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Quantum normalizer circuits were recently introduced as generalizations of Clifford cir-
cuits [1]: a normalizer circuit over a finite Abelian group G is composed of the quantum
Fourier transform (QFT) over G, together with gates which compute quadratic functions

and automorphisms. In [1] it was shown that every normalizer circuit can be simulated
efficiently classically. This result provides a nontrivial example of a family of quantum
circuits that cannot yield exponential speed-ups in spite of usage of the QFT, the latter
being a central quantum algorithmic primitive. Here we extend the aforementioned re-

sult in several ways. Most importantly, we show that normalizer circuits supplemented
with intermediate measurements can also be simulated efficiently classically, even when
the computation proceeds adaptively. This yields a generalization of the Gottesman-

Knill theorem (valid for n-qubit Clifford operations [2, 3]) to quantum circuits described
by arbitrary finite Abelian groups. Moreover, our simulations are twofold: we present
efficient classical algorithms to sample the measurement probability distribution of any
adaptive-normalizer computation, as well as to compute the amplitudes of the state vec-

tor in every step of it. Finally we develop a generalization of the stabilizer formalism

[2, 3] relative to arbitrary finite Abelian groups: for example we characterize how to
update stabilizers under generalized Pauli measurements and provide a normal form of

the amplitudes of generalized stabilizer states using quadratic functions and subgroup
cosets.
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1 Introduction

Investigating the power of restricted families of quantum circuits is a fruitful approach to

understanding how the power of quantum computers compares to that of classical ones. A

celebrated result in this respect is the Gottesman-Knill theorem, which states that any quan-

tum circuit built out of Clifford gates (Hadamards, CNOTs, π/2-phase gates) and Pauli

measurements can be efficiently simulated on a classical computer [2–4]; thus, a quantum

computer that works exclusively with these operations cannot achieve exponential quantum

speed-ups.

The Gottesman-Knill theorem illustrates how subtle the frontier between classical and

quantum computational power can be. For example, even though Clifford circuits can be
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simulated efficiently classically, replacing the π/2-phase gates by a π/4-phase gate immediately

yields a quantum universal gate set [5, 6]. Another interesting feature is that, even though

the computing power of Clifford circuits is not stronger than classical computation, their

behavior is genuinely quantum: they can be used, for instance, to prepare highly entangled

states (such as cluster states [7–9]), or to perform quantum teleportation [3]. Yet, in spite

of the high degrees of entanglement that may be involved, the evolution of a physical system

under Clifford operations can be tracked efficiently using a Heisenberg picture: the stabilizer

formalism, a fundamental tool in quantum error correction [2–4].

In this work we study the computational power of normalizer circuits. These circuits

were introduced in [1] by one of us, as a class of quantum computations generalizing the

Clifford circuits, as well as standard extensions of the latter to qudits [10, 11]. A normalizer

circuit over a finite Abelian group G is a quantum circuit comprising unitary gates that

implement the quantum Fourier transform (QFT) overG, quadratic functions of the group and

automorphisms. IfG is chosen to be Zn
2 (i.e. the group of n-bit strings with addition modulo 2),

normalizer circuits precisely coincide with the unitary Clifford circuits (i.e. those composed

of CNOT, H and π/2 phase gates). In [1] it was shown that arbitrary normalizer circuits

(acting on computational basis states and followed by computational basis measurements)

can be simulated classically efficiently.

An interesting feature of the normalizer circuit formalism is the presence of QFTs over any

finite Abelian group. Of particular interest is the group Z2n , since its corresponding QFT

is the “standard” quantum Fourier transform [4]; which lies at the core of several famous

quantum algorithms, such as factoring and computing discrete logarithms [12]. More gener-

ally, QFTs over Abelian groups are central ingredients of quantum algorithms to find hidden

subgroups of Abelian groups [13–15]. In contrast with the role of QFTs in quantum speed-

ups, the normalizer circuit formalism provides a nontrivial example of a family of quantum

computations that cannot yield exponential speed-ups, in spite of usage of the QFT.

Here we further extend the classical simulation results of [1]. We do so by considering

normalizer circuits where intermediate measurements are allowed at arbitrary times in the

computation—whereas in [1] only terminal measurements were considered. More precisely

we define adaptive normalizer circuits over G to comprise the following three fundamental

ingredients:

• Normalizer gates over G, i.e. QFTs, automorphism gates, quadratic phase gates.

• Measurements of generalized Pauli operators over G at arbitrary times in the com-

putation.

• Adaptiveness: the choice of normalizer gate at any time may depend (in a polynomial-

time computable way) on the outcomes obtained in all previous measurement rounds.

If G is chosen to be Z
n
2 , the corresponding class of adaptive normalizer circuits precisely

corresponds to the class of adaptive Clifford circuits allowed in the original Gottesman-Knill

theorem.

This paper contains several results, summarized as follows:

I. A Gottesman-Knill theorem for all finite Abelian groups (Theorem 7). Given

any Abelian group G, every poly-size adaptive normalizer circuit over G, acting on any
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standard basis input, can be efficiently simulated by a classical computer. That is, we

show that the conditional probability distribution arising at each measurement (given

the outcomes of the previous ones) can be sampled in classical polynomial time.

II. A stabilizer formalism for finite Abelian groups. Generalizing the well-known

stabilizer formalism for qubits, we develop a stabilizer formalism for arbitrary Abelian

groups. This framework is a key ingredient to efficiently track the evolution of quantum

states under normalizer circuits. In particular, our results are:

– We provide an analytic formula, as well as an efficient algorithm, to compute the

dimension of any stabilizer code over an Abelian group (Theorem 3).

– We provide an analytic formula, as well as an efficient algorithm, to compute the

update of any stabilizer group under Pauli measurements over arbitrary Abelian

groups (Theorem 5).

III. A normal form for stabilizer states (Theorem 8). We give an analytic formula to

characterize the amplitudes of stabilizer states over Abelian groups and show how to

compute these amplitudes efficiently. It follows that all stabilizer states over Abelian

groups belong to the class of Computationally Tractable (CT) states, introduced in [16].

The interest in this property is that all CT states can be simulated classically in various

contexts well beyond the setting of the present work—cf. [16] for a discussion.

In all the results above the term efficient is used as synonym of “in polynomial time in

log |G|” (where |G| denotes the cardinality of the group G). All algorithms presented show

good performance regarding computational errors: the sampling algorithm given in theorem

7 is exact (i.e. it samples the output probability of the adaptive normalizer circuit exactly in

polynomial timec), whereas the algorithms in theorem 8 yield exponentially accurate estimates

of state amplitudes and normalization constants.

An important technical difference (and difficulty) compared to the original Gottesman-

Knill theorem is that in the context of arbitrary finite Abelian groups (such as G = Z2n)

arithmetic is generally over large integers. This is in contrast to Z
n
2 where arithmetic is sim-

ply over Z2 i.e. modulo 2. The difference is in fact twofold:

• First, Z2 is a field. As a result, it is possible to describe the “standard” stabilizer formal-

ism for qubits with vector space techniques over Z2. In this context methods like Gaussian

elimination have straightforward analogues, which can be exploited in the design of classical

algorithms. General Abelian groups are however no longer fields. This complicates both

the analytic and algorithmic aspects of our Abelian-group stabilizer formalism due to, for

instance, the presence of zero divisors.

• Second, in Z2 arithmetic is with small numbers (namely 0s and 1s), whereas in general

finite Abelian groups arithmetic is with large integers. For example, this is the case with

cIn our model, for simplicity we assume availability of a subroutine which allows to generate, with zero error, a
uniformly random integer in the interval [0, N ] in polylog(N) time, for any integer N . Under this assumption,
our classical sampling algorithm for simulating normalizer circuits also has perfect accuracy i.e. no additional
errors are introduced.
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G = Z2n . Of course, one must beware that some problems in number theory are widely be-

lieved to be intractable for classical computers: consider, for instance, the integer factorization

problem or computing discrete logarithms. One of the main challenges in our scenario is to

show that the “integer arithmetic” used in our classical simulation algorithms can be carried

out efficiently. For this purpose, a significant technical portion of our work is dedicated to

solving systems of linear equations modulo a finite Abelian group, defined as follows: given a

pair of finite Abelian groups Gsol and G (both of which are given as a direct product of cyclic

groups), and a homomorphism A between them, we look at systems of the form A(x) = b

where x ∈ Gsol and b ∈ G. We present polynomial-time deterministic classical algorithms for

counting and finding solutions of these systems. These efficient algorithms lie at the core of

our classical simulations of normalizer circuits.

Finally, we mention that the stabilizer formalism has been used in a variety of settings

(both for qubits and d-level systems) beyond the context of the Gottesman-Knill theorem.

This includes e.g. measurement-based quantum computation [9, 17, 18], quantum error-

correction and fault-tolerance [10, 19–21], secret-sharing [22–24], topological systems [25–28]

and other applications. The mathematical tools developed in the present work may therefore

also have applications outside the realm of classical simulations of quantum circuits.

1.1 Relation to previous work

In [1] it was proven that one can sample classically in poly-time the output distribution of any

non-adaptive normalizer circuit followed by a terminal measurement in the standard basis.

Our work extends this result in various ways, as outlined above in I-II-III. Main differences

are the fact that here we consider adaptive normalizer circuits, and two different types of

simulations: sampling output distributions and computation of amplitudes.

To our knowledge, ref. [1] and the present work are the first studies to investigate normal-

izer circuits over arbitrary finite Abelian groups, including those of the form G = Z
m
d where

d can be an exponentially large number, such as d = 2n; they are also the first to consider

normalizer operations that act on high-dimensional physical systems without a natural tensor

product decomposition (such as C
p where p > 2n is an exponentially big prime number), or

clusters of heterogeneous qudits (e.g. C
a × C

b × C
c when a, b, c are different, as opposed to

C
d⊗n

).

Restricting to groups of the form G = Z
m
d where d is constant, our work recovers previous

results regarding classical simulations of Clifford circuits for qudits. We emphasize that in

this second scenario d is a fixed parameter that does not scale; this is in contrast with the

cases studied in [1] and in the present paper. We briefly summarize prior work on qudits.

• Results when d is a constant prime number: if d = 2, the ability to sample classically

efficiently follows from the Gottesman-Knill theorem [2, 3], whereas the computation of

amplitudes from [29]; for prime values of d larger than 2, techniques given in [10] yield

efficient sampling simulations also for adaptive Clifford circuits.

• Results when d is an arbitrary constant: techniques given in [11] can be used to sim-

ulate non-adaptive Clifford circuits followed by a terminal standard basis measurement

(sampling output distributions and computation of amplitudes); tools developed in [30]

can be used to sample in the adaptive case.
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Finally, our work also connects to previous studies on the simulability of Abelian quantum

Fourier transforms (QFTs), such as [31–33]. The relation between normalizer circuits to the

quantum circuits considered in those works was discussed in [1].

2 Outline of the Paper

This paper is organized as follows.

Section 3 summarizes the key concepts of this work: Pauli and Clifford operators, and

normalizer circuits. Sections 4 and 5 contain technical preliminaries. Section 4 gives an

introduction to the theory of finite Abelian groups, including a number of efficient classical

algorithms to solve algebraic computational problems: the methods presented therein form

the basic technical machinery used this work. Section 5 gives a detailed account of the

mathematical properties of Pauli, Clifford and (unitary) normalizer operations.

The remaining sections contain the main results of our work. In section 6, a theory of

Abelian-group stabilizer codes is developed. Section 7.2 explains how intermediate (gener-

alized) Pauli operator measurements can be implemented, and how they transform Abelian-

group stabilizer states. In section 8 we show how to simulate adaptive normalizer circuits

classically, discuss the power of these operations for state preparation and give normal forms

for stabilizer states.

3 Summary of Concepts

In this section we introduce the most prominent quantum-mechanical concepts that feature in

this article, namely, the notions of Pauli/Clifford operators and normalizer circuits over finite

Abelian groups, as defined in [1]. Our aim is to illustrate the main ideas behind these group-

theoretical quantum circuits by presenting, without details, some key definitions with several

examples. The latter will also explain how normalizer circuits generalize the notions and

Clifford operators for qubits [4] and qudits [34, 10]. The technical aspects of these quantum

operations will be postponed to section 5.

3.1 The Hilbert space associated with a group G

Let Zd = {0, 1, . . . , d− 1} be the additive group of integers modulo d. Then

G = Zd1
× · · · × Zdm

(1)

denotes a finite Abelian group, whose elements are m-tuples of the form g = (g(1), . . . , g(m))

with g(i) ∈ Zdi
. Addition of two group elements is component-wise modulo di. Every finite

Abelian group can be expressed as a product of the type (1) via isomorphism, yet computing

this decomposition is regarded as a difficult computational problemd; throughout this paper,

a product decomposition (1) of G is always explicitly given. The order (or cardinality) of G

is denoted by g, and fulfills g = d1d2 · · · dm.

Any group G as in (1) is naturally associated to a g-dimensional Hilbert space C
G =

C
d1 ⊗ · · · ⊗ C

dm with a basis B labeled by group elements

|g〉 = |g(1)〉 ⊗ · · · ⊗ |g(m)〉 for all g ∈ G. (2)

dThe problem is at least as hard as factoring integers, since decomposing G = Z
×
N

yields an efficient algorithm
to compute the Euler Totient function: the latter can be used to factorize in polynomial time (see e.g.
[35] chapter 10). Efficient quantum algorithms to decompose Abelian groups exist, at least for “reasonably
presented” groups: this was shown in [36, 37] for black-box finite Abelian groups with unique encodings.
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This basis is henceforth called the standard basis.

3.2 Pauli operators

We now introduce the following operators acting on C
G:

X(g) :=
∑

h∈G

|h+ g〉〈h|, Z(g) :=
∑

h∈G

χg(h)|h〉〈h|. (3)

Here g ∈ G and χg is a homomorphisme from G into the multiplicative group of nonzero

complex numbers C∗, defined as

χg(h) = exp

(
2πi

m∑

i=1

g(i)h(i)

di

)
; (4)

the functions χg are known as the character functions of G. All operators X(g), Z(g) are

unitary. Indeed, X(g) acts as a permutation on the standard basis; second, since χg(h) is a

complex phase, the operator Z(g) is unitary as well.

With definitions (3–4), a Pauli operator over G (hereafter often simply denoted Pauli

operator) is any unitary operator of the form

σ(a, g, h) := γaZ(g)X(h), (5)

where γ := ei /g is a primitive root of unity, and a ∈ Z2g. The triple (a, g, h) describing the

Pauli operator is called the label of σ. It is important to observe that, although σ is a g× g

matrix, its label (a, g, h) is an efficient description of itself comprising O(log g) bits; from

now on, we will specify Pauli operators in terms of their labels, and refer to the latter as the

standard encoding of these operators.

It was proved in [1] that the set PG of all Pauli operators over G forms a (finite) group,

which we call the Pauli group (over G); this is reviewed in section 5.

3.3 Clifford operators and normalizer circuits

A unitary operator U on C
G is called a Clifford operator (over G) if U maps the Pauli group

PG onto itself under the conjugation map σ → UσU †. It is easy to see that the set of all

Clifford operators forms a group, called the Clifford group CG. Formally speaking, the Clifford

group is the normalizer of the Pauli group in the full unitary group acting on C
G.

Next we define three basic classes of unitary operators on C
G which are known to belong

to the Clifford group [1].

I. Quantum Fourier transforms. The quantum Fourier transform (QFT) over Zdi
is

the following unitary operator on C
di :

Fi =
1√
di

∑
ωxy
i |x〉〈y|; ωi = exp

(
2πi

di

)
(6)

where the sum is over all x, y ∈ Zdi
. The QFT over the entire group G is given by

F = F1 ⊗ · · · ⊗ Fm, which acts on the entire space C
G. Any operator obtained by

replacing a subset of operators Fi in this tensor product by identity operators is called

a partial QFT.

eThat is, χg fulfills χg(h+ h′) = χg(h)χg(h′) for every h, h′ ∈ G.
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II. Automorphism gates. Given an automorphism α of G, the associated automorphism

gate Uα maps |g〉 → |α(g)〉.

III. Quadratic phase gates. A function ξ from G to the nonzero complex numbers is

called quadratic if there exists a bilinearf function B such that for every g, h ∈ G it

holds that

ξ(g + h) = ξ(g)ξ(h)B(g, h). (7)

Given a quadratic function ξ on G, the quadratic phase gate Dξ is the diagonal operator

mapping |g〉 → ξ(g)|g〉. For every quadratic function ξ the complex number ξ(g) fulfills

ξ(g)2g = 1 and is therefore a complex phase [1]; as a result, every quadratic phase gate

is a (diagonal) unitary operator.

The mathematical properties of quadratic functions are reviewed in section 4.2.

A unitary operator which is either a (partial) quantum Fourier transform or its inverse, an

automorphism gate or a quadratic phase gate is generally referred to as a normalizer gate. A

quantum circuit composed entirely of normalizer gates is called a normalizer circuit over G.

The size of a normalizer circuit is the number of normalizer gates of which it consists. A full

description of every normalizer gate that is part of a normalizer circuit (type, action, number

of qubits on which it acts, etc) can be stored efficiently (with polylog g bits of memory) in a

computer, using—what we call—the standard encodings of these gates (to be properly defined

in section 5.2); it follows that every polylog g normalizer circuit can be described efficiently

as a list of normalizer gates.

3.4 The relationship between normalizer and Clifford operations

It was proven in [1] that every normalizer gate (and circuit) is a Clifford operator, but it is

not known whether all possible Clifford operators can be implemented via normalizer gates.

Such a question is of considerable relevance, since the finding of a non-normalizer Clifford

operation could lead to a new quantum gate. However, the authors believe that such an

operation does not exist; we conjecture that any Clifford operator can be implemented as a

poly-size normalizer circuit (conjecture 1). We refer to section 5.2.2 for a discussion and some

supporting evidence.

3.5 Examples

Here we give examples of Pauli and normalizer operations for several groups. We illustrate

in particular how the definitions of the preceding section generalize existing notions of Pauli

and Clifford operators for qubits and qudits.

3.5.1 G = Z
m
2

In this case the standard definition of m-qubit Pauli operators is recovered. To see this, first

note that we have C
G = C

2 ⊗ · · · ⊗ C
2 i.e. the Hilbert space is a system of m qubits. Let σx

and σz denote the standard Pauli matrices and let g ∈ Z
m
2 be an m-bit string. Then, applying

definition (3) one finds that

X(g) = σg(1)
x ⊗ · · · ⊗ σg(m)

x , Z(g) = σg(1)
z ⊗ · · · ⊗ σg(m)

z . (8)

fB is bilinear if it is a character in both arguments: i.e. B(g + g′, h) = B(g, h)B(g′, h) and B(g, h + h′) =
B(g, h)B(g, h′). In particular, all characters are bilinear.
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Here g ∈ Z
m
2 is an m-bit string: i.e. g(i) ∈ {0, 1}. In short, X(g) is a tensor product of σx-

matrices and identities, and Z(g) is a tensor product of σz-matrices and identities. Therefore,

every Pauli operator (3) has the form σ ∝ U1 ⊗ · · · ⊗ Um where each Ui is a single-qubit

operator of the form σu
xσ

v
z for some u, v ∈ Z2. This recovers the usual notion of a Pauli

operator on m qubits [4].

It was shown in [1] that the CNOT gate and the CZ gate (acting between any two qubits),

the Hadamard gate and the Phase gate S = diag(1, i) (acting on any single qubit) are examples

of normalizer gates for G = Z
m
2 . Note that these gates are the standard building blocks of the

well known class of Clifford circuits for qubits. In fact, the entire Clifford group for qubits is

generated by this elementary gate set [4].

3.5.2 G = Z
m
d

In this case the Hilbert space C
G = C

d ⊗ · · · ⊗ C
d is a system of m d-level systems (qudits)

and Pauli operators have the form σ ∝ U1⊗· · ·⊗Um, where each Ui is a single-qudit operator

of the form Xu
dZ

v
d for some u, v ∈ Zd. Here Xd and Zd are the usual generalizations of σx

and σz, respectively [34, 10]. These operators act on a single d-level system as follows:

Xd =
∑

|x+ 1〉〈x| and Zd =
∑

e2 ix/d|x〉〈x| (9)

where the sums run over all x ∈ Zd. Examples of normalizer gates over Zm
d are generalizations

of the CNOT, CZ, Hadamard and Phase gates to qudits, as follows:

SUMd =
∑

|x, x+ y〉〈x, y|; (10)

CZd =
∑

ωxy
d |x, y〉〈x, y|; ωd := e2 i/d (11)

Fd =
1√
d

∑
e2 ixy/d|x〉〈y|; (12)

Sd =
∑

ξ
x(x+d)
d |x〉〈x|; ξd := e i/d. (13)

Here x and y rum over all elements in Zd. To show that SUMd is a normalizer gate, note

that (x, y) → (x, x + y) is indeed an automorphism of Zd × Zd. The gates CZd and Sd are

quadratic phase gates; see Ref.[1]. In addition, the “multiplication gate” Md,a =
∑ |ax〉〈x|

is also a normalizer gate, for every a ∈ Zd which is coprime to d. Indeed, for such a the map

x → ax is known to be an automorphism of Zd. It is known that the entire Clifford group

for qubits (for arbitrary d) is generated by the gates SUMd, Fd, Sd and Ma [11].

3.5.3 G = Z2m

One can also consider G to be a single cyclic group, such as G = Z2m . In this case, CG is

a 2m-dimensional Hilbert space with standard basis {|0〉, . . . , |2m − 1〉}. Comparing with the

previous examples, the important difference with e.g. Zm
2 is that the structure of Z2m does

not naturally induce a factorization of the Hilbert space into m single-qubit systems. As

a consequence, normalizer gates over Z2m act globally on H, in contrast with the previous

examples.

Examples of normalizer gates are now given by F2m , S2m and M2m, a, following the defi-

nitions of the previous example with d = 2m. Note that F2m is the “standard” QFT used in

e.g Shor’s algorithm and the phase estimation quantum algorithm.
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4 Preliminaries on Finite Abelian Groups

This section is reserved for the main group-theoretical notions used in this work, and their

computational aspects. The concepts and algorithms introduced in this section will be essen-

tial to construct a theory of stabilizer codes for physical systems of the form C
G (cf. eq. (2)),

where G can be any finite Abelian group (1).

4.1 Conventions

Throughout this section we fix the canonical decomposition G to be G = Zd1
× · · · × Zdm

,

as in (1); this choice is completely arbitrary. In computational complexity theory a (classical

or quantum) algorithm is said to be efficient if it solves a given computational problem of

input-size n in (classical or quantum) poly (n) time: when one looks at problems related to

finite Abelian groups, this will be synonym of “in polylog(|G1|, |G2|, . . . , |Gn|) time”, being

G1, . . . , Gn the groups involved in a problem of interest (we look at concrete problems in

section 4.5).

Last, we introduce a set of canonical generators ei of G. For every i ranging from 1 to m,

ei = (0, . . . , 1i, . . . , 0) ∈ G denotes the group element which has 1 ∈ Zdi
in its i-th component

and zeroes elsewhere, where 0 in slot k represents the neutral element in Zdk
. The m elements

ei generate G, for any element g ∈ G can be naturally written as g =
∑
g(i)ei, and play a

similar role as the canonical basis vectors of vector spaces like R
m or Cm (though G is not a

vector space).

4.2 Character and quadratic functions

The character functions χg of G (eq. 4), form a finite Abelian group with the multiplication

χgχh = χg+h, called the character group or dual group Ĝ; the latter is isomorphic to G via

g ↔ χg. Moreover, for every g, h, h′ ∈ G the following equalities hold:

Linearity: χg(h+ h′) = χg(h)χ(h
′); Label symmetry: χg(h) = χh(g). (14)

Relationships (14) are useful to manipulate characters symbolically.

All character functions are quadratic functions: indeed, it is trivial to check that function

B(g, h) ≡ 1 fulfills

B(g + h, x) = B(g, x)B(h, x) and B(x, g + h) = B(x, g)B(x, h) (15)

for every g, h, x ∈ G, so it is bilinear; B can then be used to write every character in the form

(7). Furthermore, the set of all quadratic functions of G forms a finite Abelian group with the

multiplication ξξ′, which contains the character group Ĝ as a subgroup [1]: finiteness follows

from ξ(g)2g = 1; eqs. (7,15) can be used to check closure, associativity, commutativity and

that the inverse of any quadratic function ξ (its complex conjugate ξ) is again quadratic.

We finish this section with some examples of quadratic functions over finite Abelian groups

(more examples can be found in ref. [1]).

Example 1: We consider G = Z
m
2 . Letting A be an m ×m matrix with entries in Z2 and

letting a ∈ Z
m
2 , the following functions are quadratic:

ξA : x→ (−1)x
TAx and ξa : x→ ia

T x (16)
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where x ∈ Z
m
2 and aTx is computed over Z2 (i.e. modulo 2). Note that the exponent in ξA

is polynomial of degree 2 in x, whereas the exponent in ξa has degree 1. To prove that these

functions are quadratic in the sense used in this work, we note that

ξA(x+ y) = ξA(x)ξA(y)(−1)x
T (A+AT )y (17)

ξa(x+ y) = ξ(x)ξ(y)(−1)q(x,y) with q(x, y) = (aTx)(aT y) (18)

Identity (18) can be proved by distinguishing between the 4 cases aTx, aT y ∈ {0, 1}. The

above identities can be used to show that ξA and ξa are quadratic.

Example 2: Considering a single cyclic group G = Zd, examples of quadratic functions are

z → ωbz2+cz and z → γbz(z+d); ω := e2 i/d, γ := ω1/2. (19)

We refer to [1] for a proof.

4.3 Orthogonal subgroups

The character functions χg give rise to a set-theoretical duality, sometimes called orthogonality

of Abelian subgroups (although it differs from the usual orthogonality of vector spaces). Given

a subgroup H of the finite Abelian group G, its orthogonal subgroup H⊥ is defined as

H⊥ = {g ∈ G : χh(g) = 1, for all h ∈ H} . (20)

Note that H⊥ is indeed a subgroup of G. The main properties of H⊥ are summarized below.

Lemma 1 (Orthogonal subgroup) Consider a finite Abelian group G as in (1) and let H

and K be two arbitrary subgroups. Then the following statements hold:

(a) (H⊥)⊥ = H

(b) |H⊥| = |G/H| = g/|H|
(c) H ⊆ K if and only if K⊥ ⊆ H⊥

(d) (H ∩K)⊥ = 〈H⊥, K⊥〉

Proof : (a-b) are well-known, see e.g. [13]. (c) is proved straightforwardly by applying defini-

tions. We prove (d). SinceH∩K is contained in bothH andK if follows that H⊥ ⊆ (H∩K)⊥

and K⊥ ⊆ (H ∩K)⊥. Therefore 〈H⊥, K⊥〉 ⊆ (H ∩K)⊥. We show 〈H⊥, K⊥〉⊥ ⊆ H ∩K,

which implies the reversed inclusion. This comes from the fact that g ⊥ 〈H⊥, K⊥〉 implies

g ⊥ H⊥ and g ⊥ K⊥, or equivalently, g ∈ H and g ∈ K.

4.4 Homo-, iso- and auto- morphisms

Given two finite Abelian groups H and G, a group homomorphism from H to G is a map

A : H → G that fulfills A(g + h) = A(g) + A(h) for every g, h ∈ H. (In other words,

A is linear.) An isomorphism from H to G is an invertible group homomorphism. An

automorphism of G is an isomorphism of the form α : G → G, i.e. from a group onto itself.

The set of all automorphisms of G forms a group, called the automorphism group.
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Throughout this work, group homomorphisms between Abelian groups are to be described

in terms of matrix representations, which are defined as follows:

Definition 1 (Matrix representation) Given a homomorphism A : H → G between groups

H = Zc1 × · · · × Zcn and G = Zd1
× · · · × Zdm

, an m × n integer matrix A is said to be a

matrix representation of A if its columns ai are elements of G, and if it holds that

A(h) = Ah (mod G), for every h ∈ H. (21)

Conversely, an m×n integer matrix A is said to define a group homomorphism from H to G

if its columns ai are elements of G and the operation Ah (mod G) is a group homomorphism.

In (21) we introduced some conventions, that we will use: first, the element h is seen as

a column of integer numbers onto which A acts via matrix multiplication; second, (mod G)

indicates that multiplications and sums involved in the calculation of Ah are performed within

G, taking remainders when necessary.

The main properties of matrix representations are now summarized.

Lemma 2 Every group homomorphism A : H → G has a matrix representation. Moreover,

an m × n matrix A with columns ai ∈ G defines a homomorphism iff its columns fulfill the

equations

ciai = 0 (mod G), for every i. (22)

Proof : First, given A, we show that A := [A(e1), . . . ,A(en)], where ei := (0, . . . , 1i, . . . , 0),

is a matrix representation. Since every h ∈ H decomposes as h =
∑
h(i)ei, it follows, using

linearity of A, that

A(h) = A
(∑

h(i)ei

)
=
∑

h(i)A(ei) = Ah (mod G). (23)

The right implication of the iff comes readily from

ciai = ciAei = A(ciei) = A(0) = 0 (mod G) (24)

For the converse, we let A act on g, h and g + h without taking remainders; we obtain

Ag +Ah =
∑

[g(i) + h(i)]ai, A(g + h) =
∑

(g + h)(i)ai. (25)

Recalling associativity of H and G, the latter expression shows that Ah defines a function

from H to Z
m, and, thus, Ah (mod G) is a function from H to G. Last, it holds for every

i that g(i) + h(i) = qici + (g + h)(i) for some integers qi , since (by definition of the group

H) (g + h)(i) is the remainder obtained when g(i) + h(i) is divided by ci (qi is the quotient).

It follows, subtracting modularly, that A(g) + A(h) − A(g + h) =
∑
qiciai = 0 (mod G) for

every g, h; and, due to, A defines a linear map.
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4.5 Computational group theory

Computational aspects of finite Abelian groups are now discussed; our discourse focuses on

a selected catalog of computational problems relevant to this work and efficient classical

algorithms to solve them. Since this section concerns only classical computational complexity,

we will tend to omit the epithet classical all the way throughout it.

To start with, we introduce some basic notions of computer arithmetic. From now on, the

size of an integer is the number of bits in its binary expansion. Observe that every group

(1) satisfies the inequalities 2m ≤ g and di ≤ g, for every i. It follows readily that m is

O(polylog g), and that one needs at most a polylog(g) amount of memory to store an element

g = (g(1), . . . , g(m)) ∈ G (in terms of bits).

We discuss now how to perform some basic operations efficiently within any finite Abelian

group (1). First, given two integers a and b of size at most l, common arithmetic operations

can be computed in poly(l) time with elementary algorithms: such as their sum, product,

the quotient of a divided by b, and the remainder a mod b [38]. Therefore, given g, h ∈ G,

the sum g + h can be obtained in polylog(g) time by computing the m remainders g(i) +

h(i) mod di. Similarly, given an integer n, the element ng can be obtained in polylog(g, n)

time by computing the remainders ng(i) mod di.

In connection with section 4.4, it follows from the properties just introduced that matrix

representations can be stored using only a polynomial amount of memory, and, moreover,

that given the matrix representation A we can efficiently compute Ah (mod G). Specifically,

given a matrix representation A of the homomorphism A : H → G, we need polylog(|H|, |G|)
space to store its columns ai as tuples of integers, and polylog(|H|, |G|) time to compute the

function A(h).

Periodically, and at crucial stages of this investigation, some advanced algebraic computa-

tional problems are bound to arise. The following lemma compiles a list of group theoretical

problems that will be relevant to us and can be solved efficiently by classical computers.

Lemma 3 (Algorithms for finite Abelian groups) Given H, K, two subgroups of G,

and {hi}, {kj}, polynomial-size generating-sets of them, there exist efficient classical algo-

rithms to solve the following problems deterministically.

(a) Decide whether b ∈ G belongs to H; if so, find integers wi such that b =
∑
wihi.

(b) Count the number of elements of H.

(c) Find a generating-set of the intersection H ∩K.

(d) Find a generating-set of H⊥.

(e) Given the system of equations χhi
(g) = γai , find elements (g0, g1, . . . , gs) such that all

solutions can be written as linear combinations of the form g0 +
∑
vigi.

The proof of the lemma is divided in two parts which are fully detailed in appendices A and

B. The rest of this section describes the high-level structure of the proof.

In short, appendix A contains a proof of the following statement.

Lemma 4 Problems (a-e) in lemma 3 are polynomial-time reducible to either counting or

finding solutions of systems of equations of the form A(x) = b; where A is a group homomor-

phism between two (canonically-decomposed) finite Abelian groups, Gsol and G, to which x,

b respectively belong; given that a matrix representation of A is provided.
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Mind that, since A is a linear map, the set Xsol of solutions of such a system is either empty

or a coset with the structure

Xsol = x0 + kerA. (26)

By finding solutions we refer to the action of finding one particular solution x0 of the system

and a (polynomially-large) generating set of kerA.

To provide an example, we prove now lemma 4 for the problems (d-e) in lemma 3; for the

rest of cases, we refer to the appendices.

Example: [proof of the (d,e)th cases of lemma 3] First of all, notice that problem (d)

reduces to (e) by setting all ai to be 0—this yields the system (20), whose solutions are the

elements of the orthogonal subgroup. Therefore, it will be enough to prove the (e)th case.

Moreover, since the equations χhi
(g) = γai can be fulfilled for some g ∈ G only if all γai are

gth-roots of the unit, this systems can only have solutions if all ai are even numbers. As we

can determine it efficiently whether these numbers are even, we assume from now on that it

is the case.

Now define a tuple of integers b coefficient-wise as b(i) := ai/2; use the later to re-

write γai = exp (2πi b(i)/g). Also, denote by H the group generated by the elements hi.

By letting g multiply numerators and denominators of all fractions in (4), the system of

complex exponentials χhi
(g) = γai can be turned into an equivalent system of congruences∑

j(g/dj)hi(j)g(j) = b(i) mod g. Finally, by defining a matrix Ω with coefficients Ω(i, j) :=

(g/dj)hi(j) the system can be written as

Ωg = b (mod G), (27)

where b belongs to G = Z
r
g
, being r the number of generators hi, and we look for solutions

inside Gsol = G. Moreover, the coefficients of Ω fulfill djΩ(i, j) = 0 mod g; hence, condition

(22) is met and Ω defines a homomorphism.

Finally, Ω can be computed in O(polylog g) using aforementioned algorithms to multiply

and divide integers. It is now routine to check, using the concepts developed thus far, that

both log |Gsol| and log |G| are O(polylog g); as a result, the input-size of the new problem, as

well as the memory needed to store Ω and b, are all O(polylog g).

Remark: Note that the group homomorphism ω(g) := Ω(g) (mod Z
r
g
) fulfills kerω = H⊥.

Therefore, if we substitute H with H ′ := H⊥ in the procedure above, given s = polylog(g)

generators of H ′, we would obtain an s ×m integer matrix Ω′ that defines a second group

homomorphism ̟ : G→ Z
s
g
such that

̟(g) = Ω′(g) (mod G) and ker̟ = H ′⊥ = H. (28)

As a result, our algorithm to compute generators of H⊥ leads also to an efficient method to

construct, given any subgroup H of G, a homomorphism ̟ whose kernel is H. This fact will

be used later in the text, in section 8.
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The final ingredient to complete the proof of lemma 3 is the following theorem.

Theorem 1 (Systems of linear equations over finite Abelian groups) Given any

element b of the group G = Zd1
× · · · × Zdm

and any m × n matrix A which defines a group

homomorphism from H = Zc1 × · · · × Zcn to G, consider the system of equations Ax = b

(mod G). Then, there exist classical algorithms to solve the following list of problems in

polylog(|H|, |G|) time.

1. Decide whether the system admits a solution.

2. Count the number of different solutions of the system.

3. Find x0, x1, . . . , xr ∈ H such that all solutions of the system are linear combinations of

the form x0 +
∑
kixi.

The main ideas underlying the proof of theorem 1 are as follows: first, we show how to reduce

Ah = b (mod G) in polynomial-time to an equivalent system of linear congruences modulo

d, where d is suitably upper-bounded; second, we apply fast algorithms to compute Smith

normal forms to tackle the latter problem [39]. For details, we refer to appendix B.

5 Pauli Operators and Normalizer Circuits over Abelian Groups

5.1 Manipulation of Pauli operators

First, note that every Pauli operator factorizes as a tensor product relative to the tensor

decomposition of CG i.e. σ can be written as σ = U1 ⊗ · · · ⊗ Um where Ui acts on C
di . This

property simplifies several proofs; it can be verified straightforwardly by applying (3) and the

definition (4) of the characters of G.

Basic manipulations of Pauli operators can be carried out transparently by translating

them into transformations of their labels: we review now some of these rules. First, the Pauli

matrices (3) obey the following commutation rules:

X(g)X(h) = X(g + h) = X(h)X(g)

Z(g)Z(h) = Z(g + h) = Z(h)Z(g) (29)

Z(g)X(h) = χg(h)X(h)Z(g).

Combinations of these rules straightforwardly lead to the next two lemmas.

Lemma 5 (Products and powers of Pauli operators [1]) Consider Pauli operators σ

and τ and a positive integer n. Then στ , σn and σ† are also Pauli operators, the labels

of which can be computed in polylog(g, n) time on input of n and the labels of σ and τ .

Moreover, σ† = σ2g−1.

Lemma 6 (Commutativity) Consider two Pauli operators σ(a1, g1, h1) = σ1 and σ(a2, g2, h2) =

σ2. Then the following statements are equivalent:

(i) σ1 and σ2 commute;

(ii) χg1(h2) = χg2(h1);

(iii) x := (g1, h1) and y := (h2,−g2) are orthogonal elements of G×G i.e. χx(y) = 1.
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Lemma 5 implies that the set of all Pauli operators PG over G forms a (finite) group, called

the Pauli group (over G).

5.2 Normalizer quantum circuits

Hitherto we have not considered technical aspects of normalizer circuits, such as how to

describe normalizer circuits efficiently, or how to compute their action on Pauli operators; we

address these questions in this section.

5.2.1 Describing normalizer operations

In this paper we will be interested in classical simulations of normalizer circuits. To make

meaningful statements about classical simulations one must first specify which classical de-

scriptions of normalizer circuits are considered to be available. In the case of Pauli operators

over G (which are particular examples of normalizer operations [1]), we saw that it is possible

to describe them using few (polylog g) memory resources, by choosing their labels (a, g, h) as

standard encodings; this property holds for all normalizer gates and—hence—circuits [1]: all

of them admit efficient classical descriptions. This is discussed next.

• First, a partial quantum Fourier transform is described by the set of systems Cdi
on

which it acts nontrivially.

• Second, an automorphism gate is described by the matrix representation of the associ-

ated automorphism (cf. section 4.4).

• Third, let ξ be an arbitrary quadratic function. Since ξ(g)2g = 1, there exists n(g) ∈ Z2g

such that ξ(g) = e in(g)/g for every g ∈ G. It was shown in [1] that the O(m2) integers

n(ei) and n(ei + ej) comprise an efficient description of ξ and, thus, of the associated

quadratic phase gate.

Henceforth we will assume that all normalizer gates are specified in terms of the descriptions

given above, which will be called their standard encodings. The standard encoding of each

type of gate comprises polylog(g) bits. The standard encoding of a normalizer circuits is the

sequence of classical descriptions of its gates.

5.2.2 Normalizer equals Clifford?

The following theorem states that every normalizer gate belongs to the Clifford group, and the

action of any normalizer gate on a Pauli operator via conjugation can be described efficiently

classically.

Theorem 2 (Normalizer gates are Clifford [1]) Every normalizer gate is a Clifford

operator. Furthermore let U be a normalizer gate specified in terms of its standard classical

encoding as above, and let σ be a Pauli operator specified in terms of its label; then the label

of UσU † can be computed in polylog(g) time.

It is unknown whether the entire Clifford group can be generated (up to global phase factors)

by normalizer gates in full generality. However, it was proven in [11] (see also the examples in
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section 3.5) that this is indeed the case for groups of the form G = Z
m
d (i.e. m qudit systems);

more strongly, every Clifford group element (over Zm
d ) can be written as a product of at most

polylog(g) such operators. We conjecture that this feature holds true for Clifford operators

over arbitrary finite Abelian groups.

Conjecture 1 Let G be an arbitrary (canonically decomposed) finite Abelian group. Then,

up to a global phase, every Clifford operator over G can be written as a product of polylog(g)

normalizer gates.

Finally, in the following lemma we provide some partial support for this conjecture. We show

that both automorphism gates and quadratic phase gates have a distinguished role within the

Clifford group, characterized as follows:

Lemma 7 Up to a global phase, every Clifford operator which acts on the standard basis as

a permutation has the form X(g)Uα for some g ∈ G and some automorphism gate Uα. Every

diagonal Clifford operator is, up to a global phase, a quadratic phase gate.

Proof : The first statement was proved in [1]. We prove the second statement. Let D =∑
ξ(g)|g〉〈g| be a diagonal unitary operator (so that |ξ(g)| = 1 for all g ∈ G) in the Clifford

group. Without loss of generality we may set ξ(0) = 1, which can always be ensured by

choosing a suitable (irrelevant) overall phase. Then for every h ∈ G, D sends X(h) to a Pauli

operator under conjugation. This implies that there exists a complex phase γ(h) and group

elements f1(h), f2(h) ∈ G such that

DX(h)D† = γ(h)X(f1(h))Z(f2(h)). (30)

Since D is diagonal, it is easy to verify that we must have f1(h) = h for every h ∈ G. Now

consider an arbitrary g ∈ G. Then

DX(h)D†|g〉 = ξ(g)ξ(g + h)|g + h〉; (31)

γ(h)X(h)Z(f2(h))|g〉 = γ(h)χg(f2(h))|g + h〉. (32)

Condition (30) implies that (31) is identical to (32) for every g, h ∈ G. Choosing g = 0 and

using that ξ(0) = 1 and χ0(x) = 1 for every x ∈ G it follows that γ(h) = ξ(h). We thus find

that

ξ(g + h) = ξ(g)ξ(h)χg(f2(h)). (33)

The function B(g, h) := ξ(g + h)ξ(g)ξ(h) is manifestly linear in g, since B(g, h) = χg(f2(h)).

Furthermore by definition B is symmetric in g and h. Thus B is also linear in h.

6 An Abelian-Group Stabilizer Formalism

In this section we develop further the stabilizer formalism for finite Abelian groups as started

in [1]. We provide new analytic and algorithmic tools to describe them and analyze their

properties. Throughout this section we consider an arbitrary Abelian group of the form

G = Zd1
× · · · × Zdm

.
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6.1 Stabilizer states and codes

Let S be a subgroup of the Pauli group PG. Then S is said to be a stabilizer group (over

G) if there exists a non-zero vector |ψ〉 ∈ C
G which is invariant under all elements in S i.e.

σ|ψ〉 = |ψ〉 for every σ ∈ S. The linear subspace V := {|ψ〉 : σ|ψ〉 = |ψ〉 for all σ ∈ S} is

called the stabilizer code associated with S. If V is one-dimensional, its unique element (up to

a multiplicative constant) is called the stabilizer state associated with S. In this work we will

mainly be interested in stabilizer states. Occasionally, however, it will be useful to consider

the general setting of stabilizer codes (cf. e.g. theorem 3).

Note that every stabilizer group S is Abelian. To see this, consider a state |ψ〉 6= 0

which is invariant under the action of all elements in S and consider two arbitrary σ, τ ∈ S.
Then (29) implies that there exists a complex phase α such that στ = ατσ. It follows that

|ψ〉 = στ |ψ〉 = ατσ|ψ〉 = α|ψ〉, where we have used that σ|ψ〉 = |ψ〉 = τ |ψ〉. We thus find

that |ψ〉 = α|ψ〉 so that α = 1 (i.e. σ and τ commute).

Conversely, not every Abelian subgroup of the Pauli group is a stabilizer group. A simple

counterexample is the group {I,−I} where I is the identity operator acting on C
G.

The support of a stabilizer code V is the set of all g ∈ G for which |g〉 has a nonzero

overlap with V i.e. there exists |ψ〉 ∈ V such that 〈g|ψ〉 6= 0. The support of a stabilizer state

|φ〉 is simply the set of all g ∈ G for which 〈g|φ〉 6= 0.

6.2 Label groups

Let S be a stabilizer group over G. The diagonal subgroup D is the subgroup of S formed

by its diagonal operators i.e. it consists of all operators in S of the form γaZ(g). Second, we

introduce two subgroups H and D of G called the label groups of S:

H = {h ∈ G : there exists γaZ(g)X(h) ∈ S}, (34)

D = {g ∈ G : there exists γaZ(g) ∈ D}, (35)

Using (29) it is straightforward to verify that D is indeed a subgroup of G. To prove that H is

a subgroup as well, one argues as follows. Let σ be a Pauli operator with label (a, g, h). We

call g the “Z-component” and h the “X-component” of σ. Denote the X-component formally

by ϕ(σ) := h. Then H is the image of S under the map ϕ. The commutation relations (29)

yield

ϕ(στ) = ϕ(σ) + ϕ(τ) for all σ, τ ∈ S. (36)

This implies that ϕ is a homomorphism from S to G. It follows that H is a subgroup of G.

Lemma 8 (Label groups) Let S be a stabilizer group and assume that the labels of k =

polylog(g) generators of S are given as an input. Then the label groups of S have the following

properties:

(i) H ⊆ D
⊥;

(ii) Generating sets of H, D can be efficiently computed classically;

(iii) The labels of a generating set of D can be efficiently computed classically.

Proof : Property (i) is a straightforward consequence of the commutation relations given in

lemma 6 and the definition of orthogonal subgroup (20). To show property (ii), recall that
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the map ϕ defined above is a homomorphism from S to G with H = Im(ϕ). Suppose that

S is generated by {σ1, . . . , σk}. Then H is generated by {ϕ(σ1), . . . , σ(σk)}: this yields an

efficient method to compute generators of H. To prove the second statement of (ii) as well as

(iii) requires more work. The argument is a direct generalization of the proof of lemma 9 in

[1] and the reader is referred to this work.

6.3 Certificates

The main purpose of this section is to provide a criterion to verify when a stabilizer group

gives rise to a one-dimensional stabilizer code i.e. a stabilizer state. This is accomplished in

corollary 1. To arrive at this statement we first analyze how the the dimension of a general

stabilizer code is related the structure of its stabilizer group.

Theorem 3 (Structure Test) Let S be a stabilizer group with stabilizer code V. Then

there exists g0 ∈ G such that

(i) supp(V) = g0 + D
⊥, (ii) dim(V) = |D⊥|

|H| , (37)

where H, D are the label subgroups of S. Furthermore, there exist efficient classical algorithms

to compute a representative g0 of the support, a generating set of D
⊥ and the dimension

dim(V).

Before proving theorem 3, we note that combining property (ii) together with lemma 8(i)

immediately yield:

Corollary 1 (Uniqueness Test) Let S be a stabilizer group with stabilizer code V. Then

V is one-dimensional if and only if H and D are dual orthogonal subgroups: H = D
⊥.

Theorem 3(ii) also leads to an alternative formula for the dimension of a stabilizer code:

Corollary 2 The dimension of V equals g/|S|.

The result in corollary 2 is well known for stabilizer codes over qubits [2, 4] (i.e. where G = Z
m
2

so that g = 2m) and qudits (where G = Z
m
d ) [2, 40].

Proof : [of corollary 2] Consider the map ϕ : S → G, defined in section 6.2, which is a

group homomorphism with image H. Furthermore the kernel of ϕ is precisely the diagonal

subgroup D of G. Since |Im ϕ| = |S|/|ker ϕ| it follows that |H| = |S|/|D|. Finally we claim

that D and D are isomorphic groups so that |D| = |D|. To prove this, consider the map

δ : D → D that sends σ = γaZ(g) to δ(σ) = g. Using (29) it follows that this map is a

homomorphism; furthermore, it is a surjective one by definition of D, and thus imδ = D. The

kernel of δ is the set of all σ ∈ S having the form σ = γaI. But the only operator in S
proportional to the identity is the identity itself, since otherwise S cannot have a common

+1 eigenstate. This shows that the kernel of δ is trivial, so that D and D are isomorphic, as

claimed. The resulting identity |H| = |S|/|D| together with |D⊥| = |G|/|D| (recall lemma 1)

and theorem 3(ii) proves the result.
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We now prove theorem 3 using techniques developed in [41] where the properties of so-called

M-spaces were studied. We briefly recall basic concepts and results.

A unitary operator acting on C
G is said to be monomial if it can be written as a product

U = DP where D is diagonal and P is a permutation matrix. A subspace M of CG is called

an M-space if there exists a group of monomial unitary operators G such that |ϕ〉 ∈ M iff

U |ϕ〉 = |ϕ〉 for every U ∈ G. The group G is called a stabilizer group of M. If M is one-

dimensional, its unique (up to a multiplicative factor) element |ψ〉 is called an M-state. The

support of M is defined analogously to the support of a stabilizer code i.e. it is the set of all

g ∈ G such that |g〉 has a nontrivial overlap with M. With this terminology, every stabilizer

code is an instance of an M-space and every stabilizer state is an M-state. To see this, note

that every Pauli operator σ(a, g, h) is a monomial unitary operator. Indeed, σ can be written

as a product σ = DP where D = γaZ(g) is diagonal and P = X(h) is a permutation matrix.

We introduce some further terminology. Let G be an arbitrary monomial stabilizer group.

For every g ∈ G, let Gg be the subset of G consisting of all U ∈ G satisfying U |g〉 ∝ |g〉 i.e. U
acts trivially on g, up to an overall phase. This subset is easily seen to be a subgroup of G.
Also, we define the orbit Og of g as:

Og = {h : ∃U ∈ G s.t. U |g〉 ∝ |h〉} (38)

In the following result the support of any M-space is characterized in terms of the orbits Og

and the subgroups Gg.

Theorem 4 (Support of M-space [41]) Consider an M-space M with monomial sta-

bilizer group G. Then the following statements hold:

(i) There exist orbits Og1 , . . . ,Ogd such that d = dim(M) and

supp(M) = Og1 ∪ · · · ∪ Ogd . (39)

(ii) Consider g ∈ G and an arbitrary set of generators {V1, . . . , Vr} of Gg. Then g ∈
supp(M) if and only if Vi|g〉 = |g〉 for every i.

Using this result, we can now prove theorem 3.

Proof : [of theorem 3] We apply theorem 4 to the Pauli stabilizer group S. In this case,

the group Sg and the orbit Og fulfill

Og = g +H, Sg = D. (40)

To demonstrate the first identity in (40), we use (3) which implies σ(a, x, y)|g〉 ∝ |g + y〉
for every σ(a, x, y) ∈ S. To show the second identity, first note that D|g〉 ∝ |g〉 for every

diagonal operator D ∈ D, showing that D ⊆ Sg. Conversely, if σ ∈ Sg has label (a, x, y) then

σ|g〉 ∝ |g+y〉. Since σ ∈ Sg the state |g〉 is an eigenvector of σ; this can only be true if y = 0,

showing that σ ∈ D.

Using lemma 8, we can efficiently compute the labels of a generating set {σ1, . . . , σr} of

Sg = D, where σi = γaiZ(gi) for some ai ∈ Z2g and gi ∈ G. Owing to theorem 4(ii), any
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g ∈ G belongs to the support of V if and only if σi|g〉 = |g〉 for every i = 1, . . . , r. Equivalently,

g satisfies

γaiχgi(g) = 1 for all i = 1, . . . , r. (41)

This system of equations is of the type considered in section 4.5 (cf. lemma 4 and the

example after it) and can, therefore, be transformed into an equivalent linear system over

groups: g ∈ supp(V) ⇔ Ωg = b (mod Z
r
g
). The elements gi generate the label group D, and

thus the homomorphism ω defined by Ω satisfies kerω = D
⊥. Since the system is linear,

its solutions form a coset of the form supp(V) = g0 + kerω = g0 + D
⊥, for some particular

solution g0. This shows statement (i).

Further, we combine (i) with theorem 4(i) to get a short proof of (ii): the equation

supp(V) = Og1 ∪ · · · ∪ Ogd = (g1 +H) ∪ · · · ∪ (gd +H) = g0 + D
⊥

implies, computing the cardinalities of the sets involved, that d|H| = dimV|H| = |D⊥|.
Finally, the ability to compute g0 and to find generators of D⊥ efficiently classically fol-

lows applying theorem 1 to a linear system described by a r × m matrix Ω that defines a

homomorphism from G to Z
r
g
, with r ∈ O(polylog g). Furthermore, we can compute dimV

directly using formula (ii) together with lemma 8 and the algorithms of lemma 3.

7 Pauli Measurements in the Stabilizer Formalism

7.1 Definition

Associated with every Pauli operator σ (5) we will consider a quantum measurement in the

eigenbasis of σ. Consider the spectral decomposition σ =
∑
λPλ where λ are the distinct

eigenvalues of σ and Pλ is the projector on the eigenspace associated with eigenvalue λ. Given

a state |ψ〉 ∈ C
G, the measurement associated with σ is now defined as follows: the possible

outcomes of the measurement are labeled by the eigenvalues {λ} where each λ occurs with

probability ‖Pλ|ψ〉‖2; furthermore, if the outcome λ occurs, the state after the measurement

equals to Pλ|ψ〉 up to normalization.

Consider a group G of the form (1), with associated physical system C
G = C

d1⊗· · ·⊗C
dm .

We remark that a measurement of the i-th system C
di in the standard basis {|0〉, . . . , |di−1〉}

can be realized as a measurement of a suitable Pauli operator, for every i ranging from 1 to m.

To keep notation simple, we demonstrate this statement for the special case G = Z
m
d , yet the

argument generalizes straightforwardly to arbitrary G. Denote by ei ∈ G the group element

which has 1 ∈ Zd in its i-th component and zeroes elsewhere. Then definition (3) implies

that the Pauli operator Z(ei) acts as Zd on the i-th qudit and as the identity elsewhere,

where Zd was defined in (9). Note that Zd has d distinct eigenvalues, each having a rank-one

eigenprojector |x〉〈x| with x ∈ Zd. It follows straightforwardly that measurement of Z(ei)

corresponds to measurement of the i-th qudit in the standard basis.

7.2 Implementation

It is easily verified that every Pauli operator σ can be realized as a polynomial size (unitary)

quantum circuit [1]. Therefore, measurement of σ can be implemented efficiently on a quantum

computer using standard phase estimation methods [4]. Here we provide an alternate method.

In particular we show that every Pauli measurement can be implemented using only normalizer
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circuits and measurements in the standard basis. This property will be a useful ingredient in

our proof of theorem 7.

Lemma 9 ([42]) For any dimension d and for integers j and k such that j, k ∈ Zd, there

exists a poly-size normalizer circuit C over the group Zd that transforms Z(j)X(k) into a

diagonal Pauli operator of the form γaZ(gcd(j, k)). Furthermore, there are efficient classical

algorithms to compute a description of C.

Corollary 3 Consider a Pauli operator σ over an arbitrary finite Abelian group G. Then

there exists a poly-size normalizer circuit C over G such that CσC† = γaZ(g). Furthermore,

there are efficient classical algorithms to compute a description of C, γa, ‘a’, and g.

Proof : To compute C note that every Pauli operator over G has the form σ ∝ U1 ⊗ · · · ⊗Um

where Ui is a Pauli operator over Zdi
and apply lemma 9 to each factor. The rest follows by

applying theorem 2 to compute the label of CσC† and, in the case of γa, by using standard

algorithms to compute scalar exponentials.

Lemma 9 and corollary 3 reduce the problem of measuring general Pauli operators to that

of implementing measurements of Z(g). Indeed, given an arbitrary σ to be measured, we

can always compute a poly-size normalizer circuit that transforms it into a diagonal operator

γaZ(g), using corollary 3. Then, the measurement of σ is equivalent to the procedure (a)

apply C; (b) measure γaZ(g); (c) apply C†. Finally, Pauli operators that are proportional to

each other define the same quantum measurement, up to a simple relabeling of the outcomes.

Therefore it suffices to focus on the problem of measuring an operator of the form Z(g).

Note now that, by definition, the eigenvalues of Z(g) have the form χg(h). Define the

following function ω from G to Zd, where d = lcm(d1, . . . , dm):

ω(h) =
∑

i

d

di
g(i)h(i) mod d. (42)

With this definition one has χg(h) = e2 iω(h)/d. Given any y ∈ Zd, the eigenspace of Z(g)

belonging to the eigenvalue λ = e2 iy/d is spanned by all standard basis states |h〉 with

ω(h) = y.

Note that ω is a group homomorphism from G to Zd as it fulfills (22). As a result, the

controlled operation f(h, a) = (h, a+ω(h)) is a group automorphism of G×Zd and it can be

implemented by a normalizer gate Uf |h, a〉 = |h, a+ ω(h)〉.
The gate Uf can now be used to measure Z(g), with a routine inspired by the coset-state

preparation method used in the standard quantum algorithm to solve the Abelian hidden

subgroup problem [13, 14]: first, add an auxiliary d-dimensional system C
d in the state |0〉

to C
G, being the latter in some arbitrary state |ψ〉; second, apply the global interaction Uf ;

third, measure the ancilla in the standard basis. The global evolution of the system along

this process is

|ψ〉|0〉 =
∑

h∈G

ψ(h)|h〉|0〉 Uf−−→
∑

h∈G

ψ(h)|h〉|ω(h)〉 Measure−−−−−→ 1
√
py


 ∑

h:ω(h)=y

ψ(h)|h〉|y〉



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The measurement yields an outcome y ∈ Zd with probability py =
∑

h:ω(h)=y |ψ(h)|2. The

latter precisely coincides with ‖Pλ|ψ〉‖2 where Pλ is the eigenprojector associated with the

eigenvalue λ = e2 iy/d and, therefore, we have implemented the desired measurement.

In figure 1 we show a poly-size quantum circuit that implements the measurement of the

Pauli operator σ = CZ(g)C† in the way just described. In the picture, the m + 1 horizontal

lines represent the m physical subsystems that form C
G = C

d1 ⊗ · · · ⊗ C
dm and the ancillary

system C
d; the numbers ci := d/di g(i) are chosen to compute the function (42) in the ancillary

system. For merely pictorial reasons, the depicted measurement acts on a standard-basis state.

|g(1)〉

C

• · · ·

C†
|g(2)〉 • · · ·

...
...

|g(m)〉 · · · •
|0〉d Xc1

d Xc2
d · · · Xcm

d

Fig. 1. Quantum circuit implementing measurement of operator σ = CZ(g)C†

Two remarks. First, the state of the ancilla could be reset (with Pauli gates) to its original

value once the measurement outcome ω(x) is recorded; this could be used to implement a

series of measurements using only one ancilla. Second, the value ω(x) can be used to compute

λ = χg(x) = e2 iω(x)/d.

Finally we mention that a procedure given in [30] to implement measurements of qudit

Pauli operators (as presented in section 3.5.2) can be recovered from ours by choosing G = Z
m
d .

7.3 Measurement update rules

In this section we show that Pauli measurements transform stabilizer states into new stabilizer

states. We give an analytic formula to update their description. Moreover we show that the

update can be carried out efficiently.

Theorem 5 Consider a stabilizer state |φ〉 over G with stabilizer group S and let σ be a

Pauli operator. Perform a measurement of σ on |φ〉, let the measurement outcome be labeled

by an eigenvalue λ of σ, and let |φm〉 denote the post-measurement state. Then the following

statements hold:

(i) The state |φm〉 is a stabilizer state, with stabilizer group

Sm = 〈λσ, CS(σ)〉. (43)

Here CS(σ) denotes the centralizer of σ inside S, i.e. the group containing all elements

of S that commute with σ.

(ii) The labels of a generating set of Sm can be computed efficiently classically, given the

labels of a generating set of S.
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Proof : First we show that |φm〉 is stabilized by Sm. To see this, first note that |φm〉 is

trivially stabilized by λσ. Furthermore, σ commutes with every τ ∈ CS(σ). It follows that

the projector P onto the λ-eigenspace of σ commutes with τ as well (this can easily be shown

by considering σ and τ in their joint eigenbasis). Hence τP |φ〉 = Pτ |φ〉 = P |φ〉. Using that

|φm〉 ∝ P |φ〉, we find that τ |φm〉 = |φm〉 for every τ ∈ CS(σ).

Second, we prove that |φm〉 is the unique state stabilized by the group Sm. Without loss

of generality we restrict to the case σ = Z(gm). This is sufficient since, first, every Pauli

operator can be transformed into an operator of the form αZ(g) with a suitable normalizer

circuit C (cf. the discussion in section 7.2); and, second, for any normalizer circuit C, the
quantum state |φm〉 is a stabilizer state with stabilizer group Sm if and only if C|ψm〉 is a

stabilizer state with stabilizer group CSmC†.

Working with the assumption σ = Z(gm), we write the label subgroups Hm and Dm of Sm

in terms of the label groups H and D of S. We have Sm = 〈λσ, CS(σ) 〉 where σ = Z(gm) for

some gm ∈ G. This implies that only the labels of CS(σ) contribute to Hm. The centralizer

CS(σ) can be written as CS(σ) = S ∩ CP(σ), where CP(σ) is the subgroup of all Pauli

operators that commute with σ. Thence, using lemma 6 we see that CP(σ) consists of all

γaZ(g)X(h) with labels h ∈ 〈gm〉⊥. Hence,

Hm = H ∩ 〈gm〉⊥ (44)

Due to the commutativity of Z(gm) and CS(σ), any element in Sm can be reordered as

τ Z(gm)i, with τ ∈ CS(σ). Therefore, the diagonal group of Sm can be written as Dm =

〈D′, Z(gm)〉 where D′ is the diagonal subgroup of CS(σ). We now claim that D′ = D where

D is the diagonal subgroup of S. To see this, first note that trivially D′ ⊆ D since CS(σ) is

a subgroup of S. Conversely, D ⊆ D′: as every diagonal element of S commutes with Z(gm),

we have D ⊆ CS(σ); but this implies D ⊆ D′.

Putting everything together, we thus find Dm = 〈D, Z(gm)〉. It follows:

Dm = 〈D, 〈gm〉〉 =⇒ D
⊥
m = 〈D, 〈gm〉〉⊥ = D

⊥ ∩ 〈gm〉⊥, (45)

where we used lemma 1. Since S uniquely stabilizes |φ〉, we have H = D
⊥ owing to corollary

1. With (45) and (44) this implies that Hm = D
⊥
m. Again using corollary 1, it follows that

Sm uniquely stabilizes |φm〉.

To complete the proof of the theorem, we give an efficient classical algorithm to find

a generating set of the centralizer CS(σ); our approach is to reduce this task to a certain

problem over the group G×G that can be efficiently solved using lemma 3. Let K ⊂ G×G

be the group of tuples (g, h) such that there exists a stabilizer operator σ(a, g, h) ∈ CS(σ);

we prove that CS(σ) is isomorphic to K via the map κ : σ(a, g, h) → (g, h), and that κ is

efficiently classically invertible: this reduces the problem to finding a generating set of K and

applying the map κ−1 to all its elements.

First, it is straightforward to verify that κ is an isomorphism. Equations (29) imply that

the map is indeed linear. Surjectivity is granted by definition. Invertibility follows then from

the fact that only elements of the type γaI ∈ CS(σ), for some a, belong to kerκ (where I

denotes the identity): the latter are invalid stabilizer operators unless γa = 1.
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Second, we show how to compute κ−1. Let the operator to measure σ be of the (general)

form σ = γamZ(x)X(y), and let (a′, g′, h′) be the label of an arbitrary stabilizer τ ∈ S.
Given a set of (mutually commuting) generators σ1, . . . , σr of S, with corresponding labels

(ai, gi, hi), the element τ can be written in terms of them as

τ =
∏

σvi

i = γa
′

X
(∑

vigi

)
Z
(∑

vihi

)
(46)

for some integers vi. From this equation it follows that K ⊂ 〈(g1, h1), . . . , (gr, hr)〉, which
leads us to the following algorithm to compute κ−1: given (g, h) ∈ K, use the algorithm of

lemma 3(a) to compute r integers wi such that (g, h) =
∑
wi(gi, hi); due to (29), the stabilizer

operator defined as ς =
∏
σwi

i (whose label can be efficiently computed) is proportional to

X(g)Z(h); it follows that κ(ς) = (g, h) and, hence, ς equals κ−1(g, h).

Finally, combining (46) with formula (iii) in lemma 6 we obtain

K = 〈y,−x〉⊥ ∩ 〈(g1, h1), . . . , (gr, hr)〉. (47)

Using eq. (47) together with algorithms (c-d) of lemma 3, we can efficiently compute s =

polylog(g) elements (x1, y1), . . . , (xs, ys) that generate K; applying κ−1 to these, we end up

with a set of stabilizer operators κ−1(xi, yi) that generates CS(σ).

8 Classical Simulation of Adaptive Normalizer Circuits

Recall that in [1] the following classical simulation result was shown:

Theorem 6 Let G = Zd1
× · · · × Zdm

be a finite Abelian group. Consider a polynomial

size unitary normalizer circuit over G acting on a standard basis input state. Both circuit

and input are specified in terms of their standard encodings as described above. The circuit

is followed by a measurement in the standard basis. Then there exists an efficient classical

algorithm to sample the corresponding output distribution.

In the theorem, the standard encoding of a normalizer circuit is defined as in section 5 in this

work; the standard encoding of a standard basis input state |g〉 is simply the tuple g, i.e. a

collection of m integers. Recall also that “efficient” is synonymous to “in polynomial time in

log |G|”.
The main classical simulation result of this paper (theorem 7 below) is a generalization of

the above result. Rather than unitary normalizer circuits, the family of quantum circuits con-

sidered here is that of the adaptive normalizer circuits. A polynomial-size adaptive normalizer

circuit consists of polylog(g) elementary steps, each of which is either a unitary normalizer

gate U or a Pauli measurement M . Furthermore, the choice of which U or M to apply in any

given step may depend, in a (classical) polynomial-time computable way, on the collection

of outcomes obtained in all previous measurements. The notion of adaptive normalizer cir-

cuits is thus a direct generalization of the adaptive Clifford circuits considered in the original

Gottesman-Knill theorem [2, 3]. Note that, compared to theorem 6, two elements are added.

First, measurements are no longer restricted to be standard basis measurements but arbitrary

Pauli measurements. Second, the circuits are adaptive.

Before stating our classical simulation result, we make precise what is meant by an effi-

cient classical simulation of an adaptive normalizer circuit. First, recall that the outcomes
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of any Pauli measurement are labeled by the eigenvalues of the associated Pauli operator.

Since σ2g = I (recall lemma 5) it follows that each Pauli operator eigenvalue is a 2g-th root

of unity i.e. it has the form λ = e ik/g for some k ∈ {0, . . . , 2g − 1}. This implies that

any Pauli measurement gives rise to a probability distribution over the set of 2g-th roots of

unity; we denote the latter set by S2g. Now consider an adaptive normalizer circuit C. Let

Pi(λ|λ1 · · ·λi−1) denote the conditional probability of obtaining the outcome λ ∈ S2g in the

i-th measurement, given that in previous measurements the outcomes λ1 · · ·λi−1 ∈ S2g were

measured. We now say that C can be simulated efficiently classically if for every i the i-th

conditional probability distribution Pi(λ|λ1 · · ·λi−1) can be sampled efficiently on a classical

computer, given the description of all gates and measurement operators in the circuit.

Theorem 7 (Classical simulation of adaptive normalizer circuits) Consider a pol-

ynomial size adaptive normalizer circuit over G, specified in terms of its standard encoding,

which acts on an arbitrary standard basis input state. Then any such circuit can be efficiently

simulated classically.

Proof : Let C denote the adaptive normalizer circuit. Without loss of generality we assume

that the input state is |0〉. Indeed, any standard basis state |g〉 can be written as |g〉 = X(g)|0〉;
the Pauli operator X(g) can be realized as a polynomial-size normalizer circuit [1] and can

thus be absorbed in the overall adaptive normalizer circuit. Letting ei ∈ G denote the

i-th “canonical basis vector”, the state |0〉 is a stabilizer state with stabilizer generators

Z(e1), . . . , Z(em) [1]. We now recall the following facts, proved above:

(a) Given any normalizer gate U and any stabilizer state |ψ〉 specified in terms of a gener-

ating set of polylog(g) generators, the state U |ψ〉 is again a stabilizer state; moreover a

set of generators can be determined efficiently (cf. theorem 2).

(b) Given any Pauli operator σ and any stabilizer state |ψ〉 specified in terms of a generating

set of polylog(g) generators, the state |ψλ〉 obtained after measurement of σ, for any

outcome λ, is again a stabilizer state; moreover a set of generators can be determined

efficiently (cf. theorem 5).

Furthermore, the measurement probability distribution can be sampled efficiently in

polynomial time on a classical computer. The latter is argued as follows. First, it

follows from the discussion in section 7.2 that the simulation of any Pauli measurement,

on some input stabilizer state |ψ〉, reduces to simulating a unitary normalizer circuit

(the description of which can be computed efficiently) followed by a standard basis

measurements (acting on the same input |ψ〉 and a suitable ancillary stabilizer state |0〉).
Second, normalizer circuits acting on stabilizer state inputs and followed by standard

basis measurements on stabilizer states can be simulated efficiently: this was proved

for the special case of coset state inputs in [1]; their argument, however, carries over

immediately to the general case of stabilizer state inputs.

The proof of the result is now straightforward. Given any tuple λ1, . . . , λi−1, a generating set

of stabilizers can be computed efficiently for the state of the quantum register obtained im-

mediately before the i-th measurement, given that the previous measurement outcomes were
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λ1 · · ·λi−1. Furthermore, given this stabilizer description, the distribution Pi(λ|λ1 · · ·λi−1)

can be sampled efficiently on a classical computer, as argued in (b).

To conclude this section we comment on an interesting difference between normalizer circuits

and the “standard” qubit Clifford circuits, concerning the role of adaptiveness as a tool

for state preparation. For qubits, adaptiveness adds no new state preparation power to

the unitary Clifford operations. Indeed for any n-qubit stabilizer state |ψ〉 there exists a

(poly-size) unitary Clifford circuit C such that |ψ〉 = γC|0〉n, for some global phase γ [29]. In

contrast, over general Abelian groups G this feature is no longer true. The associated adaptive

normalizer circuits allow to prepare a strictly larger class of stabilizer states compared to

unitary normalizer circuits alone.

To demonstrate this claim, we provide a simple example of a stabilizer state over G = Z4

that cannot be prepared from standard basis input states via unitary normalizer transforma-

tions over G, even in exponential time. However, the same state can be prepared efficiently

deterministically if one considers adaptive normalizer schemes. We consider

|ψ〉 = 1√
2
(|0〉+ |2〉) (48)

Suppose that there existed a unitary Clifford operator U ∈ CG which generates |ψ〉 from

|0〉. Since the stabilizer group of |0〉 is generated by Zd, the stabilizer group of |ψ〉 would be

generated by UZdU
†. However it was shown in [11] that the stabilizer group of |ψ〉 cannot be

generated by one single Pauli operator (i.e. at least two generators are needed), thus leading

to a contradiction.

On the other hand, we now provide an efficient adaptive normalizer scheme to prepare,

not only the example |ψ〉, but in fact any coset state [13–15] of any finite Abelian group G.

This refers to any state of the form

|H + x〉 := 1√
|H|

∑

h∈H

|h+ x〉, (49)

where H is a subgroup of G and x ∈ G. Note that |ψ〉 is a coset state of the group G = Z4

with H := 〈2〉 and x := 0.

Our algorithm to efficiently prepare general coset states |H + x〉 receives the element x

and a polynomial number of generators of H. In section 4.5 (in the example after lemma 4)

we showed how to efficiently compute the matrix representation of a group homomorphism

̟ : G → Z
s
d such that ker̟ = H, where the integer s is O(polylog g) and d = g. Given ̟,

we define a group automorphism α of the group G× Z
s
d by α(g, h) := (g, h+̟(g)). We now

consider the following procedureg :

|0〉|0〉 F⊗I−−−→
∑

h∈G

|h〉|0〉 Uα−−→
∑

h∈G

|h〉|̟(h)〉 M−→ 1√
|H|

∑

h∈H

|g + h〉|b〉 = |g +H〉|b〉, (50)

where F denotes the QFT over G, the unitary Uα is the automorphism gate sending |g, h〉
to |α(g, h)〉, and M is a measurement of the second register in the standard basis. If the

gObserve that ̟ can be considered as a function that hides the subgroup H in the sense of the hidden subgroup
problem (HSP) [13–15]. That is, for every g, g′ ∈ G we have ̟(g) = ̟(g′) iff g − g′ ∈ H. Procedure (50) is
essentially the routine used in the quantum algorithm for HSP to prepare random coset states.
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measurement outcome is b, then the post-measurement state is |g +H〉|b〉 where g is a solution
of the equation ̟(g) = b. It can be verified that each coset state of H (and thus also

the desired coset state |x+H〉) occurs equally likely, i.e. with probability p = |H|/|G|:
in general, p can be exponentially small. However, if we apply adaptive operations, we

can always prepare |x+H〉 with probability 1, as follows. First, given the measurement

outcome b we efficiently compute an element g′ ∈ G satisfying ̟(g′) = b using theorem 1.

Then we apply a “correcting” Pauli operation X(x − g′) to the first register state, yielding

X(x− g′)|g +H〉 = |x+ (g − g′) +H〉 = |x+H〉 as desired (we implicitly used g − g′ ∈ H).

9 Normal Form of a Stabilizer State

In this section we give an analytic characterization of the amplitudes of arbitrary stabilizer

states over finite Abelian groups. In addition, we show that these amplitudes can be efficiently

classically computed.

Theorem 8 (Normal form of an stabilizer state) Every stabilizer state |φ〉 over a

finite Abelian group G with stabilizer group S has the form

|φ〉 = α
1√
|H|

∑

h∈H

ξ(h)|s+ h〉. (51)

Here α is a global phase, H is the label group (34), s ∈ G, and relative phases are described

by a quadratic function ξ on the group H. Furthermore, if a generating set {σ1, . . . , σr} of S
is specified, the following tasks can be carried out efficiently:

(a) Compute s;

(b) Given g ∈ G, determine if g ∈ s+H;

(c) Given h ∈ H, compute ξ(h) up to n bits in poly(n, log g) time;

(d) Compute
√
|H|.

Proof : Corollary 1 implies that D⊥ = H. Using this identity together with theorem 3(i), we

find that supp(|φ〉) = s+H for some s ∈ G. By definition of H, for every h ∈ H there exists

some element σ(a, g, h) ∈ S. Using that σ(a, g, h)|φ〉 = |φ〉 we then have

〈s+ h|φ〉 = 〈s+ h|σ(a, g, h)|φ〉 = γaχs+h(g)〈s|φ〉 (52)

This implies that |〈s + h|φ〉| = |〈s|φ〉| for all h ∈ H. Together with the property that

supp(|φ〉) = s+H, it follows that |φ〉 can be written as

|φ〉 = 1√
|H|

∑

h∈H

ξ(h)|s+ h〉 (53)

for some complex phases ξ(h). By suitably choosing an (irrelevant) global phase, w.l.o.g. we

can assume that ξ(0) = 1.

We now show that the function h ∈ H → ξ(h) is quadratic. Using (52, 53) we derive

ξ(h) =
√
|H|〈s+ h|φ〉 =

√
|H|γaχs+h(g)〈s|φ〉 = γaχs+h(g)ξ(0) = γaχs+h(g). (54)

Since ξ(h) by definition only depends on h, the quantity γaχs+h(g) only depends on h as well:

i.e. it is independent of a and g. Now select h1, h2 ∈ H and the associated stabilizer operators
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σ1(a1, g1, h1), σ2(a2, g2, h2) ∈ S. Then

ξ(h1 + h2) =
√

|H|〈s+ h1 + h2|φ〉 (55)

=
√
|H|〈s+ h1 + h2|σ1σ2|φ〉 (56)

=
√

|H|γa1χs+h1+h2
(g1) 〈s+ h2|σ2|φ〉 (57)

= [γa1χs+h1
(g1)] [γ

a2χs+h2
(g2)] χg1(h2) ξ(0) (58)

= ξ(h1)ξ(h2)χg1(h2) (59)

In (56) we used that σ1σ2|φ〉 = |φ〉; in (57-58) we used the definitions of Pauli operators and

the fact that 〈s|φ〉 = ξ(0); finally in (59) we used identity (54) and the fact that ξ(0) = 1.

Now define B(h1, h2) = ξ(h1 + h2)ξ(h1)ξ(h2). We claim that B is a bilinear function of H.

To see this, note that the derivation above shows that B(h1, h2) = χg1(h2). Linearity in the

second argument h2 is immediate. Furthermore, by definition B is a symmetric function i.e.

B(h1, h2) = B(h2, h1). This shows that B is bilinear, as desired.

We now address (a)-(d). As for (a) recall that s + H is the support of a stabilizer state

|φ〉; theorem 3 then provides an efficient method to compute a suitable representative s. Note

also that a generating set of H can be computed efficiently owing to lemma 8. Statement (b)

follows from lemma 3(a). Statement (d) follows from lemma 3(b). Finally we prove (c), by

showing that the following procedure to compute ξ(h) is efficient, given any h ∈ H:

(i) determine some element σ ∈ S such that σ|s〉 ∝ |s+ h〉;
(ii) compute 〈s+ h|σ|s〉 = ξ(h).

To achieve (i), it suffices to determine an arbitrary stabilizer element of the form σ =

σ(a, g, h) ∈ S. Assume that generators σ1(a1, g1, h1), . . . , σr(ar, gr, hr) are given to us. We

can then use algorithm (a) in lemma 3 to find integers wi such that h =
∑
wihi and, due to,

σ =
∏
σwi

i is an operator of form σ(a, g, h) for some values of a, g (use eq. 29). Moreover,

given the wi the label (a, g, h) of σ can be computed efficiently; this accomplishes (i). Finally,

it is straightforward that (ii) can be carried out efficiently: using formula ξ(h) = γaχs+h(g)

and standard algorithms to compute elementary functions [38].

Theorem 8 generalizes result from [29, 11] where analogous characterizations were given for

qubits and qudits, although those works do not consider the notion of quadratic functions

used here (furthermore their methods are completely different from ours). For example, in

ref. [29] it was shown that every Pauli stabilizer state for qubits (corresponding to the group

Z
m
2 ) can be written as

|φ〉 ∝ 1√
|S|
∑

x∈S

(−1)q(x)il(x)|x+ s〉. (60)

Here S is a linear subspace of Zm
2 , q(x) = xTAx mod 2 is a quadratic form over Z2, and l(x)

mod 2 is a linear form. This characterization indeed conforms with theorem 8: the set S is a

subgroup of Zm
2 and the function

x ∈ Z
m
2 → ξ(x) := (−1)q(x)il(x) (61)

is quadratic (see section 4.2).
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Theorem 8 also implies that every stabilizer state belongs to the family of Computationally

Tractable states (CT states). A state |ψ〉 = ∑
ψg|g〉 ∈ C

G is said to be CT (relative to its

classical description) if the following properties are satisfied:

(a) there exists an efficient randomized classical algorithm to sample the distribution {|ψg|2};

(b) given g ∈ G, the coefficient ψg can be computed efficiently with exponential precision.

CT states form a basic component in a general class of quantum computations that can be

simulated efficiently classically using probabilistic simulation methods. For example consider

a quantum circuit C acting on a CT state and followed by a final standard basis measurement

on one of the qubits. Then, regardless of which CT state is considered, such computation

can be efficiently simulated classically when C is e.g. an arbitrary Clifford circuit, matchgate

circuit, constant-depth circuit or sparse unitary. See [16] for an extensive discussion of classical

simulations with CT states.

Here we show that every stabilizer state |ψ〉 ∈ C
G over a finite Abelian group G is CT. To

be precise, we prove that such states are CT up to a global phase. That is, instead of (b) we

prove a slightly weaker statement which takes into account the fact that any stabilizer state

specified in terms of its stabilizer is only determined up to an overall phase. Formally, we

consider the property

(b’) there exists an efficient classical algorithm that, on input of g ∈ G, computes a coefficient

ψ′
g, where the collection of coefficients {ψ′

g : g ∈ G} is such that |ψ〉 = α
∑
ψ′
g|g〉 for

some complex phase α.

Corollary 4 Let |ψ〉 be a stabilizer state over an Abelian group G, specified in terms of a

generating set of polylog(g) stabilizers. Then |ψ〉 is CT in the sense (a)-(b’).

Proof : Property (a) was proved in [1]. To prove (b’), note that theorem 8 implies there

exists a global phase α such that

〈g|ψ〉 =
{

α · 1√
|H|

· ξ(h) if g = s+ h for some h ∈ H

0 if g /∈ H+ s.
(62)

Using theorem 8(b) it can be efficiently determined whether g belongs to H+ s. If not, then

〈g|ψ〉 = 0. If yes, then compute h : g − s; then ξ(h) can be computed owing to theorem 8(c).

Finally,
√
|H| can be computed owing to theorem 8(d).
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Appendix A Proof of Lemma 4

“Problems (a-e) in lemma 3 are polynomial-time reducible to either counting or

finding solutions of systems of equations of the form A(x) = b; where A is a group

homomorphism between two (canonically-decomposed) finite Abelian groups, Gsol

and G, to which x, b respectively belong; given that a matrix representation of A
is provided.”

In the example given in section 4.5 we proved the lemma for the (d,e)th cases of lemma 3; to

prove it for each of the remaining cases, (a-c), we will take similar steps. In the following, we

define AH , AK to be integer matrices whose columns are the elements of the sets {h1, . . . , hr}
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and {k1, . . . , ks}; the latter generate respectively H and K. Also, we denote by d the least

common multiplier of d1, . . . , dm. One can use condition (22) to check that the matrices AH ,

AK and [AH |AK ] define group homomorphisms from Z
t
d to G, if the value of t is respectively

chosen to be r, s and r + s.

We will show how to turn the problems (a-c) into system of the form Ax = b (mod G)

such that G equals the original group G; Gsol is chosen to be Z
t
d, for some t; and A is an

integer matrix that defines a group homomorphism from G to Gsol:

(a) b belongs to H if and only if b can be obtained as a linear combination of elements of

H, i.e., if and only if AHx = b (mod G) has at least one solution x ∈ Z
r
d. Moreover, if one

finds a particular solution w, this element fulfills b = AHw =
∑
w(i)hi (mod G).

(b) The order of H is the number of distinct linear combinations of columns of AH , which

coincides with the order of the image of the group homomorphism AH : Zr
d → G. With this

knowledge, it suffices to count the number of solutions of AHx = 0 (mod G), which equals

kerAH . Then, one can compute |H| = |imAH | = dr/| kerAH |, where the latter identity comes

from the first isomorphism theorem (imAH
∼= Z

r
d/ kerAH).

(c) g belongs to H ∩K iff it can be simultaneously written as h =
∑
x(i)hi =

∑
y(i)ki

for some (x, y) ∈ Z
r
d × Z

s
d; or, equivalently, iff there exist an element (x, y) of the kernel of

[AH |AK ] : Zr
d×Z

s
d → G such that h = AHx = −AKy (mod G). Thus, given a generating-set

{(xi, yi)} of ker [AH |AK ], the elements gi := AHxi (mod G) generate H ∩K, and, owing to,

the problem reduces to finding solutions of [AH |AK ]
(
x
y

)
= 0 (mod G).

Finally, notice that r, s and r + s are O(polylog g) due to the initial assumption that

the generating-sets are poly-size, and that d is O(d1d2 · · · dm) = O(|G|); as a consequence,

log |Gsol|, log |G| are also O(polylog g); and, thus, we need O(polylog g) memory to store the

matrix A. It follows that the input-size of the new problem is O(polylog g) and, therefore, we

have reduced all problems (a-c) to systems of linear equations over finite Abelian groups in

polynomial time.

Appendix B Proof of Theorem 1

We recall here theorem 1. Theorem 1 (Systems of linear equations over finite Abelian

groups) Given any element b of the group G = Zd1
× · · · × Zdm

and any m × n matrix A

which defines a group homomorphism from H = Zc1 × · · · ×Zcn to G, consider the system of

equations Ax = b (mod G). Then, there exist classical algorithms to solve the following list

of problems in polylog(|H|, |G|) time.

1. Decide whether the system admits a solution.

2. Count the number of different solutions of the system.

3. Find x0, x1, . . . , xr ∈ H such that all solutions of the system are linear combinations of

the form x0 +
∑
kixi.
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Given b ∈ G = Zd1
× · · · × Zdm

and the m × n matrix A, which defines a group homo-

morphism from H = Zc1 × · · · × Zcn to G, we can see the system of linear equations Ax = b

(mod G) as an “inhomogeneous system of congruences”:

Ax =




a1(1) a2(1) · · · an(1)
a1(2) a2(2) · · · an(2)
...

... · · ·
...

a1(m) a2(m) · · · an(m)







x(1)
x(2)
...

x(n)


 =




b(1)
b(2)
...

b(m)




mod d1
mod d2
...

mod dm

= b (mod G) (B.1)

We will refer to A and to (B.1) as our original matrix and our original system of equa-

tions, the latter we aim to solve. Now, let us denote by d the least common multiplier of

c1, . . . , cn, d1, . . . , dm; note that d is upper bounded by |H||G|. To solve (B.1), our approach

will be, first, to transform (B.1) into a slightly-larger system of congruences modulo d; second,

to apply methods from computational number theory to deal with the latter.

Appendix B.1. Structure of the solutions and initial simplifications

Let (x0, x1, . . . , xr) be an r-tuple of elements of H such that x0 is a particular solution of (B.1)

and x1, . . . , xr generate kerA; any tuple like (x0, x1, . . . , xr) will be called a general solution

since, due to (26), the set Xsol of solutions of (B.1) is spanned by linear combinations of the

form x0 +
∑
kixi. We will not impose restrictions on the integer r apart that it must be

O(polylog |H|). Using this notation, the system (B.1) is unsolvable if and only if its (unique)

general solution is the empty tuple ().

We will now argue (in two steps), that the group where solutions must live, H, can be

chosen w.l.o.g to be Z
n
d , a simplification that will be exploited in subsequent sections. This

is good enough for our purposes, since the order of this group is O(polylog |G|, |H|):

First, using (22) and the fact that dg = 0 for all elements g ∈ G, one readily sees that

A defines a homomorphism A from Z
n
d to G h; therefore, the system Ax = b (mod G) with

x ∈ Z
n
d is linear and its solutions (if there are any) form a coset Xsol = x0 + kerA.

Second, remark that H is a subset of Zn
d and that every ci divides d; as a result, the

projection π(x) = x (mod H) is seen to be a (surjective) group homomorphism Z
n
d → H

using (22). Now we show that to solve (B.1) we can, first, look for solutions x inside the

bigger space Z
n
d and, second, project them onto H using π(x). On the one hand, it is easy

to see that for every solution x ∈ Z
n
d the projected solution π(x) is also a solution: using

x(i) = π(x)(i) + kci we derive π(x) = x−∑ kiciei and

Aπ(x) = Ax−
∑

kiciai = Ax = b (mod G). (B.2)

In (B.2) we used (22) in the second equality. On the other hand, since we search for solutions

inside a set larger than H and π(x) = x for every solution x ∈ H, it follows

Xsol = π(Xsol) = {π(x) : Ax = b (mod G) , x ∈ Z
n
d} (B.3)

hThe new symbol is used to distinguish A from the original homomorphism A : H → G.
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Now, imagine we are given a general solution of the system (x0, x1, . . . , xr) where all xi ∈ Z
n
d .

In view of above properties, it follows that the projected tuple (π(x0), π(x1), . . . , π(xr)) is a

general solution of (B.1); were the former general solution empty, we would conclude that

(B.1) admits no solution; and, moreover, projecting with π reduces the number of distinct

solutions by a multiplicative factor of | kerπ| = |〈c1〉 × · · · × 〈cn〉| = dn/(c1c2 · · · cn)—to see

this, we choose b = 0 in (B.3), which leads to kerA = imπ|Xsol
∼= kerA/ kerπ|Xsol

.

Appendix B.2. Enlarging (B.1) to a system of linear congruences

In this section we show how to reduce our original system (B.1) to a system of linear congru-

ences, assuming thatH = Z
n
d . The first steps are rather standard: first, we ‘undo’ the modular

equations of the initial system (B.1) introducing m new integer variables and take remainders

modulo d; the final system of equations will be denoted the enlarged system associated to

(B.1).
Original system Enlarged system

Ax = b (mod G) −→ Ax =
(
A D

)(x1

x2

)
= b mod d

x ∈ H = Z
n
d x ∈ Z

n
d × Z

m
d

(B.4)

Above, D = diag(d1, . . . , dm) is a diagonal m × m integer matrix and, with little abuse of

notation, we embedded the columns aj of A and b (originally elements of G) inside the larger

group Z
m
d . Since the former group is a subset of the latter, this operation can be implemented

via a rudimentary inclusion map from G to Z
m
d .

It is easy to check that the enlarged matrixA defines a group homomorphism from Z
n
d×Z

m
d

to Z
m
d , using (22). Therefore, the enlarged system is a system of linear congruences modulo d.

It follows that the sets of solutions of the initial and the enlarged system (B.4), respectively

denoted by Xsol and Xsol, have a coset structure

Xsol = x0 + kerA, Xsol = x0 + kerA. (B.5)

The following lemma shows that the solutions of the original and the enlarged system are

intrinsically related, and gives a polylog (|G|, |H|) reduction of the former into the latter.

Lemma B.1 Let Xsol and Xsol be, respectively, the sets of solutions of the original and

enlarged systems of linear congruences shown in (B.4). Then the following propositions hold:

(a) The original system admits solutions iff the enlarged system admits solutions.

(b) The solutions of the original system can be obtained from those of the enlarged system

via

Xsol = π(Xsol), (B.6)

where π(x) := (x(1), . . . ,x(n)) is a surjective group homomorphism from Z
n+m
d to Z

n
d .

(c) The cardinality of both sets are related through |Xsol| = |G||Xsol|.

Notice that a direct consequence of lemma B.1 is that we can efficiently (i) decide whether

the original system admits solutions, (ii) find a general-solution for it and (iii) count its
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number of solutions if an efficient subroutine to solve these problems for the enlarged sys-

tem is provided: in particular, given a general-solution (x0, . . . ,xr) of (B.4), it follows that

(π(x0), . . . , π(xr)) is a general-solution of (B.1).

The next theorem states, furthermore, that there are efficient classical algorithms to solve

systems of linear equations modulo d.

Theorem B.1 Given a system of linear congruences Ax = b mod d where A ∈ Z
m×n
d ,

b ∈ Z
m
d and x ∈ Z

n
d , there exist deterministic poly(m,n, log d) classical algorithms to solve

the following tasks: (a) deciding whether the system admits solutions; (b) computing a general

solution; (c) counting the number of different solutions.

Given lemma B.1 and theorem B.1 (both to be proven below), the proof of theorem 1 is

completed; the remaining two sections are devoted to prove these last two results.

Appendix B.3. Proof of lemma B.1

We will first prove a smaller result.

Lemma B.2 (Kernel of a diagonal matrix) Given S ∈ Z
m×n
d , a diagonal matrix whose

r-first diagonal coefficients s1, . . . , sr are positive integers and the rest are equal to zero; let

S : Zn
d → Z

m
d be the group-homomorphism defined by S via matrix multiplication; then, the

kernel of S fulfills

kerS = 〈s̃1〉 × · · · × 〈s̃r〉 × Z
n−r
d and | kerS| = q1q2 · · · qr dn−r, (B.7)

where qi := gcd(si, d) and s̃i = d/qi.

Proof : Any x fulfilling Sx = 0 mod d must satisfy r constrains six(i) = kid, for i ≤ r,

where ki are arbitrary integers. If we divide both sides by the qi, we can derive a new set of

equivalent modular constrains

si
qi
x(i) = 0 mod

d

qi
, for all i ≤ r

Now, each number (si/qi) is coprime to di/qi; hence, each (si/qi) has an inverse element in

Zdi/qi and can be removed from the constrain where it appears multiplying it by the latter.

It follows that the possible values for x(i) are the multiples of s̃i = d/qi inside Zd, proving

the first equation; the second equation, follows as a consequence, for |d/qi| = qi.

We prove now lemma B.1(b), which also implies (a): For every x ∈ Xsol we can define

a tuple yx ∈ Z
m
d coefficient-wise as

yx(i) := [b−Ax] (i)/di mod d. (B.8)

It follows easily that all elements with the form x =
(
x
yx

)
where x ∈ Xsol belong to Xsol, by

checking [A|D]x = b mod d. Moreover each x satisfies x = π(x) and, thence, it follows that

Xsol ⊆ π(Xsol). We finish the proof of (b) showing that the inclusion Xsol ⊇ π(Xsol) also
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holds. The strategy is now to prove that for every x =
(
x
y

)
∈ Xsol the element x = π(x)

belongs to Xsol, which can be shown as follows:

Ax = Ax+Dy = b mod d⇒ Ax(i) = b(i)− y(i)di + kid for all i = 1, . . . ,m. (B.9)

Since di divides d, the last two terms are 0 modulo di. Thus, Ax(i) = b(i) mod di for every

i, and we are done.

Finally, we prove lemma B.1(c): Every pair elements of Xsol that are mapped to x via

π must have the form x1 =
(
x
y1

)
, x2 =

(
x
y2

)
where D(y1 − y2) = 0 mod d. Therefore, exactly

| kerD| distinct elements of Xsol are mapped to x, for any value of x. Applying lemma B.2

to D, it follows |Xsol| = | kerD||Xsol| = d1d2 · · · dm|Xsol|, as desired.

Appendix B.4. Proof of theorem B.1

We will use existing algorithms to compute the Smith normal form of A over the integers

modulo d [39]: these return an m×m matrix U and an n×n matrix V , both invertible, such

that S := UAV is diagonal and its first r diagonal coefficients are non-zero (with r depending

of the particular problem). Instead of Ax = b mod d we will solve the system Sy = c mod d

with c = Ub mod d: since V is an invertible homomorphism, it follows that y0 is a solution

of this system iff V y0 is a solution of the initial system; owing to, if we solve (a-b-c) for the

new “diagonal system” we are done.

Finally, recall that we can use the extended Euclidean algorithm to decide the solvability

of any linear congruence siy(i) = c(i) mod d, and find (if it exists) a particular solution y0.

These facts, together with lemma B.2, (which shows how to obtain a generating-set of kerS),

let us compute a general-solution of Sy = c mod d. Moreover, the number of solutions of

the system—either 0 or | kerS|—can also be computed due to lemma B.2.
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