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1 Introduction

Many quantum codes that are studied are based on the stabilizer formalism. Of these, the

low-density parity check (LDPC) codes are particularly interesting. A quantum LDPC code,

for our purposes, is a quantum stablizer code in which all of the stabilizers act on at most O(1)

qubits and in which each qubit participates in at most O(1) stabilizers. Particular examples

of quantum LDPC codes include the toric code[1] and various generalizations of it discussed

below, as well as hypergraph product codes[2, 3].

Quantum LDPC codes with a linear rate have been invented. Perhaps the earliest example

of such was the two-dimensional toric code on a surface of constant negative curvature[4],

giving an example with a logatihmic distance. Later examples include the hypergraph product

codes which obtain Θ(
√
N) distance, where N is the number of qubits. Finally, in Ref. 5,

the four-dimensional toric code[6] was considered in a four-dimensional hyperbolic space was

considered, and again shown to have linear rate. Ref. 7 further studied this four-dimensional

code and provided explicit constructions of the needed hyperbolic four-manifolds, showing

one could attain a logarithmic injectivity radius for these manifolds and hence a distance that

scaled proportional to Nα for some 0 < α < 1. The injectivity radius Rinj of a hyperbolic

manifold is defined to be at least R if, for any point x in the manifold, the ball of radius

R around that point is isometric to the ball of radius R in hyperbolic space H4. Note that

there are no nontrivial closed geodesics or nontrivial minimal surfaces in a ball of diameter

less than the injectivity radius; intuitively, this fact is why the injectivity radius is relevant

for the distance of the code.

In this paper, we further consider this four-dimensional code and show that it has a

threshold and an efficient classical decoding procedure; each round of the decoding can be
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parallelized to run in constant time and correcting to a codeword takes logarithmically many

rounds. The classical procedure is a greedy local procedure that “shrinks” error chains of

length slightly smaller than the injectivity radius.

One reason for the interest in these properties (quantum LDPC code with linear rate and

efficient classical decoding) is that recently[8] it was shown that such a code would allow one

to perform fault-tolerant quantum computation with only a constant factor overhead. The

construction of Ref. 7 gives a sequence of manifolds Mj such that N increases polynomially in

j; hence, these codes meet condition (iii) of the main result of Ref. 8 concerning how frequent

the members of the code family are. The bounds below give an error probability that is

bounded by τ × (const. × p)const.×log(N), where τ is the time for which the computation is

run. Hence, for any fixed polynomial scaling of τ with N , there is an error threshold. Given

that these codes have a distance that scales as Nα, it is possible that the error probability in

fact scales to zero more rapidly with N than this estimate; if so, then there would be a single

error threshhold for all polynomial τ .

We analyze the code in the context of its use as a quantum memory, rather than just as a

quantum channel. That is, rather than considering a model in which information is perfectly

encoded into some code state, then noise is applied, then finally one attempts to decode using

perfect quantum gates, we assume instead that after the information is initially encoded, the

information must be maintained for many time steps. On each time step, some noise is applied

followed by some (possibly imperfect) measurements and some (also possibly imperfect) error

correction is applied. This protocol is discussed further below, as is the noise model which

is the same adversarial noise model as used in Ref. 8. In this model, the adversary is not

allowed to select the errors in a completely arbitrary fashion; however, one also does not

assume complete independence of different errors, instead assuming that the probability of

having errors on any given set X is bounded by p|X| for some p > 0.

Before giving any formal details, let us give a purely heuristic motivation for why such

an error correction procedure might work: the error syndrome in this code consists of several

closed one dimensional loops. In R4, a closed loop of large radius may have a small amount

of curvature locality, with that amount of curvature going to zero as the loop becomes large.

However, in H4, because of the negative curvature, even a large closed loop must have large

curvature somewhere. This allows a greedy procedure in which we try to shorten the loops

locally. We actually take advantage of two different ways of shortening a loop. One way is

to shorten a loop while leaving it as a single loop. Another way is to split it into two or

more smaller loops. For an example of this, consider a closed loop in H4 which is a geodesic

triangle. In this case, every point on any given side of the triangle is within some bounded

distance of one of the other two sides (this is because it is a so-called δ-hyperbolic space); this

allows us to perform local moves in which we split the triangle into two smaller loops.

2 Toric Codes in Hyperbolic Spaces

We begin by reviewing the toric code and its generalizations, sometimes called “homology

codes”. In general, given a manifold and a cellulation of that manifold, one can define a

toric code. In the two dimensional toric codes, the degrees of freedom are associated with

the 1-cells while the Z stabilizers are associated with the 0-cells and the X stabilizers are

associated with the 2-cells. Each Z stabilizer acts on the qubits in its coboundary while
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each X stabilizer acts on the qubits in its boundary. The commutativity of the stabilizers is

guaranteed by the fact that the “boundary of a boundary is zero”. In Ref. 4, it was shown

that a two dimensional toric code could have a linear rate. There, the code was considered on

a cellulation of a family of surfaces of constant negative curvature. Fixing the curvature to

−1 for all of these surfaces, the 2-cells were all taken to have a volume of order unity, so that

the total number of cells was proportional to the volume of the manifold. Hence, the number

of qubits scaled with the volume of the manifold. Because of the constant negative curvature,

by the Gauss-Bonnet theorem the genus of the surface was proportional to the volume, giving

the linear rate (since the qubits are associated with the 1-cells, the number of logical qubits

is equal to the first Betti number using Z2 homology). The injectivity radius in this family

grew logarithmically with the volume of the manifold, giving a logarithmic distance.

It is possible that that family of codes could meet the requirements of having an efficient

classical decoding algorithm, even against the kind of adversarial noise considered in Ref. 8.

A likely candidate for the decoding algorithm would be minimum weight perfect matching.

However, in this paper we consider a slightly different family of codes for which the analysis

of the decoding algorithm is simpler; for this other family, a simpler greedy local classical

decoding algorithm suffices.

We consider a family of four-dimensional manifolds. In this case, we use a four-dimensional

toric code[6] so that the degrees of freedom are associated with the 2-cells while the Z stabi-

lizers are associated with the 1-cells and the X stabilizers are associated with the 3-cells. The

number of logical qubits is equal to the second Betti number using Z2 homology. We consider

a family of four-dimensional manifolds with constant negative curvature (fixed to −1) and

diverging injectivity radius. These codes based on these manifolds were first discussed in

Ref. 5 where they were shown to have linear rate. In Ref. 7 it was shown that the injectivity

radius could be taken to diverge logarithmically with N , which will be essential below.

We triangulate this manifold with simplices to define the code. Call this cell complex K.

We again choose to take all top cells to have a volume of order unity, so that the volume

of the manifold is proportional to the number of encoded qubits. Further, we can choose to

take a bounded local geometry by the following theorem of Ref. 9 so that each 1-cell will have

length within a constant factor of unity.

Theroem. Given an integer d ≥ 2 and a real number r > 0, there is constant C(d, r) > 0 so

that every hyperbolic d-manifold with injectivity radius > r can be triangulated with geodesic

d-simplicies σi of bounded geometry in the sense that each σi admits a homeomorphism hi :

σi → σ0, σ0 the hyperbolic simplex with all sides of length 1 so that

1

C(d, r)
d(x, y) ≤ d(hi(x), hi(y) ≤ C(d, r)d(x, y)

for all x, y ∈ σi.
Proof. See Ref. 9.

3 Greedy Decoding

We now describe a simple local greedy decoding algorithm. We begin by describing the

decoder and then analyze its performance assuming that no noise occurs during decoding. In

the next section, we study the application to quantum memories.
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To be a good quantum code, we must show error correction against both Sz errors (de-

phasing) and Sx errors on qubits (spin flips). In this section and the next, we analyze only the

performance against spin flip noise. This noise causes errors in the Z-stabilizers associated

with the 1-cells. The analysis of the performance against dephasing noise can be analyzed in

exactly the same way by working on a dual cellulation, so that the X-stabilizers are associated

with 1-cells.

We use the language of chain complexes. A k-chain is a vector in a vector space whose

basis elements correspond to the k-cells. Since we work with Z2 homology, the coefficients of

this vector are either equal to 0 or 1. When we refer to a cell being in the support of a chain,

we mean that the coefficient is equal to 1. For brevity, we sometimes say that a 1-cell is “in”

a chain, to mean that it is in the support. If Ck is a k-chain, we write |Ck| to denote the

number of k-cells in the support of Ck. We write ∂ for the boundary operator.

In a code state, all of the Z-stabilizers have expectation value +1. After errors on some

set of spins D, the Z-stabilizers in the support of ∂D have errors. Note that ∂D is closed,

so the set of errors always form a closed chain. We call this the error chain (sometimes it is

called the “error syndrome”).

We say that a closed chain C is atomic if it cannot be written as the sum of two closed

chains, both disjoint and both nonzero. Any error chain C can be written as a sum C =
∑
i Ci

where the Ci are atomic closed chains. We say that an atomic chain is small if the radius of

its support is bounded by Rinj − 2Rdec, where the constant Rdec is given below. We say that

an error chain C is small if it can be written as a sum of small atomic chains.

3.1 Greedy Decoder

To define the decoder, we choose some Rdec > 0. In the next subsection we will describe how

to choose Rdec. The choice of Rdec will be independent of N so for sufficiently large N , the

injectivity radius will be much larger than Rdec (in later sections we will simply treat Rdec as

a constant O(1)). From now on we assume that we indeed are in the case that the injectivity

radius is large compared to Rdec.

The decoder operates in several rounds. In each round, we pick a set X of random points

in the manifold, each with distance at least 2Rdec from each other. We then define a set of

balls; each ball will be the set of points within distance Rdec of one of these random points.

We pick these random points such that every point has some strictly positive probability of

being within distance Rdec/2 of one of the random points. To do this, we pick a random set

of points Y indepdently with some fixed density ρ > 0 and then let X be the set of points in

Y which are not within distance 2Rdec of another point in Y . Then, the probabilities that

several points x1, ..., xn are in balls are independent for sufficiently large separation between

pairs xi, xj . The centers of the balls will be located in the ambient space (the hyperbolic

manifold) and need not be at 0-cells of the triangulation. We choose the centers generically

so that no 0-cell lies exactly distance Rdec from the center of a ball; this is done to simplify

the explanation of the algorithm below.

Then, we perform a greedy reduction in weight in each ball. as follows. For each ball, there

are some 1-cells that intersect the boundary of the ball which we call “fixed” 1-cells. There

are also 1-cells which are contained in the interior of the ball, which we call “variable” 1-

cells. We do not consider the 1-cells that are entirely in the exterior of the ball. We measure
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that stabilizers associated with both the fixed and variable 1-cells. Roughly speaking, the

algorithm flips the variable 1-cells to reduce the weight of the error chain. We now explain

this in more detail.

First, let us introduce some terminology; given an error chain CF on the fixed 1-cells and

an error chain CV on the variable 1-cells, we say that CF + CV is closed in the ball if the

boundary of CF + CV vanishes on the 1-cells in the ball. Note that if C is a closed chain,

and if CF and CV are the restrictions of C to the fixed and variable 1-cells respectively, then

CF + CV is closed in the ball. However, even though the error chain C must be closed, it

may arise that, due to errors in stabilizer measurement, the measured CF +CV is not closed

in the ball; if this occurs, the decoder applies no spin flips in the ball. If however CF +CV is

closed in the ball, we then compute a minimum weight error chain C ′V on the variable 1-cells

that gives an error chain CF + C ′V that is a closed 1-chain in that ball; we emphasize that

we choose “a” minimum weight error chain rather than “the” minimum weight error chain

as there may be more than one. If the original chain is minimum weight, then no spin flips

are applied. Otherwise, we apply a set of spin flips contained within the ball to produce this

minimum weight error chain. This set of spin flips can be computed as follows. Let C be the

previous error chain (including all 1-cells regardless of their position relative to the ball), and

let C ′ be the error chain which results from changing C on the variable 1-cells to minimize

the weight. Then, C and C ′ are homologous, with C = C ′+∂D for some 2-chain D contained

in the ball. Finally having calculated D we apply spin flips on the 2-cells in the support of

D. Note that the error-correcting process can be done in parallel on different balls.

In the next subsection we analyze this decoder. In the subsection after this, we give a

modification to a deterministic decoder.

3.2 Analysis of Decoder

We now show that for sufficiently large Rdec, if the error chain C is small, then the greedy

decoder will reduce the number of errors by at least a constant fraction in each round on

average. Further, we show that the probability that the weight is not reduced by a factor

cred, for some cred < 1, is bounded by exp(−const.× |C|), for some positive constant.

The calculation in this section assumes perfect measurement of the error chain by the

decoder and assumes that no noise is applied in between rounds or during the correction

process. In the next section we consider the effects of imperfect measurements and also noise

over many rounds of application of the decoder.

We consider first the case that C is an atomic closed chain. We analyze the decoder in three

steps. First, we construct a certain planar complex whose boundary maps to the boundary of

C and which has certain other nice properties described below, including a bound on the area

of the complex from an isoperimetric inequality. Second, we use a planar separator theorem

to decompose the complex into sets with small boundary between the sets. Third, we analyze

the decoder by analyzing the effect of flipping the spins in the image of any one of these sets.

3.2.1 Construction of Complex

We claim that C = ∂P for some chain P such that |P | ≤ const. × |C|. Further, we can

identify a 2-complex M and a continuous mapping f from M to the 2-skeleton of K such

that the following properties hold. First, every 2-cell of M is mapped onto one 2-cell of K.

Second, M is planar; in fact, M is a disk, and the boundary of M is mapped one-to-one to
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C and hence the chain which is the sum of all 2-cells in M is mapped to a chain P such that

C = ∂P . Third, the number of cells of M is at most const.×|C|. Fourth, every 2-cell of M is

attached to O(1) 1-cells. It is possible that the mapping from M to K is many-to-one in the

interior, and that several 2-cells in M may map to the same 2-cell in K. The construction of

this chain P is by constructing a discretization of a minimal spanning surface; the purpose of

introducing M is to allow us to parametrize this surface in the case that it is not an embedded

surface (for example, it may have intersections).

To construct M , given an atomic error chain, we define a closed curve in the ambient space

in the natural way: each 1-cell in the error chain defines some arc of length at least 1/C(d, r)

and at most C(d, r) and the curve is simply the union of the arcs in the 1-cells in the chain.

Call this curve γ. Let Σ be the minimal surface whose boundary is γ, choosing Σ to be the

image of a disk D under a continuous map with the boundary of D mapping one-to-one to γ

(we allow the surface to be an immersed disk rather than embedded). By the Gauss equation,

since Σ is minimal and since the ambient space has constant curvature equal to −1, Σ is a

surface whose curvature is bounded above by −1. So, by an isoperimetric inequality we can

bound the area of Σ by a constant times the length of γ. The surface Σ can be deformed to

lie entirely on the 2-skeleton by moving each point on the surface at most a bounded distance

and increasing the area by at most a constant factor. To do this deformation, first choose a

random point in each 4-simplex, and cone outwards from that point so that Σ lies entirely

on the 3-skeleton (i.e., map each point in Σ to the point on the boundary of the 4-simplex

which lies on a geodesic from the given random point through the given point on Σ). Then,

choose a random point in each 3-simplex and again cone outwards so that Σ lies entirely on

the 2-skeleton. Choosing these points at random, the average area increase is bounded. Let

P be the 2-chain corresponding to that deformed surface (i.e., P is the sum over 2-cells in

the deformed surface, with appropriate multiplicity), so that C = ∂P and |P | ≤ const.× |C|
as claimed. To define M , pick any point x in the disk D which does not lie in the 1-skeleton

so that the image of x lies in the interior of some 2-cell σ; define a 2-cell around this point

consisting of all points in the disk that can be reached by a path whose image is entirely in

σ. Repeat this for different points in the disk until the disk is covered with cells. If the image

of any of these cells does not cover the corresponding 2-cell σ, then we can deform the map

to remove this 2-cell (i.e., by coning outwards from any missing point in Σ). Then since each

remaining cell has an area at least equal to that of the smallest 2-cell in K (as otherwise we

could remove it), the number of these 2-cells in M is at most const. × |C| as claimed. Since

D is a disk, we can embed the 2-complex M above in the plane.

This construction may not yet give the property that every 2-cell of M be attached to a

bounded number of 1-cells. We will use this property below to ensure that a certain graph

has bounded degree. Consider some 2-cell τ in M which is mapped to some 2-cell σ in K. In

general, σ is attached to O(1) different 1-cells. Hence, if τ is attached to some large number

of 1-cells, then the map on the image of the boundary of τ must not be one-to-one. For

example, if σ neighbors three different 1-cells denoted τA, τB , τC in K, then it is possible that

the boundary of τ maps to τA, τB , τC , τA, τB , τC , τA, τB , τC , ... in sequence. It is not clear if

such a situation can arise from the construction above; for example, given a bound on the

mass of Σ in all 4-simplices (which seems very plausible), then (since mass increases by only

a constant amount under the deformation) this situation would be forbidden and we would
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have the desired bound on the number of 1-cells attached to a 2-cell. However, we can also

address this situation in a purely combinatoric fashion without referring to Σ. If such a case

occurs, since the map on the boundary of the cell is not one-to-one we can split τ into two

2-cells by deforming the map to be constant on some path in the 2-cell which connects two

boundary points with the same image and then identifying points on that path. We choose

these points to have their image on 0-cells of K (for example, the 0-cell attached to τA and

τB would be such a point). Then, by doing this identification we split τ into smaller 2-cells.

Indeed, if the degree of the map of the boundary of τ is larger than one, we can split τ into

cells whose boundary map has smaller degree. We proceed with this process until for any

given 2-cell τ of M , the boundary of τ maps to a sequence of 1-cells in K, with each 1-cell

appearing only once. This step gives the desired bounded degree property. Note that if after

this step, if the image of any of 2-cell τ in M does not cover the corresponding 2-cell σ in K,

then we can again deform the map to remove this 2-cell, so we retain the property that the

number of these 2-cells in M is at most const. × |C|. This completes the description of the

construction of the complex.

In the above construction, the fact that the chain is small is used to show that, having

radius smaller than Rinj−2Rdec < Rinj , we can map a ball containing that chain isometrically

to a ball in H4. Then, we can find the minimal curvature surface Σ in H4. We can assume

that Σ is still contained inside the ball of radius Rinj − 2Rdec as otherwise it would not be

minimal, and so we can map Σ back to the compact hyperbolic manifold isometrically and

then deform it to lie on the 2-skeleton after mapping back.

3.2.2 Planar Separator Theorem

We now claim that for any m, the sum of all 2-cells in M can be decomposed as a sum of

disjoint chains M1,M2, ... each containing at most m cells such that the total number of 1-cells

which are in the boundary of both Ma and Mb for some pair a 6= b is bounded by O(|C|/
√
m);

equivalently, the total number of 1-cells which are in the boundary of some Ma but not in the

boundary of M is at most O(|C|/
√
m). The existence of these sets follows from a version of

the planar separator theorem[10]. We use the version in Ref. 11 which shows that given any

planar graph with V vertices, for any ε, we can remove at most 4
√
V/ε vertices to give a new

graph with no component having more than εV vertices. The planar graph we consider is a

graph whose vertices correspond to 2-cells in M , with an edge between two different 2-cells if

they are attached to each other in M . We pick ε = const.×m/V ≥ const.×m/|C| so that each

component has at most const. ×m vertices in it. There are then O(V/
√
m) = O(|C|/

√
m)

removed vertices. We then take each removed vertex and add it to one of the components

that neighbor that removed vertex; this increases the size of the components by at most a

constant factor so that each still has at most m vertices (here, the bounded degree of the

graph is used to show that the number of cells in the boundary of any given component is

also increased by only a constant factor). Thus, rather than constructing a separator that

removes vertices, we construct a separator that removes edges. Let the resulting components

be denoted by sets V1, V2, ... Finally, we identify the chains Ma with the different components;

more precisely, for each component Va, Ma is the sum of 2-cells in Va. This completes the

construction of the chains Ma.
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3.2.3 Greedy Decoder and Flipping Spins in f(Ma)

We now use the chains Ma to analyze the performance of the greedy decoder, and choose

Rdec. Let

Pa = f(Ma), (1)

so that

P =
∑
a

Pa (2)

and C +
∑
a ∂Pa = 0. We can assume that the Ma are connected, treating two 2-cells as

connected if they are attached to each other (the construction above makes them connected,

but even if they were not, we can simply split them into connected components). The basic

idea is that since each Va has only a small boundary, doing the spin flips corresponding to

cells in Pa will tend to reduce the weight of C (doing these spin flips may help by cancelling

cells in C but may hurt by creating other cells in the boundary of Pa). Define N bulk
a to be

the number of 1-cells in ∂Ma which are not in the boundary of M . Define N bdry
a to be the

number of 1-cells in ∂Ma which are in the boundary of M . Define ∆a = N bulk
a −N bdry

a . Then

given any set X whose elements are chosen from the set of possible indices a, we have

|C +
∑
a∈X

∂Pa| − |C| ≤
∑
a

∆a. (3)

Also,

|C|+
∑
a

∆a −
∑
a

N bulk
a = 0. (4)

However, by construction
∑
aN

bulk
a ≤ O(|C|/

√
m) so∑

a

∆a ≤ −|C|(1−O(1/
√
m)). (5)

Choosing m sufficiently large that (1−O(1/
√
m)) ≥ 1/2, we have∑

a

∆a ≤ −(1/2)|C|. (6)

Since each chain Pa is connected and has at most m cells, it has bounded diameter. We

choose a sufficiently large Rdec so that each set Pa has diameter at most Rdec/2. Given this

choice, each Pa has a strictly positive probability of being in a ball given the random choice of

balls; this probability depends upon the density of the balls. Hence, by Eq. (3) by performing

the spin flips corresponding to all the Pa which fall in a ball in the given round, the decoder

on average reduces the weight of |C| by a constant fraction. The greedy decoder will always

perform at least this well (it may find a way of even further reducing the weight) and hence

also on average reduces the weight by a contant factor. Further, for sets Pa which are far from

each other, the probabilities that they are in a ball are independent and so the probability

that a constant fraction of them are not in a ball is exponentially small in |C|.
Hence, with probability 1− exp(−const.×|C|), the chain after error correction has weight

at most cred|C|, for some 0 ≤ cred < 1. The above calculation was for an atomic chain

C. However, given a non-atomic chain C, we write it as a sum of atomic chains and apply

the same construction to each atomic chain (given sets Pa for each atomic chain, the greedy

decoder does at least as well as it would be applying the spin flips in those sets). Hence the

same weight reduction holds for a non-atomic chain.
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3.3 Deterministic Correction Scheme

The decoder above was randomized. This has some advantage that little global coordination

is required; one can imagine an implementation where local classical processing elements

independently try at random times to perform a local error correction scheme. Each classical

processing element could try to correct within a given ball; it would communicate locally to

see if the ball it is trying to correct overlaps with any nearby classical element; if not, it would

try to correct and if yes it would wait.

However, we might prefer a deterministic scheme. To do this, cover the space with over-

lapping balls of radius Rdec so that every point is within distance Rdec/2 of the center of one

of the balls. Color the balls with k = O(1) colors such that no two balls of the same color

are within distance 2Rdec of each other. Then, a single decoding round in the deterministic

scheme is broken into k subrounds. In each subround, we perform a greedy decoding process

in the balls of the given color. We now analyze this decoder.

Assume that at the start of a decoding round, there is an error chain C. Following

the above analysis, we know that given a chain with given weight |C|, there are at least

const.× |C| different balls in which the greedy decoding process can reduce the weight by at

least 1. However, the complication is that some of these balls on which error correction can

reduce the weight might be colored such that the decoder operates on that ball in the a-th

subround, for a > 1, and it is possible that at the start of the a-th subround, the error chain

is not C but rather some other chain due to spin flips applied in the previous subrounds.

This can occur if a given ball B overlaps with some other ball B′, and if error correction is

performed on B′ before it is performed on B; then even if error correction on ball B could

have reduced the weight by at least 1 if it were performed first, error correction on ball B′

might modify the error chain in such a way that it is no longer possible for spin flips in B to

reduce the weight. However, since each ball B overlaps with only O(1) other balls, there are

only O(1) different balls B′ such that the error correction done on B′ on a subround b < a

could change the state on B. Further, since error correction only applies spin flips on B′ if

the weight can be reduced by at least 1, one can see that the deterministic scheme still leads

to at least a constant reduction in weight after every k subrounds.

To show this more formally, let Wa be the weight that would be reduced in the a-th

subround (for a = 1, ..., k) assuming that no error correction was done on any previous

subrounds; that is, Wa is the weight that would be reduced in the a-th subround, assuming

that the balls in the a-th subround acted on error chain C. Let W ′a be the actual weight that

is reduced on the a-th subround given the error chain resulting from the previous subrounds

of error correction. We claim that

W ′a ≥Wa − const.×
∑
b<a

W ′b. (7)

To see this, note that error correction on a given ball can reduce the weight by at most O(1);

hence, if W ′a < Wa, then there are at least const.×(Wa−W ′a) balls B in the a-th round which

overlap with a ball B′ on a previous round where spin flips are done to reduce the weight in

B′. However, since each ball B colored with the a-th color only overlaps with O(1) balls with

other colors, there are at least const. × (Wa −W ′a) balls B′ on which spin flips are done on

a round b < a. Hence Eq. (7) follows. Hence, summing over a, and using the fact that there
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are only O(1) rounds so that
∑
a

∑
b<aW

′
b ≤ const.×

∑
aW

′
a, we get∑

a

W ′a ≥ const.×
∑
a

Wa. (8)

4 Quantum Memory

We now consider this code as a quantum memory. We use a discrete time model. In each

time step, some syndrome measurements are performed, with errors possibly occuring in these

measurements. Then, the correction procedure is applied to certain qubits, again with error

possibly occuring when the corrections are applied. Finally, additional errors may be applied

to all qubits. In each time step, the syndrome measurements that we perform will be those

needed to perform a given round of the correction procedure above.

We analyze the randomized decoder above. The analysis of the deterministic scheme can

be done in the same way.

The error model considered is that on any given time step, given any set X of qubits and

any set S of stabilizers being measured, the probability of having errors on those qubits and

those stabilizer measurements is bounded by p|X|+|S| for some 0 < p < 1. Note that this is

distinct from having errors occuring in an independent fashion with probability p of an error

and probability 1− p of no error; all we do is bound the probability of having errors without

assuming independence.

In practice, each stabilizer measurement would be performed by some quantum circuit

consisting of CNOT and Hadamard gates, followed by a single measurement on some ancilla

qubit; since each stabilizer has weight O(1), there are O(1) possible places for errors to occur

in this quantum circuit. Thus, we could also consider a quantum circuit model in which the

probability of having errors in any setG of gates in the circuit (including the final measurement

and including identity gates for qubits on which we do not act) is bounded by q|G| for some

q > 0. Since the number of gates |G| needed to measure |S| distinct stabilizers is at most

a constant factor larger than |S|, this quantum circuit error model can be fit into the error

model described above by taking p = qO(1). One might worry that we might need to measure

many overlapping stabilizers and hence it would not be possible to start measuring a given

stabilizer Z stabilizer until one has finished measuring any X stabilizers with which that Z

stabilizer overlaps and that this might increase the depth of the quantum circuit. However,

this leads to an increase in depth by a multiplicative factor that is O(1) since each stabilizer

overlaps with only O(1) other stabilizers and so again by taking p = qO(1) we can fit it into

the error model above.

Using this error model, given any set of time slices, 1, ..., τ , the probability of having errors

on sets of qubits X1, ..., Xτ and on sets of stabilizers S1, ..., Sτ in the corresponding time slices

is bounded by

Perror ≤ p
∑τ
i=1(|Xi|+|Si|). (9)

We describe the process of spin flips by a diagram in spacetime. Let K be the cell complex

that is the cellulation of the four-manifold used to define the code. Let I be a cell complex

that is a cellulation of an interval, with τ + 1 0-cells and τ 1-cells, labelling the 0-cells by

0, ..., τ and labelling the 1-cells by 1, ..., τ . Let K ′ be the product of K with I. Thus there are

two types of 1-cells in K ′. For every 1-cell in K, there are τ + 1 different 1-cells in K ′ arising

from the product of that given 1-cell in K with a 0-cell in I. Additionally, for every 0-cell in
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K there are τ different 1-cells in K ′ arising from the product of that given 0-cell with a 1-cell

in I. Similarly, for every 2-cell in K, there are τ + 1 different 2-cells in K ′ arising from the

product of that given 2-cell in K with a 0-cell in I; we call these the spacelike 2-cells and we

write them q × i where q labels a 2-cell in K and 0 ≤ i ≤ τ . Additionally, for every 1-cell in

K there are τ different 2-cells in K ′ arising from the product of that given 1-cell with a 1-cell

in I; we called these the timelike 2-cells and we write them s× i where s is a 1-cell in K and

1 ≤ i ≤ τ labels 1-cells in I.. Given a set of spin flips, we define a 2-chain C as follows. A

spacelike 2-cell q × i will be in C if and only if there is a spin flip at the qubit corresponding

to q in timeslice i. This spin flip can be due either to noise or to the recovery procedure. A

timelike 2-cell s × i will be in C if and only if the error chain after the i − 1-th time slice

includes the stabilizer corresponding to s. Note that by construction, C is a closed chain.

We write C as a sum of closed chains C = C1 + C2 + ..., as follows. Consider a graph

G with vertices corresponding to 2-cells and with an edge between vertices corresponding to

two spacelike 2-cells q × i and r × j if i = j and if q and r are within distance 2Rdec of each

other and with an edge between vertices corresponding to a spacelike and timelike 2-cell or to

two timelike 2-cells if they are attached to each other. We choose the Ci to be the connected

components of the support of C given this graph.

What we will show is that for any 2-cell x, the probability that x is in a connected

component Ci which is not small is bounded by

(cp)Rinj/c
′

(10)

for some constants c, c′. Hence, for any α < ∞, for sufficiently small p, the probability that

any Ci is not small is O(N−α). Summing over 2-cells x, the probability that there is any

connected component Ci which is not small is O(τN1−α). After doing this, in subsection 4.1

we will show that for any τ that is polynomially long in N , for sufficiently small p this implies

the ability to error correct the state back to a codeword with high probability.

From here on, for notational simplicity, we write E to denote the 2-chain that is the

connected component of C containing the fixed 2-cell x. We write E(i) to indicate the set of

errors before a given time slice. More precisely, consider all 2-cells in E which are the product

of a 1-cell in C and a 1-cell in I with the 1-cell equal to i. Let E(i) denote the set of those

1-cells in C appearing in this product.

Let wi = |E(i)|. From the analysis before, with probability 1− exp(−const.×wi) we have

a choice of balls on the i-th round of error correction such that, without spin flip or syndrome

errors, we would have wi+1 ≤ credwi for some 0 ≤ cred < 1. If a choice of balls is such that

this would not happen without errors in the given round, we call this a poor choice.

We bound the probability of x being in a connected component which is not small in two

steps. First, we show that for any E with given |E|, a large number of errors (the number

being proportional to |E|) must have occured or there must have been some number of poor

choices. We can upper bound the probability of having a given set of errors or poor choices;

we then sum over possible sets of errors and poor choices and show that the probability of

having a given error chain E is bounded by

P (E) ≤ (const.× p)const.×|Espacelike| ·O(1)|Etimelike|, (11)

where Etimelike is the set of timelike 2-cells of E and Espacelike is the set of spacelike 2-cells

of E; the spacelike 2-cells of E arise from the error correction process as well as from spin
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flip errors. Eq. (11) is derived below. We remark that the quantity O(1) in Eq. (11) may be

greater than 1; the important point is that it is bounded by some constant. Then, we bound

the number of E which include some given 2-cell x with given |Espacelike| and |Etimelike| and

apply a union bound by summing over all E, weighted by P (E).

We start by showing Eq. (11). Note that by choosing the graph as we have done, all

other connected components of C are sufficiently far from E that they do not affect the error

correction process; i.e., no ball of radius Rdec will include both E and some other connected

component. This permits us to analyze the connected components separately from each other.

If wi+1 > credwi then there must be at least one error (either a spin flip error or a stabilizer

measurement error) on the i-th round or there must be a poor choice. Let Tpoor be the set

of rounds on which there is a poor choice. The probability of having poor choices on a given

set of rounds Tpoor is bound by exp(−const.×
∑
i∈Tpoor wi).

By a triangle inequality |Espacelike| is bounded by W ec +W err, where W ec is the number

of spin flips produced by the error correction assuming no errors in stabilizer measurements,

and W err is the weight of the difference between the spin flips that would be applied without

errors and the spin flips that are actually applied due to the combination of recovery and error.

Further, W err ≤ const. ×Nerr, where Nerr is the number of errors (either spin flip error or

stabilizer measurement error) within distance Rdec of E. To see this inequality, suppose at

least one stabilizer error occurs in some given ball in some given round. Let C be the spin

flips that would have been applied in that ball in that round without any errors, and let C ′

be the spin flips that actually are applied. If the stabilizer error causes the error chain in

the ball not to be closed in that ball, then the algorithm makes no spin flips in the ball, so

C ′ = 0; since there only O(1) spins in the ball, the algorithm would have made at most O(1)

spin flips in that ball (i.e., |C| = O(1)) and so the weight of the difference C − C ′ is O(1). If

the stabilizer error causes spin flips in the ball, we still have |C ′| = O(1), so |C −C ′| = O(1).

Hence, the number of additional spin flips made by the decoder due to errors in stabilizer

measurement is bounded by a constant times the number of stabilizer measurement errors.

We now use an amortized analysis to show that |Espacelike| ≤ const. × Nerr. Let W err
i

and W ec
i denote the number of spins flips due to errors and due to error correction on the

i-th round, respectively, so that W err =
∑
iW

err
i and W ec =

∑
iW

ec
i . Let Nerr

i denote the

number of errors (either spin flip error or stabilizer measurement error) on the i-th round

so that Nerr =
∑
iN

err
i . Note that if error correction produces spin flips in a ball and if

the syndromes are correctly measured in that ball, it reduces the weight of the error chain

by at least one; further, the only way to increase is to have a spin flip or stabilizer error

measurement on a previous time slice. Hence, wi+1 ≤ wi − const. ×W ec
i + const. ×Nerr

i so

W ec
i ≤ wi − wi+1 + const.×Nerr

i . So, W ec =
∑τ−1
i=0 W

ec
i ≤ −wτ + const.×Nerr so

W ec ≤ const.×Nerr. (12)

So, Nerr ≥ const. × W err and Nerr ≥ const. × W ec so Nerr ≥ const. × (W err + W ec) ≥
const.× |Espacelike|, as claimed.

Let |Etimelike| = W g +W p,where W g is the sum of the weights of the chain before rounds

without a poor choice and W p =
∑
i∈Tpoor wi is the weight of the chain before rounds with

a poor choice. Note that the probability of having such a set of poor choices is bounded by

exp(−const. ×W p). We claim that W g ≤ const. × Nerr. To show this, note that if the ith
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round of error correction does not have a poor choice then W ec
i ≥ const.×wi; here we use the

analysis of the previous section which shows that without errors in the i-th round, we have

wi+1 ≤ credwi for cred < 1, and the fact that reducing the weight of the error chain by an

amount (1−cred)wi requires at least const.×(1−cred)wi spin flips. Hence, W g ≤ const.×W ec.

However, as shown W ec ≤ const.×Nerr.

Hence, the number of errors occuring within distance Rdec of E is lower bounded by

const.× (|Espacelike|+W g). There are at most O(1)|E| possible ways to have such errors; to

see this, note that to fully specify which errors occur, it suffices to specify for each cell within

distance Rdec of E whether or not an error occurred and since there are O(|E|) such cells, the

error pattern can be specified with O(|E|) bits. Finally, the probability of having the given

set of poor choices is upper bounded by exp(−const. ×W p). Thus, summing over possible

sets of errors, the probability of having a set of errors and poor choices which gives a chain

E is bounded by

P (E) ≤ (const.× p)const.×|Espacelike| ·O(1)Etimelike , (13)

as claimed.

We now turn to bounding the number of E with given |Espacelike| and |Etimelike|. We

begin with a simpler problem: bounding the number of E containing x with given |E|. We

show that there are O(d)|E| such E. The set E is connected by definition using the graph

G defined above. This graph has degree d = O(1), since we take Rdec = O(1). The set E

induces some connected subgraph of the graph; removing if necessary some edges from this

subgraph, we obtain a tree T . There may be more than one way to remove edges from the

graph to obtain a tree; we will count the number of trees which will give an upper bound to

the number of induced subgraphs and hence to the number of sets E (since we remove edges,

and do not change the vertex set, the set of vertices in the tree graph specifies the set E).

Now is the step where fixing x is important: by fixing E to contain x, we can take x to be

the root of the tree T . We label the edges leaving each vertex in G by integers 1, ..., d; if we

remove the vertex labels from all nodes of T other than the root, but still label the edges by

these integers, then T is still uniquely specified. Thus, the tree T is uniquely specified by

specifying x and specifying a rooted tree graph with the edges of the tree graph labelled by

integers 1, ..., d, where all the integers connecting a given vertex to its daughters have distinct

labels. Equivalently, T is uniquely specified by giving x and giving a subtree of an infinite

tree of degree d, with the subtree containing the root. Such subtrees can be counted and

there are O(d)|E| such trees with |E| vertices.

We now bound the number of E with given |Espacelike| and |Etimelike|. To deal with this

different weighting of the spacelike and timelike cells, we “coarse-grain” in time. To do this,

let k be an integer to be chosen below. Let w̃tot(a) =
∑
i wik+a for integer a = 0, ..., k − 1.

There must be some a such that kw̃tot(a) ≤
∑
i wi. Define a new graph G̃; this has the same

vertex set as G. The graph G̃ has an edge between vertices corresponding to two spacelike

2-cells q×l and r×m if l = ik+a+b and m = ik+a+c for some integers i and 0 ≤ b, c ≤ k−1

and if q and r are within distance 2Rdec of each other. The graph G̃ has an edge between

vertices corresponding to a spacelike 2-cell q × l and a timelike 2-cell s × m if q and s are

attached to each other and m = ik+a and l = ik+a+b or l = (i−1)k+a+b for 0 ≤ b ≤ k−1.

There is an edge between vertices corresponding to two timelike 2-cells r× l and s×m if r = s
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and l = ik + a and m = (i+ 1)k + a or l = (i+ 1)k + a and m = ik + a. Note that the only

timelike 2-cells s×m connected to other 2-cells are those with m = ik + a. This graph G̃ in

a sense “rescales” the time direction by a factor of k. Thus the degree of G̃ is O(k2). Given

a chain E, we define a connected subset of G̃ consisting of all vertices in G̃ corresponding

to a spacelike 2-cell in E and also all vertices corresponding to a timelike 2-cell s ×m in E

with m = ik+ a. The number of such subsets with v vertices is bounded by O(k2)v since the

degree of G̃ is O(k2). Let vtimelike be the number of vertices in this subset which correspond

to a timelike 2-cell and let vspacelike = v − vtimelike. We have that

P (E) ≤ (const.× p)const.×|Espacelike| ·O(1)|Etimelike| (14)

≤ (const.× p)const.×vspacelike ·O(1)kvtimelike .

Choosing k of order log(p), this is bounded by (const. × p)v. Hence, multiplying this by

O(k2)v to count the number of E with given v, we find that∑
E

P (E) ≤
∑
v≥|E|

(const.× log2(p)p)v. (15)

Since v ≥ const.×Rinj , Eq. (10) follows.

4.1 Error Correction to a Codeword

Finally, we consider the problem of error correcting back to a code word. Suppose after

some time τ , the noise is turned off, both spin flip errors and stabilizer measurements. Then,

no connected components Ca of the error chain C can have have all their support after

time τ . However, for any given component of the error chain with support before time τ , the

probability that it survives to a time τ+δ is bounded by (cp)δ/c
′
. Hence, after a time τ+δ with

δ ∼ log(N), the probability that any error chain survives is negligible. So, in a logarithmic

number of rounds (that is, almost constant parallelized time and hence almost linear total

time) we succeed in correcting back to a codeword. The correction process produces no errors

in the codeword so long as all error chains have radius smaller than Rinj . For τ which is at

most polynomial in N , this occurs with high probability for sufficiently small p.

5 Discussion

We have analyzed a simple greedy local decoding algorithm for the four-dimensional toric

code on a hyperbolic space, and shown that this gives an example of an LDPC code with

linear rate and efficient error correction. One natural question that arises is whether we can

improve on the size of errors that the decoder can correct. Our analysis above only worked

for error chain of size O(log(N)), while the distance of the code[7] is asymptotically larger,

being Nα. Intuitively, this difference arises for the following reason. Consider instead a two-

dimensional Ising model on a torus, of size L-by-L. Flip all the spins along a line of length L

that wraps around one direction of the torus. Then, this creates two parallel domain walls.

Neither domain wall can be shortened individually under any local move; in fact, each domain

wall is a topologically nontrivial 1-chain, but the sum of the two domain walls is topologically

trivial (as it must be, being the boundary of the region of flipped spins). If we instead flip

spins along several parallel lines, we can create two parallel domain walls with any desired

separation between them. For any given local decoding algorithm working on any fixed length
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scale Rdec, we can increase the separation between the two domain walls sufficiently far that

there will be no local moves that will reduce the weight of the domain walls. Thus, in this case,

even though the two-dimensional Ising model has distance L2, a local decoding algorithm may

encounter problems with errors of weight L. It seems likely that a similar thing may happen

for the four-dimensional toric code considered here, in that it may be possible to flip roughly

log(N) spins to create an error chain which is the sum of two atomic closed 1-chains, such

that neither 1-chain can be shortened locally.

One possible route around this would be to add some randomness to the decoding al-

gorithm. In the case of the Ising model on a torus discussed above, some noise may allow

the domain walls to move. If so, if they come close enough to each other, then a decoding

algorithm can reduce the weight by cancelling one against the other. Such addition of noise

is reminiscent of the thermal noise considered in Ref. 6.

One might wonder whether similar error thresholds can be proven for other local decoders,

such as a decoder that applies thermal noise as in Ref. 6 (i.e., a decoder that adds additional

spin flips following some Metropolis rule, on top of the spin flips already caused by the noise)

or a Toom’s rule-type decoder as in Ref. 12. It is not immediately clear how to generalize the

Toom’s rule to a curved space, so we leave this as an interesting question for future research.

The thermal decoder may perform very similarly to that considered here. However, the

analysis may be more complicated due to the adversarial noise. This adversarial noise means

that, for example, some additional “drift” terms may appear in the dynamics of an error chain,

rather than purely diffusive dynamics, as we now explain. Consider the four-dimensional toric

code on a torus, rather than on hyperbolic space. Suppose that adversarial noise creates an

error chain that is a short closed loop. Suppose this loop is roughly square. The decoder will

only be able to shorten the loop near the corners, leading to only a constant average reduction

in the length of the loop, instead of the reduction by a constant multiplicative factor found

in hyperbolic space. However, the adversarial noise can gradually enlarge the size of the loop

over time, adding a nonthermal drift that tends to make the loop grow. Thus, it may be that

the hyperbolic space is essential to obtain a decoder that works against adversarial noise.

An interesting future problem is to consider a thermal decoder against adversarial noise on a

four-dimensional hyperbolic space.
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