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We study the classical simulatability of constant-depth polynomial-size quantum circuits
followed by only one single-qubit measurement, where the circuits consist of universal
gates on at most two qubits and additional gates on an unbounded number of qubits.

First, we consider unbounded Toffoli gates as additional gates and deal with the weak
simulation, i.e., sampling the output probability distribution. We show that there exists a
constant-depth quantum circuit with only one unbounded Toffoli gate that is not weakly

simulatable, unless BQP ⊆ PostBPP ∩ AM. Then, we consider unbounded fan-out gates
as additional gates and deal with the strong simulation, i.e., computing the output
probability. We show that there exists a constant-depth quantum circuit with only two
unbounded fan-out gates that is not strongly simulatable, unless P = PP. These results

are in contrast to the fact that any constant-depth quantum circuit without additional
gates on an unbounded number of qubits is strongly and weakly simulatable.
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1 Introduction

In quantum information processing, it is important to understand the difference between

the computational power of a quantum computer and that of a classical computer. For this

purpose, it is known to be useful to study the classical simulatability of quantum computation

processes. In this context, the above difference can be found even in rather simple computation

processes [22, 8, 3, 6, 17], such as constant-depth polynomial-size quantum circuits. There

is great interest in studying the classical simulatability of such simple computation processes

because this is particularly useful for identifying the source of the computational power of a

quantum computer.

In this paper, we study the classical simulatability of constant-depth polynomial-size quan-

tum circuits. In 2004, Terhal et al. provided evidence for the hardness of classically simulating

such circuits followed by polynomially many single-qubit measurements, where the circuits

consist of universal gates on at most two qubits [22]. Subsequently, other authors provided

(or mentioned) further evidence for this [8, 3, 6]. As discussed in [22, 8, 6], an important as-

sumption in these arguments is that the number of measurements is polynomial in the length
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of the input. In fact, for example, any constant-depth quantum circuit followed by only one

single-qubit measurement is efficiently simulatable classically [22]. Even in this simplest out-

put setting, however, it is not yet known how the use of gates on an unbounded number of

qubits affects the classical simulatability of constant-depth quantum circuits.

We focus on quantum circuits in the simplest output setting, where they consist of universal

gates on at most two qubits (Hadamard, π/8, and CNOT gates [18]) and additional gates on

an unbounded number of qubits, or more concretely, unbounded Toffoli and fan-out gates.

An unbounded Toffoli gate on n + 1 qubits computes the AND of n inputs. An unbounded

fan-out gate on n + 1 qubits makes n copies of a classical source bit and, when n = 1, the

gate is a CNOT gate. The main reason we adopt these gates as elementary gates is that they

are a natural generalization of the classical ones assumed to be elementary gates for studying

the computational power of small-depth classical circuits [23]. Moreover, the study of an

unbounded fan-out gate in the context of the classical simulatability complements previous

studies of the gate, showing that it is very powerful [10, 12, 21].

We deal with the strong and weak simulations [22, 15, 6, 16, 17]. The strong simulation

of a quantum circuit means that, when an input to the circuit and its output are specified,

the probability of obtaining the output can be efficiently computed classically. The weak

simulation means that the output probability distribution of the circuit can be efficiently

sampled classically. The strong simulation implies the weak simulation [22, 6, 16]. The error

setting in the weak simulation is different from Terhal et al.’s efficient simulation [22] in that

the error in the weak simulation is not a multiple of the output probability. Our setting seems

more natural than the previous multiplicative one.

First, we consider constant-depth quantum circuits with unbounded Toffoli gates and their

weak simulatability. We provide evidence for the hardness of weakly (and thus strongly) sim-

ulating a QNC0
t,1 circuit, which is a constant-depth quantum circuit with only one unbounded

Toffoli gate:

Theorem 1 There exists a QNC0
t,1 circuit that is not weakly simulatable, unless BQP ⊆

PostBPP ∩ AM.

It is considered unlikely that BQP ⊆ PostBPP∩AM since this (or even a weaker containment,

such as BQP ⊆ PostBPP) would imply that BQP is contained in the polynomial hierarchy,

which is considered unlikely [2]. Theorem 1 shows a boundary between classical and quantum

computation: any constant-depth quantum circuit without additional gates on an unbounded

number of qubits is strongly and weakly simulatable, but such a circuit with only one un-

bounded Toffoli gate is not strongly or weakly simulatable (under a plausible assumption).

To prove Theorem 1, we first show that, if any QNC0
t,1 circuit is weakly simulatable, then

BQP ⊆ PostBPP. To do this, we parallelize a quantum circuit for L ∈ BQP by Fenner et al.’s

method [8] and obtain a QNC0 circuit, which is a constant-depth quantum circuit without

gates on an unbounded number of qubits. The circuit has polynomially many postselection

qubits that have to be measured to obtain a relationship between the output qubit and

membership of the input in L. Using an unbounded Toffoli gate, we regard the postselection

qubits and the output qubit as new “one” output qubit in two ways and construct two QNC0
t,1

circuits. Their weak simulations yield a PostBPP algorithm for L. We then deal with the

containment BQP ⊆ AM using Terhal et al.’s argument in terms of the efficient simulation [22].

Since the number of measurements in their argument is polynomial and the efficient simulation
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is different from the weak simulation as described above, the argument does not work directly.

We modify the argument and do an error analysis using one of the two QNC0
t,1 circuits.

As shown in [15], there exists a weakly simulatable polynomial-size quantum circuit that

is not strongly simulatable (under a plausible assumption). On the basis of the idea of the

proof of Theorem 1, we show the difference between the strong and weak simulatability in a

simpler setting:

Theorem 2 There exists a weakly simulatable QNC0
t,1 circuit that is not strongly simu-

latable, unless P = PP.

This contributes to our understanding not only of the classical simulatability of a QNC0
t,1

circuit but also of the notions of the strong and weak simulatability.

Then, we consider constant-depth quantum circuits with unbounded fan-out gates and

their strong simulatability. The OR circuit in [21] allows us to replace an unbounded Toffoli

gate in Theorem 1 with polynomially many unbounded fan-out gates. Thus, there exists a

constant-depth quantum circuit with polynomially many unbounded fan-out gates that is not

strongly (or weakly) simulatable (under a plausible assumption). We provide evidence for the

hardness of strongly simulating a simpler circuit, or more concretely, a QNC0
f,2 circuit, which

is a constant-depth quantum circuit with only two unbounded fan-out gates:

Theorem 3 There exists a QNC0
f,2 circuit that is not strongly simulatable, unless P = PP.

It is considered unlikely that P = PP, which would imply the collapse of the polynomial

hierarchy. As in Theorem 1, Theorem 3 shows a boundary: any constant-depth quantum

circuit without additional gates is strongly simulatable, but such a circuit with only two

unbounded fan-out gates is not strongly simulatable (under a plausible assumption).

Our idea in showing Theorem 3 is to use the Hadamard test [17], or more precisely, to

parallelize it by two unbounded fan-out gates. For a QNC0 circuit, the parallelized Hadamard

test is a QNC0
f,2 circuit and allows us to show that, if any QNC0

f,2 circuit is strongly simulat-

able, there exists a polynomial-time deterministic classical algorithm for computing a matrix

element of a QNC0 circuit with exponential precision. This algorithm can be transformed into

the one for computing a matrix element of a polynomial-size quantum circuit with exponential

precision by Fenner et al.’s method [8] of parallelizing quantum circuits. This implies that

P = PP [17] and thus Theorem 3.

More generally, using the idea, we characterize the relationship P = PP using the strong

simulatability of the parallelized Hadamard test for a QNC0 circuit, which is a QNC0
f,2 circuit.

This contributes to our understanding of the strong simulatability of such a circuit in the sense

that the hardness of its strong simulation is exactly evaluated. Moreover, this is interesting

in that the simple quantum computation process characterizes the classical relationship.

2 Preliminaries

2.1 Quantum circuits

We use the standard notation for quantum states and the standard diagrams for quantum

circuits [18]. A quantum circuit consists of elementary gates. Our elementary gates are

Hadamard gates H, π/8 gates T , CNOT gates, unbounded Toffoli gates, and unbounded

fan-out gates, where

H =
1√
2

(

1 1
1 −1

)

, T =

(

1 0
0 eiπ/4

)

.
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We denote T 4 and HT 4H as Z and X, respectively. A Toffoli gate on k+1 qubits implements

the quantum operation defined as





k−1
⊗

j=0

|xj〉



 |y〉 7→





k−1
⊗

j=0

|xj〉



 |y ⊕
k−1
∧

j=0

xj〉,

where xj , y ∈ {0, 1}, k ≥ 2, and ⊕ denotes addition modulo 2. The first k input qubits,

i.e., the qubits in state
⊗k−1

j=0 |xj〉, are called control qubits. A Toffoli gate on three qubits is

simply called a Toffoli gate. A fan-out gate on k+1 qubits implements the quantum operation

defined as

|y〉
k−1
⊗

j=0

|xj〉 7→ |y〉
k−1
⊗

j=0

|xj ⊕ y〉,

where y, xj ∈ {0, 1} and k ≥ 1. The first input qubit, i.e., the qubit in state |y〉, is called the

control qubit. When k = 1, a fan-out gate is a CNOT gate. When a Toffoli gate or a fan-out

gate is applied on an unbounded number of qubits, it is called an unbounded Toffoli gate or

an unbounded fan-out gate, respectively.

The complexity measures of a quantum circuit are its size and depth. The size of a

quantum circuit is defined as the total size of all elementary gates in it, where the size of

an elementary gate is defined as the number of qubits affected by the gate. The depth of a

quantum circuit is defined as follows. Input qubits are considered to have depth 0. For each

gate G, the depth of G is equal to 1 plus the maximum depth of a gate on which G depends.

The depth of a quantum circuit is defined as the maximum depth of a gate in it. Intuitively,

the depth is the number of layers in the circuit, where a layer consists of gates that can be

applied in parallel. A quantum circuit can use ancillary qubits initialized to |0〉. Resetting

the states to |0〉 at the end of the computation is not required.

We deal with a uniform family of polynomial-size quantum circuits {Cn}n≥1. Each Cn

is a quantum circuit with n input qubits and poly(n) ancillary qubits. A symbol denoting a

quantum circuit, such as Cn, also denotes its matrix representation. When a classical output

is obtained from Cn, the circuit is followed by only one measurement in the computational

basis, i.e., a Z-measurement, on a specified qubit called the output qubit. The output qubit in

this paper is one of the ancillary qubits. The uniformity means that there exists a polynomial-

time deterministic classical algorithm for computing the function 1n 7→ Cn, where Cn is the

encoding of the description of Cn. Any quantum circuit in this paper is understood to be an

element of a uniform family of quantum circuits and thus, for simplicity, we frequently deal

with Cn in place of {Cn}n≥1. Let Cn be a constant-depth polynomial-size quantum circuit.

In general, the number of gates on an unbounded number of qubits in Cn is poly(n). In

particular, when the number of such gates in Cn is one and the gate is an unbounded Toffoli

gate, we call Cn a QNC0
t,1 circuit. When the number is two and the gates are unbounded

fan-out gates, we call Cn a QNC0
f,2 circuit. When Cn has no such gates, we call it a QNC0

circuit.

2.2 Classical simulatability

The classical simulatability of a quantum circuit is defined as follows [15, 6, 16, 17]:
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Definition 1 Let Cn be a polynomial-size quantum circuit with n input qubits and poly(n)

ancillary qubits including the output qubit. For any x ∈ {0, 1}∗ of length n and y ∈ {0, 1},
let Pr[Cn(x) = y] be the probability of obtaining y by a Z-measurement on the output qubit of

Cn with the input state |x〉.

• Cn is strongly simulatable if, for any polynomial p, there exists a polynomial-time de-

terministic classical algorithm (i.e., polynomial-time deterministic Turing machine) A

such that, for any x ∈ {0, 1}∗ of length n,

|A(x)− Pr[Cn(x) = 1]| ≤ 1

2p(n)
.

• Cn is weakly simulatable if, for any polynomial p, there exists a polynomial-time prob-

abilistic classical algorithm (i.e., polynomial-time probabilistic Turing machine) A such

that, for any x ∈ {0, 1}∗ of length n,

|Pr[A(x) = 1]− Pr[Cn(x) = 1]| ≤ 1

2p(n)
.

In the definition, for simplicity, we use a classical algorithm defined by a Turing machine, but

we can regard it as a uniform family of classical circuits (that can have random bits) [6].

As described in Introduction, the objective of our paper is to show the hardness of clas-

sically simulating simple quantum circuits. Previous results in this direction are obtained by

using the above definitions of the classical simulatability [15, 6, 16, 17]. We adopt the same

definitions to fairly compare our results with the previous ones. These definitions deal with

quantum circuits in a restricted setting. For example, input states are assumed to be com-

putational basis states and measurements are assumed to be Z-measurements. Moreover, we

focus on the effect of using gates on an unbounded number of qubits in the simplest output

setting and thus consider two-outcome events (i.e., a Z-measurement on the output qubit)

only. Although these restrictions seem artificial from the physical point of view, they allow

us to compare quantum circuits with classical ones clearly from the theoretical point of view.

The definitions of the classical simulatability do not tell us how exponentially small errors

are negligible or not, where the errors are the right hand values of the above inequalities. In

other words, the simulatability and its related concepts in this paper, such as “hardness”,

are not operationally meaningful. Thus, the paper is about investigating the relationships

between quantum circuits and combinatorial structures, but is not about the practical utility.

A strongly simulatable quantum circuit is weakly simulatable [22, 6, 16]. The weak sim-

ulation is different from Terhal et al.’s efficient simulation [22] in that the error in the weak

simulation is not a multiple of Pr[Cn(x) = 1]. In other words, the error in the weak simulation

is an absolute one, but that in the efficient simulation is a one relative to Pr[Cn(x) = 1]. In

this sense, the error setting in the weak simulation seems more natural. We note that any

QNC0 circuit followed by only one single-qubit measurement is strongly (and thus weakly)

simulatable [22].

2.3 Complexity classes

The complexity classes we deal with in this paper are defined as follows [18, 6, 1, 11, 2]:

Definition 2 Let L ⊆ {0, 1}∗.
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• L ∈ BQP if there exists a polynomial-size quantum circuit Cn with n input qubits and

poly(n) ancillary qubits including the output qubit such that, for any x ∈ {0, 1}∗ of

length n,

– if x ∈ L, Pr[Cn(x) = 1] ≥ 2
3 ,

– if x /∈ L, Pr[Cn(x) = 1] ≤ 1
3 .

• L ∈ PostBPP if there exists a polynomial-time probabilistic classical algorithm A that,

for any x ∈ {0, 1}∗, outputs A(x), post(x) ∈ {0, 1} such that

– Pr[post(x) = 1] > 0,

– if x ∈ L, Pr[A(x) = 1|post(x) = 1] ≥ 2
3 ,

– if x /∈ L, Pr[A(x) = 1|post(x) = 1] ≤ 1
3 .

We note that PostBPP is equal to BPPpath defined in [11]. The constants 2/3 and 1/3 in

the definitions can be replaced with 1/2 + ε and 1/2 − ε, respectively, for any constant

0 < ε < 1/2 [18, 6]. We also deal with the well-known complexity classes P, AM, and PP [4].

Moreover, we deal with the function classes FP and #P [4]: FP is the class of functions for

which there exists a polynomial-time deterministic classical algorithm and #P is the class of

functions counting the number of solutions to polynomial-time decidable relations.

2.4 Parallelization of quantum circuits

We frequently use a quantum circuit obtained by Fenner et al.’s method [8]. The existence of

the circuit (combined with a constant-depth polynomial-size quantum circuit for permuting

qubits [14] and with X gates) can be described as follows:

Lemma 1 For any polynomial-size quantum circuit Cn with n input qubits and a ancillary

qubits, there exists a QNC0 circuit Dn with n input qubits and a+ b ancillary qubits such that

b is even, b = O(size(Cn)), and, for any x ∈ {0, 1}∗ of length n,

Dn|x〉|0〉⊗(a+b) =
1√
2b

(Cn|x〉|0〉⊗a)|1〉⊗b +
∑

y∈{0,1}b\{1b}

αy|ψy〉|y〉,

where size(Cn) is the polynomial representing the size of Cn, αy ∈ C, and |ψy〉 is an (n+ a)-

qubit state.

The new b ancillary qubits are called the postselection qubits.

3 Circuit with One Unbounded Toffoli Gate

3.1 Proof of Theorem 1

We divide the proof of Theorem 1 into two lemmas. One is on the containment BQP ⊆
PostBPP and the other is on BQP ⊆ AM. Recall that a Toffoli gate (on three qubits) outputs

1 if and only if the state of the control qubits is |11〉. Combining the gate with an X gate, we

can obtain a circuit that outputs 1 if and only if the state of the control qubits is |01〉. We

call it a (0,1)-Toffoli gate. Using these gates, we first show the following lemma:

Lemma 2 If every QNC0
t,1 circuit is weakly simulatable, then BQP ⊆ PostBPP.

Proof: Let L ∈ BQP. There exists a polynomial-size quantum circuit Cn with n input qubits

and a ancillary qubits including the output qubit such that, for any x ∈ {0, 1}∗ of length n,
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• if x ∈ L, Pr[Cn(x) = 1] ≥ 2
3 ,

• if x /∈ L, Pr[Cn(x) = 1] ≤ 1
3 .

By Lemma 1, there exists a QNC0 circuit Dn with n input qubits and a+ b ancillary qubits

including the output qubit such that, for any x ∈ {0, 1}∗ of length n,

• if x ∈ L, Pr[Dn(x) = 1|postn(x) = 1b] ≥ 2
3 ,

• if x /∈ L, Pr[Dn(x) = 1|postn(x) = 1b] ≤ 1
3 ,

where b = O(size(Cn)), “postn(x) = 1b” means that all results of Z-measurements on the

postselection qubits are 1, and Pr[postn(x) = 1b] = 1/2b. This implies that, for any x ∈ {0, 1}∗
of length n,

• if x ∈ L, Pr[Dn(x) = 1&postn(x) = 1b] ≥ 2
3 · 1

2b
,

• if x /∈ L, Pr[Dn(x) = 1&postn(x) = 1b] ≤ 1
3 · 1

2b
.

We define a quantum circuit En as follows, where it has n input qubits, a + b ancillary

qubits for Dn, and new two ancillary qubits including the output qubit for En:

1. Apply Dn on the n input qubits and a+ b ancillary qubits.

2. Apply an unbounded Toffoli gate on the b postselection qubits and one of the new two

ancillary qubits that is not the output qubit for En. The output of the gate is written

into the new ancillary qubit.

3. Apply a Toffoli gate on the output qubit for Dn, which is one of the a ancillary qubits,

and the new two ancillary qubits. The output of the gate is written into the output

qubit for En.

We also define a quantum circuit Fn similarly to En except that the Toffoli gate in Step 3

is replaced with the (0, 1)-Toffoli gate. The circuits En and Fn are depicted in Figs. 1(a)

and (b), respectively, where the bottom qubits are the output qubits. A Toffoli gate can be

decomposed exactly into a constant-depth constant-size quantum circuit consisting of H, T ,

and CNOT gates with no ancillary qubits [18]. Since Dn is a QNC0 circuit, En and Fn are

QNC0
t,1 circuits.

The unbounded Toffoli gate in Step 2 reduces the b postselection qubits to new one posts-

election qubit, which is the new ancillary qubit that is not the output qubit for En. Moreover,

the Toffoli gate in Step 3 outputs 1 if and only if the state of the output qubit for Dn and

the new postselection qubit is |11〉. Thus, for any x ∈ {0, 1}∗ of length n, Pr[En(x) = 1] =

Pr[Dn(x) = 1&postn(x) = 1b]. Similarly, Pr[Fn(x) = 1] = Pr[Dn(x) = 0&postn(x) = 1b].

Since Pr[postn(x) = 1b] = 1/2b, Pr[En(x) = 1] + Pr[Fn(x) = 1] = 1/2b.

As described above, En and Fn are QNC0
t,1 circuits. Thus, with the assumption, there

exist polynomial-time probabilistic classical algorithms A and B such that, for any x ∈ {0, 1}∗
of length n,

|Pr[A(x) = 1]− Pr[En(x) = 1]| ≤ 1

2b+6
, |Pr[B(x) = 1]− Pr[Fn(x) = 1]| ≤ 1

2b+6
.
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n

Dn

a

b

2

(a) (b) 

n

Dn

a

b

2

Fig. 1. (a) Circuit En. (b) Circuit Fn.

Since Pr[En(x) = 1] + Pr[Fn(x) = 1] = 1/2b, it holds that

1

2b

(

1− 1

32

)

≤ Pr[A(x) = 1] + Pr[B(x) = 1] ≤ 1

2b

(

1 +
1

32

)

.

We define a polynomial-time probabilistic classical algorithm G as follows, where the input

is x ∈ {0, 1}∗:

1. Choose r ∈ {0, 1} uniformly at random.

2. (a) If r = 1, compute A(x).

i. If A(x) = 1, set post(x) = 1 and G(x) = 1.

ii. If A(x) = 0, set post(x) = 0 and G(x) = 1.

(b) If r = 0, compute B(x).

i. If B(x) = 1, set post(x) = 1 and G(x) = 0.

ii. If B(x) = 0, set post(x) = 0 and G(x) = 0.

By the definition of G,

Pr[post(x) = 1] =
1

2
· Pr[A(x) = 1] +

1

2
· Pr[B(x) = 1].

Since Pr[A(x) = 1] + Pr[B(x) = 1] > 0, Pr[post(x) = 1] > 0. Moreover,

Pr[G(x) = 1&post(x) = 1] =
1

2
· Pr[A(x) = 1].

Thus, for any x ∈ {0, 1}∗ of length n,

Pr[G(x) = 1|post(x) = 1] =
Pr[G(x) = 1&post(x) = 1]

Pr[post(x) = 1]
=

Pr[A(x) = 1]

Pr[A(x) = 1] + Pr[B(x) = 1]
.

If x ∈ L,

Pr[G(x) = 1|post(x) = 1] ≥ Pr[Dn(x) = 1&postn(x) = 1b]− 1
2b+6

1
2b

(

1 + 1
32

) ≥
2
3 · 1

2b
− 1

2b+6

1
2b

(

1 + 1
32

) ≥ 3

5
.
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If x /∈ L,

Pr[G(x) = 1|post(x) = 1] ≤ Pr[Dn(x) = 1&postn(x) = 1b] + 1
2b+6

1
2b

(

1− 1
32

) ≤
1
3 · 1

2b
+ 1

2b+6

1
2b

(

1− 1
32

) ≤ 2

5
.

Thus, L ∈ PostBPP.

Then, we deal with the containment BQP ⊆ AM using Terhal et al.’s argument [22]. The

argument uses a set of results of internal coin tosses in the classical simulation of (a parallelized

version of) a quantum circuit for L ∈ BQP, where the number of elements of the set on input x

is large when x ∈ L and the number is small when x /∈ L. Even if the difference in the numbers

is somewhat small, the Goldwasser-Sipser set lower bound protocol can decide whether the

number is large or small [9, 22, 4], which implies that L ∈ AM. More precisely, the key part

of the argument is to show that, under an assumption about the classical simulatability of a

QNC0 circuit, any L ∈ BQP has the following property, which we call the property P: there

exist a constant 0 < ε < 1/3, polynomials m, q (m ≥ q), and a family of sets {Sx}x∈{0,1}∗

such that, for any x ∈ {0, 1}∗ of length n,

• Sx ⊆ {0, 1}m(n),

• if x ∈ L, |Sx| ≥ (1− ε) · 2
3 · 2q(n),

• if x /∈ L, |Sx| ≤ (1 + ε) · 1
3 · 2q(n),

where the problem of deciding whether a bit string of length m(n) is in Sx has a polynomial-

time deterministic classical algorithm. If L has the property P, in order to decide whether

x ∈ L or not, it suffices to decide whether |Sx| ≥ (1− ε) · 2
3 · 2q(n) or |Sx| ≤ (1 + ε) · 1

3 · 2q(n).
This can be done by using the Goldwasser-Sipser protocol as described in [22], which implies

that L ∈ AM. Thus, to show Theorem 1, it suffices to show the following lemma:

Lemma 3 If every QNC0
t,1 circuit is weakly simulatable, then any L ∈ BQP has the property

P.

Proof: Let L ∈ BQP. As in the proof of Lemma 2, there exists a QNC0 circuit Dn such that,

for any x ∈ {0, 1}∗ of length n,

• if x ∈ L, Pr[Dn(x) = 1&postn(x) = 1b] ≥ 2
3 · 1

2b
,

• if x /∈ L, Pr[Dn(x) = 1&postn(x) = 1b] ≤ 1
3 · 1

2b
.

We define a quantum circuit En as in the proof of Lemma 2. It holds that, for any x ∈ {0, 1}∗
of length n, Pr[En(x) = 1] = Pr[Dn(x) = 1&postn(x) = 1b].

We fix a polynomial p satisfying (3 · 2b)/2p < 1/10. Since En is a QNC0
t,1 circuit, with the

assumption, there exists a polynomial-time probabilistic classical algorithm A such that, for

any x ∈ {0, 1}∗ of length n,

|Pr[A(x) = 1]− Pr[En(x) = 1]| ≤ 1

2p(n)
.

More concretely, there exist such an algorithm A and a polynomial m such that, for any

x ∈ {0, 1}∗ of length n, the above inequality holds, where

Pr[A(x) = 1] =
|{r ∈ {0, 1}m(n)|Ar(x) = 1}|

2m(n)
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and Ar is A with the result of its internal coin tosses r. We note that A with a fixed r can be

regarded as a polynomial-time deterministic classical algorithm. We can choose m satisfying

m ≥ b.

Let ε = 1/4, q = m− b, and Sx = {r ∈ {0, 1}m(n)|Ar(x) = 1} for any x ∈ {0, 1}∗ of length

n. If x ∈ L,

|Sx| = 2m(n) · Pr[A(x) = 1] ≥ 2m(n) ·
(

Pr[Dn(x) = 1&postn(x) = 1b]− 1

2p(n)

)

≥ 2m(n) ·
(

2

3
· 1

2b(n)
− 1

2p(n)

)

=

(

1− 3

2
· 2

b(n)

2p(n)

)

· 2
3
· 2

m(n)

2b(n)
≥ (1− ε) · 2

3
· 2q(n).

If x /∈ L,

|Sx| = 2m(n) · Pr[A(x) = 1] ≤ 2m(n) ·
(

Pr[Dn(x) = 1&postn(x) = 1b] +
1

2p(n)

)

≤ 2m(n) ·
(

1

3
· 1

2b(n)
+

1

2p(n)

)

=

(

1 + 3 · 2
b(n)

2p(n)

)

· 1
3
· 2

m(n)

2b(n)
≤ (1 + ε) · 1

3
· 2q(n).

Thus, L has the property P.

3.2 Proof of Theorem 2

We consider a polynomial-time computable function f = {fn}n≥1, where fn : {0, 1}n →
{0, 1}. That is, there exists a uniform family of polynomial-size classical circuits such that it

computes f . For simplicity, we denote {fn}n≥1 as fn. For any fn, there exists a polynomial-

size quantum (in fact, classical reversible) circuit Cf
n with n input qubits and a ≥ 1 ancillary

qubits including the output qubit such that Cf
n consists only of Toffoli and X gates and

implements the quantum operation |y〉|0〉⊗a 7→ |y〉|fn(y)〉|0〉⊗(a−1), where y ∈ {0, 1}n. The

Hadamard-Toffoli circuit for fn, which we call HTf
n, is defined as follows [15], where it has n

input qubits and a ancillary qubits including the output qubit: apply H gates on the input

qubits, then apply Cf
n on the n+ a qubits by using the n input qubits as the input qubits for

Cf
n . It can be shown that, for any fn, HT

f
n is weakly simulatable and that, unless FP = #P,

that is, unless P = PP [4], there exists an fn such that HTf
n is not strongly simulatable [15].

By Lemma 1, for any HTf
n with n input qubits and a ancillary qubits, there exists a QNC0

circuit Df
n with n input qubits and a + b ancillary qubits. As in the proof of Lemma 2,

we consider a QNC0
t,1 circuit Ef

n, which is defined similarly to En except that Dn in En is

replaced with Df
n. We can show the following lemma:

Lemma 4 The following statements hold:

(1). For any polynomial-time computable function fn, E
f
n is weakly simulatable.

(2). If, for any polynomial-time computable function fn, E
f
n is strongly simulatable, then

P = PP.

Proof: Let fn be a polynomial-time computable function. For any x ∈ {0, 1}n, when the

input state is |x〉, the output state of HTf
n is

1√
2n

∑

y∈{0,1}n

(−1)x·y|y〉|fn(y)〉|0〉⊗(a−1),
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where x · y represents the inner product of x and y modulo 2. By the construction of Ef
n and

Lemma 1,

Pr[Ef
n(x) = 1] = Pr[Df

n(x) = 1&postn(x) = 1b] =
#f

n(1)

2n+b
,

where #f
n(c) = |{y ∈ {0, 1}n|fn(y) = c}| for any c ∈ {0, 1}. We define a polynomial-time

probabilistic classical algorithm A as follows, where the input is x ∈ {0, 1}∗ of length n:

1. Choose y ∈ {0, 1}n and r ∈ {0, 1}b(n) uniformly at random.

2. Set A(x) = fn(y) if r = 1b and A(x) = 0 otherwise.

By the definition of A, Pr[A(x) = 1] =
#f

n(1)
2n+b . Thus, (1) holds.

We assume that Ef
n is strongly simulatable. By the definition, there exists a polynomial-

time deterministic classical algorithm A such that, for any x ∈ {0, 1}∗ of length n,

|A(x)− Pr[Ef
n(x) = 1]| =

∣

∣

∣

∣

A(x)− #f
n(1)

2n+b

∣

∣

∣

∣

≤ 1

2n+b+2
.

This implies that |2n+b · A(x) −#f
n(1)| ≤ 1/22. This yields a polynomial-time deterministic

classical algorithm for computing #f
n(1) and #f

n(0) = 2n − #f
n(1), which implies FP = #P

and thus P = PP [4]. Thus, (2) holds.

Lemma 4 immediately implies Theorem 2.

4 Circuit with Two Unbounded Fan-Out Gates

4.1 Parallelized Hadamard test

Let Cn be a polynomial-size quantum circuit with n input qubits and a ancillary qubits. The

Hadamard test for Cn is the well-known quantum circuit that relates its output probability

to the real or imaginary part of the matrix element 〈0|⊗(n+a)Cn|0〉⊗(n+a) [17]. It has n input

qubits and a+1 ancillary qubits including the output qubit. The circuit is defined as follows:

apply an H gate on the output qubit, then apply the controlled version of Cn on the n+a+1

qubits by using the output qubit as the control qubit, and then apply an H gate on the output

qubit. For example, let C3 be the quantum circuit depicted in Fig. 2(a). In this case, a = 0

and the Hadamard test for the circuit is depicted in Fig. 2(b), where the top qubit is the

output qubit.

A key circuit for showing Theorem 3 is a parallelized version of the Hadamard test. It

relates its output probability to the matrix element as the standard Hadamard test. Moreover,

the depth of the parallelized version of the Hadamard test for a QNC0 circuit is constant, in

contrast to the fact that, in general, the depth of the standard Hadamard test for a QNC0

circuit is polynomial in the length of the input. Let Cn be a polynomial-size quantum circuit

with n input qubits and a ancillary qubits, U1 be a single-qubit unitary gate, and m be the

maximum number of gates included in a layer in Cn. We define a quantum circuit, which we

call the parallelized Hadamard test for Cn and U1, as follows, where it has n input qubits, a

ancillary qubits for Cn, and new m ancillary qubits including the output qubit:

1. Apply an H gate on the output qubit.
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H 
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(a) (c) 
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T 
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T 
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Fig. 2. (a) A quantum circuit C3 with a = 0. (b) The Hadamard test for C3 in (a). (c) The

parallelized Hadamard test for C3 in (a) and U1 = I. In this case, m = 3. The gate next to H is
an unbounded fan-out gate, where the top qubit is the control qubit.

2. Apply an unbounded fan-out gate on the new m ancillary qubits, where the output

qubit is used as the control qubit.

3. Apply the controlled version of Cn, where the new m ancillary qubits are used as the

control qubits. The gates of the controlled version of Cn are arranged so that, if the

original gates in Cn are in a layer, their controlled versions are also in a layer in this

new circuit.

4. This step is the same as Step 2.

5. This step is the same as Step 1.

6. Apply the U1 gate on the output qubit.

The parallelized Hadamard test for the circuit in Fig. 2(a) and U1 = I is depicted in Fig. 2(c),

where the top qubit is the output qubit and m = 3.

The parallelized Hadamard test is described by the gates that are not our elementary

gates. Fortunately, we can decompose such gates exactly into constant-depth constant-size

quantum circuits using our elementary gates as shown in [5]. Moreover, the output probabil-

ities of the parallelized Hadamard test for Cn are related to the real and imaginary parts of

〈x|〈0|⊗aCn|x〉|0〉⊗a as follows, where Re(z) and Im(z) are the real and imaginary parts of z,

respectively, for any z ∈ C:

Lemma 5 For any QNC0 circuit Cn (with n input qubits and a ancillary qubits) and single-

qubit unitary gate U1 generated by a constant number of H and T gates, there exists a QNC0
f,2

circuit Dn that implements the same operation exactly as the parallelized Hadamard test for

Cn and U1. Moreover, for any x ∈ {0, 1}∗ of length n, when the input state is |x〉 and U1 = I,

it holds that

Pr[Dn(x) = 0] =
1 + Re(〈x|〈0|⊗aCn|x〉|0〉⊗a)

2
.

Similarly, when U1 = HT 2, it holds that

Pr[Dn(x) = 0] =
1 + Im(〈x|〈0|⊗aCn|x〉|0〉⊗a)

2
.

Proof: Let Cn be a QNC0 circuit and U1 be a single-qubit unitary gate generated by a

constant number of H and T gates. The non-elementary gates in the parallelized Hadamard
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S
†

 H H T
†

 T H S 

= 
T 

= 

T |0⟩ 

Fig. 3. Decompositions of the controlled-H and controlled-T gates [5], where T † = T 7, S = T 2,

and S† = T 6.

test for Cn and U1 are a controlled-H gate, a controlled-T gate, and a controlled-CNOT

gate. The controlled-CNOT gate is a Toffoli gate, which can be decomposed exactly into a

constant-depth constant-size quantum circuit consisting of H, T , and CNOT gates with no

ancillary qubits [18]. Moreover, as shown in [5], the controlled-H and controlled-T gates can

be decomposed as depicted in Fig. 3. In particular, the decomposition of the controlled-T

gate requires one ancillary qubit (initialized to |0〉), which is reset to |0〉 at the end of the

computation. Thus, by adding at most t = poly(n) ancillary qubits, we can obtain QNC0
f,2

circuit Dn that implements the same operation exactly as the parallelized Hadamard test for

Cn and U1, where t is the number of controlled-T gates in the parallelized Hadamard test.

We assume that U1 maps |0〉 and |1〉 to α|0〉+ β|1〉 and γ|0〉+ δ|1〉, respectively, and that

the input state is |x〉. A direct calculation shows that the output state of Dn is

1√
2
|0〉|0〉⊗(m−1)

(

α
|x〉|0〉⊗a + Cn|x〉|0〉⊗a

√
2

+ γ
|x〉|0〉⊗a − Cn|x〉|0〉⊗a

√
2

)

|0〉⊗t

+
1√
2
|1〉|0〉⊗(m−1)

(

β
|x〉|0〉⊗a + Cn|x〉|0〉⊗a

√
2

+ δ
|x〉|0〉⊗a − Cn|x〉|0〉⊗a

√
2

)

|0〉⊗t,

where the first qubit is the output qubit. This implies that

Pr[Dn(x) = 0] =
1

2
+

|α|2 − |γ|2
2

·Re(〈x|〈0|⊗aCn|x〉|0〉⊗a)− Im(αγ∗) · Im(〈x|〈0|⊗aCn|x〉|0〉⊗a).

When U1 = I, α = 1 and γ = 0. Thus, it holds that

Pr[Dn(x) = 0] =
1 + Re(〈x|〈0|⊗aCn|x〉|0〉⊗a)

2
.

When U1 = HT 2, α = 1/
√
2 and γ = i/

√
2. Thus, it holds that

Pr[Dn(x) = 0] =
1 + Im(〈x|〈0|⊗aCn|x〉|0〉⊗a)

2
.

Thus, the desired relationships hold.

In the following, the parallelized Hadamard test represents the QNC0
f,2 circuit consisting

only of our elementary gates. Lemma 5 implies the following relationship between the strong

simulatability of the parallelized Hadamard test and the problem of computing a matrix

element:

Lemma 6 The following statements are equivalent:

(1). For any QNC0 circuit Cn and single-qubit unitary gate U1 ∈ {I,HT 2}, the parallelized

Hadamard test for Cn and U1 is strongly simulatable.
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(2). For any QNC0 circuit Cn, there exists a polynomial-time deterministic classical algo-

rithm for computing 〈x|〈0|⊗aCn|x〉|0〉⊗a with exponential precision. More precisely, for

any polynomial p, there exists a polynomial-time deterministic classical algorithm A

such that, for any x ∈ {0, 1}∗ of length n,

|A(x)− Re(〈x|〈0|⊗aCn|x〉|0〉⊗a)| ≤ 1

2p(n)
.

Moreover, such an algorithm exists also for computing the imaginary part.

Proof: We assume that (1) holds. Let Cn be a QNC0 circuit and p be a polynomial. We

consider the parallelized Hadamard test Dn for Cn and U1 = I. With the assumption, there

exists a polynomial-time deterministic classical algorithm A such that, for any x ∈ {0, 1}∗ of

length n,

|(1−A(x))− Pr[Dn(x) = 0]| ≤ 1

2p(n)+1
.

Lemma 5 implies that

|(1− 2 ·A(x))− Re(〈x|〈0|⊗aCn|x〉|0〉⊗a)| ≤ 1

2p(n)
.

This implies that there exists a polynomial-time deterministic classical algorithm for com-

puting Re(〈x|〈0|⊗aCn|x〉|0〉⊗a) with exponential precision. A similar argument with the par-

allelized Hadamard test for Cn and U1 = HT 2 yields such an algorithm for computing the

imaginary part. Thus, (2) holds. Similarly, we can show that (2) implies (1).

4.2 Proof of Theorem 3

To show Theorem 3, we need the following lemma, which is a simple consequence of Lemma 1

and the results in [7, 17]:

Lemma 7 The following statements are equivalent:

(1). For any QNC0 circuit Cn, there exists a polynomial-time deterministic classical algo-

rithm for computing 〈x|〈0|⊗aCn|x〉|0〉⊗a with exponential precision.

(2). For any polynomial-size quantum circuit Cn, there exists a polynomial-time determin-

istic classical algorithm for computing 〈x|〈0|⊗aCn|x〉|0〉⊗a with exponential precision.

(3). P = PP.

Proof: It is obvious that (2) implies (1). We assume that (1) holds. Let Cn be a polynomial-

size quantum circuit (with n input qubits and a ancillary qubits) and p be a polynomial. By

Lemma 1, there exists a QNC0 circuit Dn with n input qubits and a+ b ancillary qubits such

that b is even, b = O(size(Cn)), and, for any x ∈ {0, 1}∗ of length n,

〈x|〈0|⊗(a+b)Dn|x〉|0〉⊗(a+b) =
1√
2b

〈x|〈0|⊗aCn|x〉|0〉⊗a.

More precisely, Dn is the circuit in Lemma 1 combined with X gates on the postselection

qubits. With the assumption, there exists a polynomial-time deterministic classical algorithm

A such that, for any x ∈ {0, 1}∗ of length n,

|A(x)− Re(〈x|〈0|⊗(a+b)Dn|x〉|0〉⊗(a+b))| ≤ 1

2p(n)+b
.
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The above equation implies that

|
√
2b ·A(x)− Re(〈x|〈0|⊗aCn|x〉|0〉⊗a)| ≤

√
2b

2p(n)+b
≤ 1

2p(n)
.

This implies that there exists a polynomial-time deterministic classical algorithm for com-

puting Re(〈x|〈0|⊗aCn|x〉|0〉⊗a) with exponential precision. Similarly, a polynomial-time de-

terministic classical algorithm for computing Im(〈x|〈0|⊗(a+b)Dn|x〉|0〉⊗(a+b)) yields such an

algorithm for computing Im(〈x|〈0|⊗aCn|x〉|0〉⊗a). Thus, (2) holds.

It is known that P = PP if and only if FP = #P [4]. As shown in [17], for any polynomial-

time computable function fn : {0, 1}n → {0, 1}, which corresponds to a polynomial-time

decidable relation, the problem of computing |{x ∈ {0, 1}n|fn(x) = 0}| can be reduced to

that of computing 〈0|⊗(n+a)Cn|0〉⊗(n+a) with exponential precision for some polynomial-size

quantum circuit Cn. Thus, (2) implies (3). On the other hand, the problem of computing

〈x|〈0|⊗aCn|x〉|0〉⊗a with exponential precision for any polynomial-size quantum circuit Cn

can be reduced to that of computing #P functions [7]. Thus, (3) implies (2).

Lemmas 6 and 7 immediately imply the characterization of the relationship P = PP. That

is, P = PP if and only if, for any QNC0 circuit Cn and single-qubit unitary gate U1 ∈ {I,HT 2},
the parallelized Hadamard test for Cn and U1 is strongly simulatable. As shown in Lemma 5,

the parallelized Hadamard test for any QNC0 circuit Cn and U1 ∈ {I,HT 2} is a QNC0
f,2

circuit. Thus, this characterization implies Theorem 3.

5 Conclusions and Future Work

We considered the classical simulatability of constant-depth polynomial-size quantum circuits

followed by only one single-qubit measurement. First, we provided evidence for the hardness

of weakly simulating a QNC0
t,1 circuit. Then, we characterized the relationship P = PP

using the strong simulatability of a QNC0
f,2 circuit and provided evidence for the hardness of

strongly simulating such a circuit. These results are in contrast to the fact that any QNC0

circuit followed by only one single-qubit measurement is strongly and weakly simulatable.

Interesting challenges would be to further study the classical simulatability of constant-

depth polynomial-size quantum circuits. For example, can we show that, if any QNC0
t,1

circuit (followed by only one single-qubit measurement) is weakly simulatable, then P = PP?

Moreover, can we provide evidence for the hardness as in Theorems 1 and 3 when we consider

the error 1/poly(n) in place of 1/2p(n) in the classical simulations? As one of the referees

suggests, on the basis of the results in [13, 19, 20], it would be possible to show that there

exists a QNC0
f,1 circuit (i.e., constant-depth quantum circuit with only one unbounded fan-out

gate) that is not strongly simulatable, unless P = PP.
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