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We propose a scheme to implement a quantum controllable-phase gate via quantum Zeno
dynamics. The two qubits are asymmetrically encoded by two four-level atoms coupled

via a quantized cavity mode. Under proper conditions, the desirable logic operation
can be implemented in one step. Since the qubit is encoded by the ground and the
metastable states of the atom and the cavity mode is not really excited, our protocol is
robust against the spontaneous decays of the atoms and cavity. Specifically, the feasibility

of our generic proposal is demonstrated with two nitrogen-vacancy centers coupled to
whispering-gallery microresonator.
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Quantum computer has attracted much interest due to its powerful performance of quantum

algorithm (compared with the classical one). For example, Shor [1] has shown that the

problem of factorizing a large integer can be solved in polynomial time using a quantum

computer. Also, Grover [2] has proved that finding an item from a large disordered system

with a quantum computer needs significantly less time (than that with a classical computer).

Generally, various quantum operations (performed usually by the usual unitary evolutions)

are required to implement scalable quantum computation. It was well-known that one-qubit

gates and a two-qubit gate are universal for constructing a quantum computer, i.e., any

quantum operation can be achieved by choosing appropriate set of these elementary gates.

Many schemes for realizing these elementary gates have been proposed with various physical

systems, such as Cavity QED [3, 4], ion traps [5], and quantum dots [6], etc..

On the other hand, quantum Zeno effect is an interesting subject in quantum physics. It
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holds that the system remains in the initial state under frequent measurements. Recently,

Facchi et al showed that the dynamics of the measured system is not necessarily freezed under

the quantum Zeno effect [7, 8], and the system can evolve within the “Zeno subspace”. Such

an evolution refers to the so-called quantum Zeno dynamics and is also induced under the

continuous measurement (or driving) [8]. Until now, a few applications based on quantum

Zeno dynamics have been found for quantum state engineerings [9, 10, 11, 12, 13], e.g., the

preparations of entangled states, entanglement swapping and quantum state transfers, etc..

In this paper, we investigate how to implement a two-qubit logic operation by using the

quantum Zeno dynamics. Our generic model consists of two four-level atoms coupled by a

quantized field, and the relevant quantum Zeno dynamics is driven by applying an external

classical field to only one of the atoms. A specifical solid-state counterpart of cavity QED

systems, i.e., N-V centers in diamond are coupled by a whispering-gallery mode (WGM)

microresonator [14, 15, 16], is demonstrated as the feasibility of our protocol. Remarkably, this

composite system combines the advantage of the N-V centers and the WGM microresonators,

e.g., the long electronic spin decoherence time even at room temperature [17, 18] and the

ultrahigh quality factor of the WGM microresonators [19, 20].

Compared with previous proposals [3, 4, 5, 6] for implementing the controllable-phase

gate (CPG), our scheme is based on quantum Zeno dynamics and consequently possesses the

following advantages: (i) The gate one intends to realize can be established in only one step

operation, which will effectively reduce the complexity of experimental demonstration. (ii)

Under the Zeno condition, the cavity field is virtually excited. Thus our scheme is significantly

robust against the cavity decay. (iii) In our proposal quantum information is encoded in the

ground and the metastable states of the atoms, therefore it is immune to the spontaneous

emission of the atomic levels. (iv) In principle, the scheme can be easily generalized to other

physical system, such as Cavity QED, ion traps etc..

We consider a generic cavity QED system, which can be specifically realized (see, e.g.,

Fig. 1) by two negatively charged N-V centers positioned near the equator of a high-Q micro-

sphere cavity. Each N-V center includes two ground states (|g〉 and |s〉), an excited state (|e〉)
and an auxiliary state (|f〉). The transition between the levels |ei〉 ↔ |gi〉 (i = 1, 2) is coupled

to the cavity mode with the coupling constant g, and the transition |e1〉 ↔ |s1〉 is driven by

the classical field with the Rabi frequency Ω. In the figure, ∆ represents the detuning. For the

simplicity, our dynamics is limited in the asymmetrically computational subspace spanned by

Fig. 1. Simplified cavity-QED system, generated by two N-V centers coupled to a whispering-
gallery mode (WGM) microresonator. Here Ω is the external classical field coupled to the first
N-V center.
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{|f1(= 01)f2(= 02)〉, |f1g2(= 12)〉, |s1(= 11)f2〉, |s1g2〉}, and the two-qubit gate (we want to

implement) reads

|0102〉 → |0102〉
|0112〉 → |0112〉
|1102〉 → |1102〉

|1112〉 → eiδ|1112〉 (1)

with δ being the phase. Obviously, in our model the interactions only occur among the

states |s1〉, |ei〉 and |gi〉 (i = 1, 2). So the auxiliary states |fi〉 (i = 1, 2) and |s2〉 are not

involved in the interactions throughout our scheme. As a result, the state |f1f2〉 and |f1g2〉
remain unchanged in the evolution. In what follows, we discuss how to implement the last

two evolutions in Eq. (1) based on the quantum Zeno dynamics.

First, it is easily seen that, the Hamiltonian of the present driven cavity-QED system can

be written as

H = H1 +H2 (2)

with

H1 = ∆
∑

i=1,2

|ei〉〈ei|+ (Ω|e1〉〈s1|+ h.c.) (3)

H2 = ga†
∑

i=1,2

|gi〉〈ei|+ h.c.. (4)

in the interaction picture. Initially, the system is assumed to be prepared in the state |s1f2〉|0c〉
(|0c〉 denotes the vacuum state of the cavity field). As a consequence, it will be constrained

in the subspace spanned by {|s1f2〉|0c〉, |e1f2〉|0c〉, |g1f2〉|1c〉}. In such a subspace, we can

rewrite the Hamiltonian as

H ′
1

=
∆

2
(−|ϕ1〉+ |ϕ2〉)(−〈ϕ1|+ 〈ϕ2|)

+

[

Ω√
2
|s1f2〉|0c〉(−〈ϕ1|+ 〈ϕ2|) + h.c.

]

, (5)

H ′
2

= −g|ϕ1〉〈ϕ1|+ g|ϕ2〉〈ϕ2|, (6)

where |ϕ1〉 = (−|e1f2〉|0c〉 + |g1f2〉|1c〉)/
√
2 and |ϕ2〉 = (|e1f2〉|0c〉 + |g1f2〉|1c〉)/

√
2 are the

eigenvectors of H2 corresponding to eigenvalues −g and g. Under the unitary transformation

eiH
′

2
t, we further obtain

H ′′
1

=
∆

2
(|ϕ1〉〈ϕ1|+ |ϕ2〉〈ϕ2|

− |ϕ1〉〈ϕ2|e−2igt − |ϕ2〉〈ϕ1|e2igt)

+

[

Ω√
2
|s1f2〉|0c〉(−〈ϕ1|eigt + 〈ϕ2|e−igt) + h.c.

]

. (7)

Once the Zeno conditions g ≫ Ω are satisfied, we can readily discard the fast-oscillating terms

in H ′′
1
, and then obtain the effective Hamiltonian

H ′′
1,eff =

∆

2
(|ϕ1〉〈ϕ1|+ |ϕ2〉〈ϕ2|). (8)
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This effective Hamiltonian takes no any action on the evolution of the initial state |s1f2〉|0c〉,
and thus the third evolution in Eq. (1) is implemented.

Next, we consider another situation related to the initial state |s1g2〉|0c〉. For this case the
invariant subspace is spanned by {|s1g2〉|0c〉, |e1g2〉|0c〉, |g1g2〉|1c〉, |g1e2〉|0c〉}, and the relevant

Hamiltonian H of the system can be rewritten as

H̃1 = ∆|φ1〉〈φ1|+
∆

2
|φ2〉〈φ2|+

∆

2
|φ3〉〈φ3|

+
∆

2
|φ2〉〈φ3|+

∆

2
|φ3〉〈φ2|

+

[

Ω

2
|s1g2〉|0c〉(−

√
2〈φ1|+ 〈φ2|+ 〈φ3|) + h.c.

]

(9)

H̃2 = −
√
2g|φ2〉〈φ2|+

√
2g|φ3〉〈φ3|. (10)

Here,

|φ1〉 =
1√
2
(−|e1g2〉|0c〉+ |g1e2〉|0c〉), (11)

and

|φ2〉 =
1

2
(|e1g2〉|0c〉 −

√
2|g1g2〉|1c〉+ |g1e2〉|0c〉), (12)

|φ3〉 =
1

2
(|e1g2〉|0c〉+

√
2|g1g2〉|1c〉+ |g1e2〉|0c〉), (13)

are the eigenstates of H2 with the eigenvalues 0, −
√
2g and

√
2g, respectively. Similarly,

under the unitary transformation eiH̃2t and the condition g ≫ Ω, we have

H̃ ′
1
= ∆|φ1〉〈φ1| −

(

Ω√
2
|s1g2〉|0c〉〈φ1|+ h.c.

)

. (14)

Set ∆ ≫ Ω for further simplicity, then there are no any energy-exchange between state

|s1g2〉|0c〉 and |φ1〉. Consequently, another effective Hamiltonian

H̃ ′
1,eff =

Ω2

2∆
|s1g2〉|0c〉〈0c|〈s1g2|. (15)

is obtained. Under the action of H̃ ′
1,eff , we obtain |s1g2〉|0c〉 → exp

(

iΩ2t/2∆
)

|s1g2〉|0c〉,
which is nothing but the fourth evolution in Eq. (1).

In order to validate the feasibility of the above theoretical analysis, we perform a direct

numerical simulation of the Schrödinger equation with the original Hamiltonian (2) (without

decoherence). We choose the typical parameters: Ω = 0.1g and ∆ = g. In the simulation,

we calculated the temporal evolutions of the system beginning with two distinct initial states

|s1f2〉|0c〉 and |s1g2〉|0c〉. As shown in Fig. 2, the red and blue lines describe the real parts of

the coefficients of the basic states |s1f2〉|0c〉 and |s1g2〉|0c〉, respectively. It is seen that, the

system returns to its initial state but obtains a global phase shift π at the time τ = 2π∆/Ω2

when the system is initially prepared in the state |s1g2〉|0c〉, while it is almost unchanged for

the initial state |s1f2〉|0c〉. Under realistic environment, two main decoherence processes (i.e.,



W.-A. Li and L.-F. Wei 141

0 1000 2000 3000 4000 5000
-1.0

-0.5

0.0

0.5

1.0

gt

Fig. 2. Real parts of the coefficients of the states |s1f2〉|0c〉 (Red line) and |s1g2〉|0c〉 (Blue line)
versus the evolution time. The parameters are typically set as: Ω = 0.1g, ∆ = g.

cavity photon loss with decay rate κ and the decay γ of the N-V center) should be taken into

consideration. In this case the evolution of the system is governed formally by the following

master equation

ρ̇ = −i[H, ρ]− κ

2
(a†aρ− 2aρa† + ρa†a)

−
∑

i=1,2

∑

n=g,s

γi
en

2
(σi

eeρ− 2σi
neρσ

i
en + ρσi

ee), (16)

where γi
en denotes the spontaneous decay from level |ei〉 to |ni〉 (i = 1, 2) and we assume

γi
eg = γi

es = γ for simplicity. The fidelity of the two-qubit controlled-phase gate implemented

in the presence of the decoherence can be defined as

F = 〈Ψ(0)|U †
pρ

′(t = τ)Up|Ψ(0)〉, (17)

where ρ′(t) represents the temporal reduced density matrix (obtained by tracing out the cavity

mode part), Up = eiπ|s1g2〉〈s1g2| is the ideal quantum phase gate operation, and |Ψ(0)〉 the

initial state of the qubits, which is selected as |Ψ(0)〉 = (|f1〉+ |s1〉)/
√
2⊗ (|f2〉+ |g2〉)/

√
2 for

the present simulation. In Fig.3, we plot the fidelity F versus the decays κ and γ. We can

see that the fidelity is still larger than 80% for κ = γ = 0.1g.

We now briefly analyze the experimental feasibility of the proposed scheme. Practically,

the energy-level configuration involved in our scheme can be implemented in the N-V center

with two unpaired electrons located at the vacancy, usually treated as electron spin-1 [21, 22].

The ground state |g〉 and |s〉 correspond to |3A,ms = 0〉 and |3A,ms = −1〉 states of spin

triplet, respectively. |3E,ms = 0〉 and the metastable singlet state |1A〉 could be selected as

the excited state |e〉 and the auxiliary state |f〉, respectively. Also, the decoherence rate of

the zero-phonon N-V transition at frequency 637nm is about γ ∼ 2π × 13MHz, and the Q

factor of the WGM microresonator can have a value exceeding 109, which can lead to less

photon decay rate κ = ω/Q ∼ 2π × 0.5MHz. Strong coupling between the individual N-V
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Fig. 3. The influences of atomic spontaneous emission γ/g and cavity field decay κ/g on the fidelity
F of the two-qubit gate.

center in diamond and the WGM in a microsphere or microdisk resonator reaches [14, 15, 16]

to g/2π ∼ 0.3 GHz. Based on these experimental parameters, the fidelity could be estimated

as larger than 96.2%.

In summary, we have presented an experimentally-feasible protocol to implement a quan-

tum controllable-phase gate between two N-V centers coupled by a WGM microresonator.

With the induced quantum Zeno dynamics, this gate can be realized by only one step, which

greatly reduces the complexity in practical experiment. Moreover, our numerical simulation

showed that the protocol is robust against the spontaneous decays. The required energy-level

configuration is rather simple, so the approach can be easily generalized to other physical

system, such as the ion trap and Josephson junctions.
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