchemeDeactivate). The advantage of SchemeAllActive is that it does not

require any active components. The four-state scheme (Scheme4State) with two detectors

still achieves the highest key rate (1/τ) but requires more complicated modulation and extra

random numbers.

The security analysis was extended to the decoy-state BB84 protocol for SchemeDeac-

tivate, and the secure key generation rate analyzed in the context of finite detector dead

time.

As detectors and detection techniques improve, detector dead time is expected to be

significantly reduced. Commercial Si-based products can achieve a dead time of 45 ns around

800 nm [40]. A dead time of just 1.93 ns has recently been reported with InGaAs detectors

[41]. However, the dead time problem is still important to consider as the dead time could

also be due to electronics in components such as the time interval analyzer (TIA) [42]. The

effect of detector dead time on the security of the differential phase shift protocol [43] has

also been analyzed [44].

While the dead time recovery model in Fig. 2 may not fully describe the behaviour of

the detectors, it captures the key feature to highlight the dead time problem. This work

can therefore be considered as a step towards incorporating the effect of detector dead times

into the security analysis of high-speed QKD systems. Note also that Scheme4State works

independently of the shape of the recovery curve in Fig. 2. Nonetheless, Scheme4State is

still vulnerable to other types of detector loopholes such as the blinding attack [45] discussed

below.
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Future directions could include a more realistic detector dead time model, including a

gradual recovery to maximum efficiency, dark counts and afterpulsing. The dead time of

different detectors would also not be the same in practice. Eve’s ability to control the dead

time to her advantage could open up new avenues for attack.

In Sec. 6, we made the assumption that signals striking a detection unit while it is re-

covering will not extend its dead time and do not have any effect whatsoever. Whether this

assumption is violated in practice is still an open question. The work by Makarov’s group

[45] suggests that the assumption may be violated by Eve using a strong pulse to gain some

control over the detectors, although this appears not be the case as discussed in Ref. [46] if

the detectors are operated correctly. See also the reply to Ref. [46] by Makarov’s group [47].

The conclusive investigation of this question is outside the scope of our work. In addition, it

is possible to monitor the large pulse at Bob’s side [48] as a counter-measure.

The important lesson here is the need to check carefully the operations of components of

a QKD system (in this case the detection system) and make sure that it is properly described

by the security model. In a more general context, quantum hacking has attracted widespread

recent interest in the quantum cryptography community. In addition to time-shift attack

[26] and blinding attack [45], a phase remapping attack has been recently proposed [49] and

experimentally demonstrated [50]. The ultimate solution could be the recently proposed

Measurement-Device-Independent (MDI) QKD, which removes the possibility of all detector

side-channel attacks [51].
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