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We give an infinite family of degenerate entanglement-assisted quantum error-correcting
codes (EAQECCs) which violate the EA-quantum Hamming bound for non-degenerate
EAQECCs and achieve the EA-quantum Singleton bound, thereby proving that the
EA-quantum Hamming bound does not asymptotically hold for degenerate EAQECCs.

Unlike the previously known quantum error-correcting codes that violate the quantum
Hamming bound by exploiting maximally entangled pairs of qubits, our codes do not re-
quire local unitary operations on the entangled auxiliary qubits during encoding. The de-

generate EAQECCs we present are constructed from classical error-correcting codes with
poor minimum distances, which implies that, unlike the majority of known EAQECCs
with large minimum distances, our EAQECCs take more advantage of degeneracy and
rely less on the error correction capabilities of classical codes.
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1 Introduction

Quantum error-correcting codes (QECCs) play a vital role in reliable quantum information

transmission as well as fault-tolerant quantum computation [1, 2, 3, 4, 5]. The most widely

studied class of quantum codes are stabilizer (or additive) quantum codes, which are specified

by Abelian groups of tensor products of Pauli operators. The majority of QECCs studied so

far are stabilizer codes, binary [1, 2, 6, 7, 8, 9, 10, 11, 12] or non-binary [13, 14, 15, 16].

A q-ary stabilizer code can be constructed from classical codes over finite fields Fq or Fq2

with certain self-orthogonal properties, where q is a prime power and Fq is the finite field

with q elements [9, 15]. Unfortunately, the need for a self-orthogonal parity check matrix

presents a substantial obstacle to importing the classical theory in quantum codes entirely,

especially in the context of modern codes such as low-density parity check (LDPC) codes [17].

Brun, Devetak and Hsieh devised the entanglement-assisted (EA) stabilizer formalism in [17],
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including the standard stabilizer formalism [6, 7, 9, 15] as a special case. They showed that if

shared entanglement between the encoder and decoder is available, classical linear quaternary

(and binary) codes that are not self-orthogonal can be transformed into EAQECCs. This EA

stabilizer formalism generalized the idea of Bowen’s [18]. Following [17], there are a lot of

papers making further study of EAQECCs [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34], and [26] showing that entanglement can increase the error-correcting ability of

quantum error-correcting codes.

An [[n, k, dea; c]] EAQECC encodes k information qubits into n physical qubits with the

help of c maximally entangled pairs of qubits, called ebits. In the entanglement-assisted

protocol given by Brun, Devetak, and Hsieh [17], the sender and receiver pre-share c pairs of

maximally entangled qubits. The sender possesses arbitrary k-qubit information and her half

of the c maximally entangled pairs. The k-qubit information is encoded with n−k− c ancilla

qubits and the c entangled qubits. The sender sends the resulting n qubits to the receiver

through a noisy channel. The receiver then performs measurements on these n qubits together

with his half of the c pre-shared pairs to diagnose errors. With an [[n, k, dea; c]] EAQECC,

up to ⌊dea−1
2 ⌋ errors on the noisy n qubits can be corrected.

As in classical coding theory, there are many bounds on QECCs and EAQECCs, such as

the quantum Singleton bound [8, 9, 11] and the quantum Hamming bound for nondegenerate

(or pure) QECCs [6], the EA-quantum Singleton bound and the EA-quantum Hamming

bound for nondegenerate EAQECCs [17, 18]. For definitions of degenerate and nondegenerate

EAQECCs, see Section 2.

Lemma 1.1 (EA-quantum Singleton bound [17]) If Qea = [[n, k, dea; c]], then n + c − k ≥

2(dea − 1). An EAQECC achieving this bound is called a maximal-distance-separable (MDS)

EAQECC.

Lemma 1.2 (EA-quantum Hamming bound [18]) If [[n, k, dea; c]] is a nondegenerate EAQECC,

t = ⌊dea−1
2 ⌋, then 2n+c−k ≥

∑t

i=0 3
i
(

n

i

)

.

All standard QECCs satisfy the quantum Singleton bound and all EAQECCs satisfy the

EA-Singleton bound [8, 26]. It is not known whether a degenerate stabilizer code can violate

the quantum Hamming bound without pre-shared entanglement (see [7, 11, 35, 36]), although

there is an impure subsystem code that beats the Hamming bound [37]. The degenerate (or

impure) quantum codes are a particularly interesting class of quantum codes because they

can pack more quantum information. A striking feature of degenerate quantum codes is that

they can be used to correct more errors than they can uniquely identify, not all correctable

errors need to be distinguished or even detected by active error correction strategies [3, 38].

It is known that well-designed degenerated codes may outperform all non-degenerate ones

over correlated noise channels and very noisy channels [38, 39, 40, 41, 42] and have important

applications in purifying quantum states [42]. Degenerate codes were also used in proving the

security of quantum communication protocols [43].

In [15], Ketkar et al. showed that all standard QECCs achieving the quantum Singleton

bound must be nondegenerate and obey the quantum Hamming bound. In [26], Lai et al.

discussed the construction of optimal EAQECCs. An [[n, k, dea; c]] EAQECC is optimal in
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the sense that dea is the highest achievable minimum distance for given parameters n, k and

c. They showed that there are degenerate EAQECCs achieving the EA-Singleton bound. It

is natural to ask whether there exists a degenerate EAQECC that violates the EA-quantum

Hamming bound. In this paper, we will show that there are degenerate EAQECCs achieving

the EA-Singleton bound but beating the EA-quantum Hamming bound.

Remark Note that Dong et al. [29] constructed quantum error-correcting codes of length n,

dimension 1, and minimum distance n that exploit 1 qubit that does not suffer from errors.

If we let an ebit play the role of the error-free qubit, these codes may be considered to violate

the EA-quantum Hamming bound. However, as noted in [29], because this approach requires

a protocol that involves some local unitary operations on the ebit during encoding, one-

way classical communication is necessary in addition to the ebit for encoding and decoding.

Because QECCs that take advantage of ebits are called EAQECCs most typically when their

protocols do not require additional resources other than ebits (see, for example, Section IV of

[33] and the noiseless case in [34], where their QECCs that can also be seen as EAQECCs only

require maximally entangled pairs when used as EAQECCs), we follow this practice in the

relevant literature in this regard and do not rely on any additional resource such as a classical

channel for encoding and decoding except ebits. In fact, all quantum error-correcting codes

we construct in this paper employ exactly the same protocol as the original entanglement-

assisted one given by Brun, Devetak, and Hsieh [17] and hence are EAQECCs in the strict

sense.

This paper is organized as follows. In Section 2, basic concepts on the EA-stabilizer

formalism and additive codes over the quaternary field F4 are reviewed. In Section 3, ex-

plicit constructions of MDS EAQECCs are presented and MDS EAQECCs violating the

EA-quantum Hamming bound are proved. Finally, in Section 4, discussions and remarks are

drawn.

2 The EA-stabilizer formalism and additive codes

In this section, we review some basic knowledge on symplectic spaces, the EA formalism and

additive codes for the propose of this paper. For more details, we refer the reader to [9], [17],

[19] and [25].

Let F2 be the binary field and F2n
2 the 2n-dimensional binary row vector space over F2,

whose elements are denoted as (a | b) = (a1, a2, . . . , an | b1, b2, . . . , bn). Define the weight

wts((a | b)) of (a | b) to be the number of coordinates i such that at least one of ai and bi is

1, and the distance ds((a | b), (a
′

| b
′

)) between (a | b) and (a
′

| b
′

) to be wts((a−a
′

| b− b
′

)).

Let

K2n =

(

0 In
In 0

)

.

The symplectic inner product of (a | b) and (a
′

| b
′

) with respect to K2n is defined to be

((a | b), (a
′

| b
′

))s = (a | b)K2n(a
′

| b
′

)T = a(b
′

)T + b(a
′

)T .

The vector space F2n
2 equipped with this symplectic inner product is called a 2n-dimensional

symplectic space. If S is a linear subspace of F2n
2 , then the symplectic dual S⊥s of S is the

subspace
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S⊥s= {(x | y) ∈ F2n
2 | ((a | b), (x | y))s = 0 for all (a | b) ∈ S}.

From [44] we know that dimS⊥s = 2n−dimS for any subspace S of F2n
2 . A subspace S of F2n

2

is called totally isotropic if S⊆ S⊥s and totally non-isotropic if S ∩ S⊥s = {0} [44]. A totally

isotropic subspace and a totally non-isotropic subspace are called an isotropic subspace and

a non-isotropic subspace in [17], respectively.

Let Gn be the n-fold Pauli group, whose elements are written as g = iλX(a)Z(b) where

λ ∈ Z4 and (a | b) ∈ F2n
2 . The center of Gn is Z(Gn)= {±I,±iI}, and the quotient group

Ḡn= Gn/Z(Gn) is isometrically isomorphism to the symplectic space F2n
2 under the map

τ(iλX(a)Z(b)) = (a | b) [9]. If A is a subgroup of Gn, then τ(A) is a subspace of F2n
2 .

For a subgroup A, denote its centralizer as Z(A) [19] which is denoted as N (A) in [17] and

[26], then τ(Z(A)) = τ(A)⊥s, where τ(A)⊥s is the symplectic dual space of τ(A). If τ(A)

is a totally isotropic subspace of F2n
2 , A is called an isotropic subgroup of Gn. If τ(A) is a

totally non-isotropic subspace of F2n
2 , A is called a symplectic subgroup of Gn in [17] and an

entanglement subgroup in [19], respectively.

Let F4 = {0, 1, ω,̟} be the field of four elements, where ̟ = 1 + ω = ω2, ω3 = 1,

and the conjugation is defined by x = x2. Let Fn
4 be the n-dimensional row vector space

over F4. For u = (u1, u2, ..., un) and v = (v1, v2, ..., vn) ∈ Fn
4 , their trace inner product is

defined as (u, v)T= Tr(uvT ) =
∑n

1 (ujvj + ujvj) =
∑n

1 (ujv
2
j + u2

jvj), and their Hermitian

inner product is defined as (u, v)h =
∑n

1 ujvj =
∑n

1 ujv
2
j . Following the terminology of

[9], we define an (n, 2m) additive code C of length n over F4 to be a subgroup of size 2m

of Fn
4 . The trace dual C⊥T of an (n, 2m) additive code C is the (n, 22n−m) additive code

C⊥T = {u ∈ Fn
4 | (u, v)T = 0 for all v ∈ C}. If C is an [n, k]4 linear code, its Hermitian dual

is defined as C⊥h = {u ∈ Fn
4 | (u, v)h = 0 for all v ∈ C}, and C⊥h is an [n, n− k]4 linear code.

An [n, k]4 linear code C is an (n, 22k) additive code, and C⊥T = C⊥h is an (n, 22(n−k)) additive

code.

Now, we can give the EA formalism of [17] as follows.

Theorem 2.0 ([17, 19]) Let S be a subgroup of Gn of size 2m, SI be an isotropic subgroup

of size 2l and SE an entanglement subgroup of size 22c. If S = SI×SE , then S can be

extended into an Abelian subgroup S̃ of Gn+c with c maximally entangled pairs. S̃ stabilizes

an EAQECCQea= [[n, k, dea; c]], where k = n+c−m = n−c−l, dea =min {wt(g) | g ∈ Z(S)\

SI}, and Z(S) is the centralizer of S. S is called the EA stabilizer of Qea.

Let the EA stabilizer of Qea= [[n, k, dea; c]] be S. If all non-identity elements in SI have

weight greater than dea, then Qea is called a nondegenerate EAQECC, otherwise a degenerate

one [26, 45]. It is very hard to construct EAQECCs using the framework of Theorem 2.0.

In [25, 45], using relationship among Gn, F
2n
2 and Fn

4 , we reformulated Theorem 2.0 as the

following equivalent Theorem 2.1. We give a condensed proof here, for more details please

see [25].

Theorem 2.1 ([25, 45]) If there exists an (n, 2m) additive code C such that R(C) = C ∩C⊥T

forms an (n, 2l) additive code, then there exists an EAQECC Qea= [[n, k, dea; c]], where

k = n− c− l, 2c = m− l and dea = min {wts(α) | α ∈ C⊥T \R(C)}. C is called the additive
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EA stabilizer of Qea.

Proof. From [9], we know that there is a map φ from F2n
2 to Fn

4 as: φ((a | b))= ωa+̟b ∈ Fn
4

for α = (a | b) ∈ F2n
2 , and wts(α) = wt(φ(α)) and (α, β)s = (φ(α), φ(β))T for β ∈ F2n

2 . Define

σ = φ ◦ τ , then σ is an isometrically isomorphism from Gn onto Fn
4 .

Let CE be a complement subgroup of R(C) in C, i.e., C = R(C)+ CE and R(C)∩CE= {0}.

Let S = σ−1(C). It is not difficult to check that σ−1(R(C)) = SI , σ
−1(CE) = SE and S

= SI×SE . From the parameters of C and R(C), one can derive the sizes of S and SI are 2m

and 2l, respectively. Thus the theorem follows according to Theorem 2.0 .

Since each [n, s]4 linear code over F4 is an (n, 22s) additive code, we have

Corollary 2.2 If there exists an [n, s]4 linear code C such that R(C) = C∩C⊥h forms an [n, r]4
linear code, then there exists an EAQECC Qea= [[n, k, dea; c]], where k = n+c−2s = n−s−r,

c = s − r and dea = min {wt(α) | α ∈ C⊥h \ R(C)}. And C⊥h stabilizes an EAQECC

Qea⊥ = [[n, s− r, d⊥h
ea ;n− s− r]], d⊥h

ea = min {wt(α) | α ∈ C \R(C)}.

Notation The EAQECCs Qea and Qea⊥ in Corollary 2.2 are called linear EAQECCs in

[45], and Qea⊥ is called dual EAQECC of Qea in [27, 47].

3 Construction of MDS EAQECCs

In this section, we will construct an [[n, 1, dea; c]] EAQECC for each n ≥ 6. This EAQECC

achieves the EA-Singleton bound.

The first [[3, 1, 3; 2]] EAQECC proposed by Bowen in [18] and the [[4, 1, 3; 1]] in [17] are

MDS EAQECCs, and these two codes are nondegenerate and based on the [[5, 1, 3]] quantum

MDS code. Lai and Brun constructed degenerate MDS EAQECCs [[7, 1, 5; 2]], [[9, 1, 7; 4]] and

[[n, 1, n;n− 1]] for odd n in [26, 27]. Now we will use quaternary linear codes to construct an

infinite class of MDS EAQECCs. Some of these EAQECCs violate the EA-quantum Hamming

bound. Our construction is based on Corollary 2.2 and the following lemma.

Lemma 3.1 If there exists an [n, n − s]4 linear code C such that R(C) = C ∩ C⊥h forms an

[n, s−1]4 linear code, then there exists an EAQECC Qea= [[n, 1, dea;n−2s+1]], where where

dea = min {wt(α) | α ∈ C⊥h \R(C)}.

Proof. Since C is an (n, 22(n−s)) additive code and R(C) is an (n, 22(s−1)) additive code,

according to Theorem 2.1, C stabilizes an EAQECC [[n, k, dea; c] with 2c = 2(n−s)−2(s−1),

k = n+ c− 2(n− s) = 1 and dea = min{wt(α) | α ∈ C⊥h \R(C)}. Hence the lemma holds .

In the following of this section, we let 0n = (0, 0, ..., 0) and 1n = (1, 1, ..., 1). For k ≥ 1

and s ≥ 0, let Mk×s be the following k × s matrix

Mk×s =











0s

...
0s

1s











.

Theorem 3.2 Let n ≥ 6 be an integer, n1 = ⌊n
4 ⌋ for even n and n1 = ⌊n−3

4 ⌋ for odd n.
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(1) If n = 4n1 + n2, n2 = 0 or 2, 1 ≤ i ≤ n1, then there is an [[n, 1, n − 2i + 1;n − 4i + 1]]

EAQECC.

(2) If n = 4n1 + n2 + 3, n2 = 0 or 2, 1 ≤ i ≤ n1, then there is an [[n, 1, n − 2i;n − 4i − 1]]

EAQECC.

Proof. Let f = (ω,̟) and g = (0, 1).

(1) For even n = 4n1 + n2 ≥ 6, let 1 ≤ i ≤ n1 and 2t = n − 4i. Construct a 2i × n matrix

H2i×n =
(

A2i×4i M2i×2t

)

with

A2i×4i =















12 12 02 02 · · · 02 02

02 12 12 02 · · · 02 02

...
02 02 02 02 · · · 12 12

f f f f · · · f g















.

Let the code generated by H2i×n be C⊥h. Then C⊥h is an [n, 2i]4 code, C is an [n, n − 2i]4
code and R(C) has dimension 2i− 1.

Denote the j-th row of A2i×4i as βj , 1 ≤ j ≤ 2i, then each α ∈ C⊥h \R(C) is of the form

γ(β,12t), where β = β2i + x1β1 + · · · + x2i−1β2i−1, xj ∈ F4 for 1 ≤ j ≤ 2i, γ ∈ F4 and

γ 6= 0. Since the (2l − 1)-th and 2l-th entries of β2i are different and the (2l − 1)-th and

2l-th entries of βj are equal for 1 ≤ l ≤ 2i and 1 ≤ j ≤ 2i − 1, the (2l − 1)-th and 2l-th

entries of β are different and wt(β) ≥ 2i. From (β, β)h = 1, one can derive that wt(β) is

odd, which implies wt(β) ≥ 2i+ 1 and wt((β,12t)) ≥ n− 2i+ 1. Thus, we have shown that

dea = min{wt(α) ∈ C⊥h \ R(C)} ≥ n − 2i + 1. According to Lemma 3.1, we can obtain an

[[n, 1, n− 2i+ 1;n− 4i+ 1]] MDS EAQECC.

(2) For n = 7, 9, we construct a 3× n matrix H3×n =
(

A3×5 M3×(n−5)

)

with

A3×5 =





1 1 1 1 0
0 1 ω ̟ 1
0 ω 1 ̟ 0



 .

Suppose H3×n generates the code C⊥h. Then C⊥h is an [n, 3]4 code, C is an [n, n − 3]4 code

and R(C) has dimension r = 2. It is easy to check that dea = n − 2, hence there is an

[[n, 1, n− 2;n− 5]] MDS EAQECC.

For n = 4n1 + n2 + 3 ≥ 11, n2 = 0 or n2 = 2, then n1 ≥ 2. Let 1 ≤ i ≤ n1 and

2t+ 1 = n− 4i− 2. We construct H(2i+1)×n =
(

A(2i+1)×(4i+2) M(2i+1)×(2t+1)

)

with

A(2i+1)×(4i+2) =















12 12 02 · · · 02 02

02 12 12 · · · 02 02

...
02 02 02 · · · 12 12

f f f · · · f f















.

Suppose H(2i+1)×n generates the code C⊥h. Then C⊥h is an [n, 2i+ 1]4 code, C is an [n, n−

(2i+ 1)]4 code and R(C) has dimension 2i. Similar to the discussion of case (1), it is easy to

check that dea = n− 2i, and there is an [[n, 1, n− 2i;n− 4i− 1]] MDS EAQECC.
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Summarizing the above discussions, the theorem holds .

To the best of our knowledge, there is no known degenerate standard QECC that violates

the quantum Hamming bound [35, 36]. However, many of the EAQECCs constructed in

Theorem 3.2 violate the EA-quantum Hamming bound.

Theorem 3.3 There exist infinitely many degenerate MDS EAQECCs violating the EA-

quantum Hamming bound.

Proof. Let m ≥ 2, we now show the [[4m, 1, 2m + 1; 1]] = [[n, 1, dea; 1]] EAQECCs given in

Theorem 3.2 violating the EA-quantum Hamming bound.

Denote f(t) =
(

4t
t

)

. It is easy to check f(3) > ( 163 )3 and f(t + 1)/f(t) > 16
3 for t ≥ 3,

which imply f(t) > ( 163 )t and 3tf(t) > 16t = 24t. Thus, for m ≥ 3, one can deduce

m
∑

i=0

3i
(

n

i

)

> 3m
(

4m

m

)

> 24m = 2n+c−k.

From 1 + 3
(

8
1

)

+ 32
(

8
2

)

> 28 and the previous discussion for m ≥ 3, we have proved that all

the EAQECCs [[4m, 1, 2m+ 1; 1]] (for m ≥ 2) given in Theorem 3.2 violate the EA-quantum

Hamming bound. This proves Theorem 3.3 .

Similarly, one can check the EAQECCs of parameters [[4m + 3, 1, 2m + 3; 2]] for m ≥ 2,

[[4m+2, 1, 2m+3; 3]] for m ≥ 3 and [[4m+1, 1, 2m+3; 4]] for m ≥ 3, given in Theorem 3.2,

also violate the EA-quantum Hamming bound. These results show the EA-quantum Ham-

ming bound does not hold asymptotically for degenerate EAQECCs, whereas the quantum

Hamming bound for standard QECCs holds asymptotically [11].

4 Discussion and conclusion

We have shown that there exist infinitely many degenerate EAQECCs violating the EA-

quantum Hamming bound, and this fact implies the EA-quantum Hamming bound does not

hold asymptotically for degenerate EAQECCs. This is the first illustration of degenerate

EAQECCs pack more efficiently than their nondegenerate counterparts. The EAQECCs we

constructed also illustrate the following noteworthy facts.

(1) Entanglement can greatly increase the minimum distance of quantum codes (for further

evidences, please see [26]). The [[4m, 1, 2m + 1; 1]] = [[n, 1, dea; 1]] code, consuming one ebit,

has minimum distance dea = 2m + 1 and can correct m = ⌊n
4 ⌋ errors. On the other hand,

a binary QECC of length n + 1 can correct no more than ⌊n+2
6 ⌋ ≤ 2m+1

3 errors and has

minimum distance d ≤ 4m+2
3 + 1 [12]. Generally, for c ≥ 1, our [[n, 1, dea; c]] EAQECC has

minimum distance dea = n+c+1
2 , while a binary QECC of length n+ c is of minimum distance

dn+c ≤
n+c+1

3 + 1, hence dea − dn+c ≥
n+c+1

6 − 1.

(2) Our results imply that some optimal EAQECCs can be constructed from “poor”

classical codes; the current idea (given in [17]) of constructing good EAQECCs from good

classical codes may be an illusion in some case. The reasons are as follows: The classical codes

C and C⊥h we used for constructing MDS EAQECCs are “poor” codes whose distance can not

exceed 4, and are not MDS classical codes. For MDS standard quantum codes, the underlying

classical codes are required to be MDS codes [15]. Recently, in [45], it is proved that: For

given k ≥ 2, there are infinite families of n and c, such that an optimal [[n, k, dea; c]] EAQEC
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code must be degenerate. Ref.[45] also showed that a degenerate [[49, 2, 38; 45]] EAQECC

exists and is optimal, this EAQECC is constructed from classical codes C with C = [49, 46, 2]4
and C⊥h = [49, 3, 4]4. But a nondegenerate [[49, 2, d; 45]] EAQECC must have d ≤ 37, and

a [[49, 2, d; 45]] EAQEC code constructed from an optimal quaternary linear code, by the

method of [17], must have d ≤ 36. All these evidences show that EAQECCs have some

properties different from that of classical codes and standard QECCs.

(3) Our results also show that entanglement seems to allow codes saturating the EA-

quantum Singleton bound for a much broader set of parameters. It is known that there

are only two nontrivial binary QECCs (codes with distance d ≥ 3), [[5, 1, 3]] and [[6, 0, 4]]

achieving the quantum Singleton bound, and finite nontrivial binary and quaternary classical

codes achieving the Singleton bound [9, 15]. Whereas for EAQECCs, for each n ≥ 3, there is at

least one [[n, k, dea; c]] EAQECC achieving the EA-quantum Singleton bound. Enlarging the

parameter space of MDS EAQECCs maybe playing a role in quantum information processing.

This problem deserves further study.
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