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Telecloning and its reverse process, referred to as remote information concentration
(RIC), have attracted considerable interest because of their potential applications in

quantum-information processing. We here present a general scheme for RIC in d-level
systems (qudits), in which the quantum information initially distributed in many spa-
tially separated qudits can be remotely and deterministically concentrated to a single
qudit via an entangled channel without performing any global operations. We show

that the entangled channel of RIC can be different types of entangled states, includ-
ing mixed states as well as pure ones. More interestingly, these mixed states include a
bound entangled state which has a similar form to the generalized Smolin state but has

different characteristics from it. We also show that there exists a multipartite entangled
state which can be used to implement both telecloning and RIC in the two-level sys-
tem. Our many-to-one RIC protocol could be slightly modified to perform some types
of many-to-many RIC tasks.
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1 Introduction

Quantum mechanics prohibits an unknown quantum state from being perfectly copied [1, 2].

However, an unknown quantum state can be copied approximately with a certain fidelity

[3, 4, 5], referred to as (approximate) quantum cloning. Furthermore, when an unknown
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state comes from a restricted set of quantum states, it can be faithfully cloned with a certain

probability [6, 7, 8], referred to as probabilistic quantum cloning. Since the seminal work of

Bužek and Hillery [3], quantum cloning has attracted considerable attention (see Refs. [9, 10]

for a review), due to the fact that it has wide potential applications in quantum-information

science as well as could help us understand quantum mechanics itself more well (see, e.g.,

[11, 12, 13, 14, 15, 16, 17, 18]). Although the fidelities of clones relative to the original

state are less than one, the quantum information of the input system is not degraded but

only distributed into a larger quantum system. That is, the quantum cloning process can

be regarded as the distribution of quantum information from an initial system to final ones.

Thus, quantum cloning combined with remote quantum-information processing (QIP) may

have potential applications in multiparty quantum communication and distributed quantum

computation. This leads to the advent of the concept of quantum telecloning [19], which

is the combination of quantum cloning and quantum teleportation [20], and functions as

simultaneously distributing the copies of an unknown quantum state to spatially separated

sites, i.e., realizing nonlocal quantum cloning, via a previously shared multipartite entangled

state. Telecloning has been widely studied and many idiographic schemes have been presented,

including 1 → N telecloning of an arbitrary state or a phase-covariant state [19, 21, 25, 23,

24, 22, 27, 26, 28]. As the reverse process of telecloning, remote information concentration

(RIC) was first introduced by Murao and Vedral [29]. They demonstrated that the quantum

information originally distributed into three spatially separated qubits from a single qubit can

be remotely concentrated back to a single qubit via a four-qubit unlockable bound entangled

state (UBES) [30, 31, 32] (the four-qubit UBES was first found by Smolin and is referred

to as Smolin state or Smolin UBES ) without performing any global operations. Telecloning

and RIC processes could be regarded as, respectively, remote information depositing and

withdrawing processes, or remote information encoding and decoding processes, which is

expected to find useful applications in network-based QIP [29]. A scheme for the reverse

process of 1 → 2 telecloning via a four-qubit Greenberger-Horne-Zeilinger (GHZ) state [33]

has also been proposed [34]. Not long before, schemes for the reverse process of 1 → N

telecloning in two-level systems have been presented [35, 36]. Recently, the reverse process of

1 → 2 telecloning in multilevel systems has been studied by part of our authors [37].

In this paper, we present a general scheme for implementing the reverse process of 1 → N

telecloning of an arbitrary quantum state in d-level systems, which are applicable to arbi-

trary N ≥ 2 and d ≥ 2 in principle. It will be shown that the RIC scheme relies on the

establishment of special multiparticle entangled states that function as multiuser quantum-

information channels. Particularly, the quantum channel of RIC can be different types of

entangled states, including mixed states as well as pure ones; more interestingly, these pure

states include different classes of genuine multipartite entangled states which are inequivalent

under local operations and classical communication (LOCC), and these mixed states include

an UBES which has a similar form to the generalized Smolin UBES [35, 38] but has different

features from it. All these entangled states have d2 common commuting stabilizers. In ad-

dition, we show that there exists a multiqubit (d = 2) entangled state which can be utilized

to implement both telecloning and RIC. We also discuss the possibility of generalizing our

many-to-one RIC protocol to perform some types of many-to-many RIC tasks.
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2 Many-to-one RIC in multilevel systems

2.1 A brief review of 1 → N universal telecloning

Before describing our RIC protocol in the next section, we here briefly summarize the forward

process, 1 → N universal telecloning [21]. The telecloning scheme aims at simultaneously

distributing the optimal clones of an arbitrarily unknown qudit state

|ϕ〉t =
d−1∑

j=0

xj |j〉t (1)

(
∑d−1

j=0 |xj |2 = 1) from a distributor (Alice) to N spatially separated receivers (Bob1, Bob2,

· · ·, BobN ) with only LOCC. The quantum channel (resource state) can be the (2N)-qudit

entangled state

|Φ〉t′12···NA1A2···AN−1
=

1√
d

d−1∑

j=0

|j〉t′ |φj〉12···NA1A2···AN−1
, (2)

where

|φj〉12···NA1A2···AN−1
=

N∑

nj=1
αnj

|{0, n0}, {1, n1}, · · · , {j, nj}, · · · , {d− 1, nd−1}〉12···N ⊗

|{0, n0}, {1, n1}, · · · , {j, nj − 1}, · · · , {d− 1, nd−1}〉A1A2···AN−1
, (3)

αnj
=
√

njd!(N−1)!
(N+d−1)! [39, 40], and |{0, n0}, {1, n1}, · · · , {j, nj}, · · · , {d − 1, nd−1}〉 denotes a

completely symmetric (normalized) state with nj particles in the state |j〉 and∑d−1
j=0 nj = N .

Here particle t′ is on the sender Alice’s hand, particle s is held by the sth recipient Bobs
(s = 1, 2, · · · , N), and the ancillary particles {A1, A2, · · · , AN−1} are arbitrarily distributed

among these parties (or even be placed elsewhere). For example, when N = 2 the state in

Eq. (3) can be explicitly expressed as

|φj〉12A =
1

√

2(d+ 1)

d−1∑

r=1

(|j〉1|j + r〉2 + |j + r〉1|j〉2)|j + r〉A +

√

2

d+ 1
|j〉1|j〉2|j〉A, (4)

where j + r = j + r modulo d. Using the results

Rm,n|j + n〉 = ωjm|j〉,

Rm,n =
d−1∑

j=0

ωjm|j〉〈j + n|, (5)

with ω = e2πi/d, it is easy to prove that

Rm,n
1 ⊗Rm,n

2 · · ·Rm,n
N ⊗R−m,n

A1
⊗R−m,n

A2
· · ·R−m,n

AN−1
|φj+n〉12···NA1A2···AN−1

= ωjm|φj〉12···NA1A2···AN−1
. (6)

The state of the whole system of the 2N + 1 particles |Ψ〉tt′1···NA1···AN−1
= |ϕ〉t ⊗

|Φ〉t′12···NA1A2···AN−1
can be expressed as

|Ψ〉tt′1···NA1···AN−1
=

1

d

d−1∑

m,n=0

|Bm,n〉tt′
d−1∑

j=0

ω−jmxj |φj+n〉12···NA1A2···AN−1
, (7)



X.-W. Wang, S.-Q. Tang, L.-J. Xie, D.-Y. Zhang, and L.-M. Kuang 125

where {|Bm,n〉 : m,n = 0, 1, · · · , d− 1} are the generalized Bell-basis states given by

|B0,0〉 = 1√
d

d−1∑

j=0

|j〉|j〉,

|Bm,n〉 = I ⊗ Um,n|B0,0〉,

Um,n =

d−1∑

k=0

ωkm|k + n〉〈k|. (8)

The telecloning can now be accomplished by the following simple procedure: (i) Alice per-

forms a generalized Bell-basis measurement (GBM) on particles t and t′, obtaining one of the

d2 outcomes {(m,n) : m,n = 0, 1, · · · , d − 1}, and informs all Bobs of the outcome; (ii) De-

pending on Alice’s outcome (m,n), each Bob performs a local operation Rm,n on his particle.

According to Eq. (6), if every ancillary particle is also made a corresponding local operation

R−m,n, the particles {1, 2, · · · , N} and {A1, A2, · · · , AN−1} end in the state

|ψ〉12···NA1A2···AN−1
=

d−1∑

j=0

xj |φj〉12···NA1A2···AN−1
. (9)

According to Ref. [41], it can be easily verified that the collective output state of N clones

ρoutN and the individual output state of one clone ρout1 are the same as that of Refs. [39, 42].

Thus, each Bob finally obtains a clone with the optimal fidelity F = (2N + d− 1)/N(d+ 1).

It is worth pointing out that the local operations on the ancillary particles are not necessary

since the individual output state of a particle is not related to the local operations on the

other particles.

2.2 A general scheme for RIC

In this section, we describe the reverse process of the aforementioned telecloning, i.e., RIC.

After telecloning operations, the initial single-particle (t) quantum information is remotely

distributed into 2N − 1 spatially separated particles (1, 2, · · · , N,A1, A2, · · · , AN−1), repre-

sented by the collective quantum state in Eq. (9). The ownership of particles 1, 2, · · · , N is

the same as the preceding section; i.e., they are still held by Bob1, Bob2, · · ·, BobN , respec-

tively. Without loss of generality, we assume particles A1, A2, · · · , AN−1 are held by Charlie1,

Charlie2, · · ·, CharlieN−1, respectively. The RIC is aim to concentrate the information ini-

tially distributed in (2N − 1)-particle cloning state of Eq. (9) back to a remote particle (N ′,

held by Diana) with only LOCC: |ψ〉12···NA1A2···AN−1
→ |ϕ〉N ′ .

In order to show clearly the RIC process and how to construct the entangled channel, we

rewrite the cloning state in Eq. (9) as (see Appendix A)

|ψ〉12···NA1A2···AN−1
=

1√
d

d−1∑

m,n=0

βn|Bmn〉12···N−1,A1A2···AN−1
U−m,n
N |ϕ〉N , (10)

where
∑d−1

n=0 β
2
n = 1 and

|Bmn〉1···N−1,A1···AN−1
=

d−1∑

j1,···,j2N−2=0

√

Pj1···j2N−2
|Bj1,j2〉1A1

· · · |Bj2N−3,j2N−2〉N−1,AN−1

(11)
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with the constraints

N−1∑

s=1

j2s−1 mod d = m,
N−1∑

s=1

j2s mod d = n. (12)

Note that particle N in Eq. (10) can be interchanged with any one of particles 1, 2, · · · , N − 1

because of the permutability of them.

We first consider employing the following 2N -particle entangled pure state as the quantum

channel (resource state):

|Ψg〉A′

1
1′A′

2
2′···A′

N
N ′ =

d−1∑

k1,···,k2N=0

√

Pk1···k2N
|Bk1,k2〉A′

1
1′ · · · |Bk2N−1,k2N 〉A′

N
N ′ ,

N∑

s=1

k2s−1 mod d = u,

N∑

s=1

k2s mod d = v, (13)

where u and v are two arbitrarily given nonnegative integers that are less than d. We assume

that particles 1′, 2′, · · · , (N−1)′, A′
N are held by Bob1, Bob2, · · ·, BobN , respectively; particles

A′
1, A

′
2, · · · , A′

N−1 are held by Charlie1, Charlie2, · · ·, CharlieN−1, respectively; particle N
′

belongs to Diana. A schematic picture of the RIC protocol is shown in Fig. 1. The procedure

is as follows. (S1) All Bobs and Charlies perform GBMs on their own particles, respectively.

(S2) Each of them tells Diana the measurement outcome by sending 2 log d bits of classical

information. (S3) Diana performs a conditional local operation on particle N ′.

yU ,-

1Bob1 1
GBM

cloning state

Diana

classical
communication

entangled channel
GBM

1¡­NA A1 -1N¡­
y

¡äN-1 ( -1)NBobN-1

¡äNBobN
AN

GBM

GBM

¡äAN-1CharlieN-1
AN-1

¡äA1

GBM

N ¡ä

A1Charlie1

¡ä

x

Fig. 1. Schematic picture showing the concentration of information from N Bobs (Bob1, Bob2,
· · ·, BobN ) and N−1 Charlies (Charlie1, Charlie2, · · ·, CharlieN−1) to the remote receiver, Diana,
using an entangled channel. The gray rectangle denotes the cloning state of 2N − 1 qudits, the
gray triangle denotes the entangled channel, the blank rectangles denote the generalized Bell-state

measurements, and the dashed lines mean the classical communications.
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In (S1), the GBMs of all Bobs and Charlies are independent, and thus the sequence can be

arbitrary. For clarity, we here assume that BobN performs the GBM after the others. Based

on the identity

|Bm,n〉XY |Bm′,n′〉X′Y ′ =
1

d

d−1∑

m′′,n′′=0

ωm′′n′′ |Bm+m′′,n′+n′′〉XY ′ |Bm′−m′′,n−n′′〉X′Y (14)

with m′ −m′′ = m′ −m′′ + d modulo d, we can obtain the relationship of the measurement

outcomes of these parties. Without loss of generality, we particularly assume the measure-

ment outcomes of Bobs and Charlies (s = 1, 2, · · · , N − 1) are (j2s−1 + l2s−1, k2s + l2s) and

(k2s−1 − l2s−1, j2s − l2s), respectively. Then Diana can obtain the results

N−1∑

s=1

(j2s−1 + k2s−1) mod d =

(

m+

N−1∑

s=1

k2s−1

)

mod d = u′,

N−1∑

s=1

(j2s + k2s) mod d =

(

n+

N−1∑

s=1

k2s

)

mod d = v′. (15)

As a consequence, N , A′
N , and N ′ are projected in the state

U−m,n
N |ϕ〉N |Bk2N−1,k2N 〉A′

N
N ′

=
1

d

d−1∑

x,y=0

ωn(m−k2N−1)+(k2N−n)x|Bx+k2N−1−m,y+k2N−n〉NA′

N
U−x,y
N ′ |ϕ〉N ′ . (16)

Next BobN performs a GBM on particles N and A′
N , which can be regarded as being equiv-

alent to BobN and Diana together performing the teleportation protocol with a local error-

correction operation on particle N ′. Assume that the outcome is (u′′ = x+ k2N−1 −m, v′′ =

y + k2N − n) and particle N ′ is projected in the state U−x,y
N ′ |ϕ〉N ′ . After receiving all the mea-

surement outcomes sending from the other participants, Diana can deduce the result (x =

u′′ + u′ − u, y = v′′ + v′ − v). Then, Diana performs the local operation (U−x,y
N ′ )+ = Rx,y

N ′

and obtains the state |ϕ〉N ′ . As a consequence, the information initially distributed in 2N −1

spatially separated particles is now remotely concentrated in a single particle.

Equation (13) contains a broad family of entangled pure states. We now consider some

special cases. Assuming k2 ≡ k4 ≡ · · · ≡ k2N ≡ 0, Pk1···k2N
≡ 1/dN−1, and u = 0, the state

in Eq. (13) reduces to (see Appendix B)

|Ψs1〉A′

1
1′A′

2
2′···A′

N
N ′ =

1√
d

d−1∑

j=0

|j〉A′

1
|j〉1′ |j〉A′

2
|j〉2′ · · · |j〉A′

N
|j〉N ′ , (17)

i.e., a generalized GHZ state [43]. Assuming
N−1∑

s=1
k2s−1 mod d = x, k2N−1 = d − x,

N−1∑

s=1
k2s mod d = y, k2N = d − y, and

√
Pk1···k2N

= βy
√
Pk1···k2N−2

/
√
d [the definition of

βy is the same as Eq. (10)], the entangled channel in Eq. (13) reduces to

|Ψs2〉A′

1
1′A′

2
2′···A′

N
N ′ =

1√
d

d−1∑

x,y=0

βy|Bxy〉A′

1
1′A′

2
2′···A′

N−1
(N−1)′ |B−x,−y〉A′

N
N ′ . (18)
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For the case d = 2 (qubit), we proved that the state of Eq. (18) is the same as that of

Eq. (2) (see Appendix C). This indicates that the multiqubit entangled state in Eq. (2) can

be competent for implementing both telecloning and RIC, two inverse processes. In other

words, the aforementioned telecloning and RIC for d = 2 can be achieved by using the same

entangled channel. However, such a result is not applicable to d > 2 (qudit). This is an

interesting difference between qudit-RIC and qubit-RIC. According to Ref. [19], the states of

Eqs. (17) and (18) with d = 2 are not equivalent to each other, i.e., cannot be transformed

into each other by LOCC. It can be verified that the states of Eqs. (17) and (18) with d > 2

are also LOCC inequivalent. This implies that Eq. (13) contains at least two inequivalent

classes of genuine 2N -partite entangled pure states. In other words, different classes of genuine

2N -qudit entangled pure states can implement a same multiparty QIP task, (2N − 1) → 1

RIC. Such a phenomenon is counterintuitive, since a given QIP task can be achieved by

only typical structure of entangled states and different types of entangled states are usually

competent for implementing different QIP tasks. It has been shown [44, 45] that quantum

teleportation can be deterministically implemented by using both multiqubit W and GHZ

states, two inequivalent genuine multiqubit entangled states [46]. However, teleportation

is a two-party communication, and the W and GHZ states in fact play the same role as

the bipartite entangled state, i.e., only the bipartite entanglement of them is exploited. In

contrast, RIC is a multiparty communication (each party holds one particle of the entangled

channel), and the states of Eqs. (17) and (18) play a role of multipartite entanglement.

We now show that the quantum channel of our RIC can also be a broad family of entan-

gled mixed states. Let Pk1···k2N
= δk1,c1 · · · δk2N ,c2N , where c1, · · · , c2N are arbitrarily chosen

nonnegative integers that are less than d. Then the entangled channel in Eq. (13) reduces to

a product state of N generalized Bell states,

|Ψs3〉A′

1
1′A′

2
2′···A′

N
N ′ = |Bc1,c2〉A′

1
1′ |Bc3,c4〉A′

2
2′ · · · |Bc2N−1,c2N 〉A′

N
N ′ . (19)

Because the constants c1, · · · , c2N are arbitrary, we deduce that the quantum channel of our

RIC can also be the following form of entangled mixed states:

ρA′

1
1′···A′

N
N ′ =

d−1∑

k1,···,k2N=0

Ck1···k2N
|Bk1k2〉A′

1
1′〈Bk1k2 | ⊗ · · · ⊗ |Bk2N−1k2N 〉A′

N
N ′〈Bk2N−1k2N |,

(20)

where
∑
Ck1···k2N

= 1. This can be easily proved by resorting to a purified state of ρA′

1
1′···A′

N
N ′ ,

|Ψρ〉A′

1
1′···A′

N
N ′ =

d−1∑

k1,···,k2N=0

√

Ck1···k2N
|Bk1,k2〉A′

1
1′ · · · |Bk2N−1,k2N 〉A′

N
N ′ |Ak1···k2N

〉A, (21)

where {|Ak1···k2N
〉A} are orthogonal normalized states of an ancillary system A. Partic-

ularly, by carrying out the same procedure as before [see (S1)-(S3)], the information of

|ψ〉1···NA1···AN−1
can also be concentrated in particle N ′ via the entangled channel

|Ψρ〉A′

1
1′···A′

N
N ′ . In the whole process, the ancillary system A is not touched, and thus can be

traced out at any time. This finishes the proof that the mixed state ρA′

1
1′···A′

N
N ′ can be used

to implement our RIC.
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If we set u = v = 0 and Ck1···k2N
= 1/d2(N−1), Eq. (20) reduces to

ρ′A′

1
1′···A′

N
N ′ =

1

d2(N−1)

d−1∑

k1,···,k2N=0

|Bk1k2〉A′

1
1′〈Bk1k2 | ⊗ · · · ⊗ |Bk2N−1k2N 〉A′

N
N ′〈Bk2N−1k2N |.

(22)

For d = 2, ρ′A′

1
1′···A′

N
N ′ is exactly the generalized Smolin state [35, 38], a 2N -qubit UBES.

The generalized Smolin UBES is fully symmetric; i.e., it is unchanged under permutation of

any two qubits. This leads to the generalized Smolin UBES being separable with respect

to any 2 : 2 partition of {A′
1, A

′
2, · · · , A′

N , 1
′, 2′, · · · , N ′}. For d > 2, ρ′A′

1
1′···A′

N
N ′ also de-

scribes an UBES (see Appendix D); and when N = 2 it recovers the results of Ref. [37].

However, ρ′A′

1
1′···A′

N
N ′ with d > 2 is an asymmetric but not symmetric UBES, because

{A′
1, A

′
2, · · · , A′

N , 1
′, 2′, · · · , N ′} are not completely permutable, i.e., particularly, any one of

G1 = {A′
1, A

′
2, · · · , A′

N} and any one of G2 = {1′, 2′, · · · , N ′} are not permutable, as shown in

Appendix D. The asymmetry results in the fact that ρ′A′

1
1′···A′

N
N ′ cannot be superactivated for

d > 2, which presents a striking contrast to the generalized Smolin UBES being superactivable

[47]. These results indicate that there exists an analog to the generalized Smolin UBES in

multilevel systems; however, it has some different characteristics. Note that the asymmetric

2N -qudit UBES didn’t appear in previous literature, and thus is a “new” asymmetric UBES.

As shown above, different types of entangled states, including both pure and mixed states,

can be exploited as the quantum channel of many-to-one RIC. The pure states can be multiple-

Bell states and LOCC inequivalent genuine 2N -partite entangled states. The mixed states

could even be bound entangled states. However, it can be verified that all these states

have several common properties as follows. (a) All of them are stabilized by the Abelian

group S = {Smn = ⊗N
s=1U

−m,n
A′

s
⊗ Um,n

s′ : m,n = 0, 1, · · · , d − 1}; that is, for any m and

n, tr(Smn|Ψg〉A′

1
1′···A′

N
N ′〈Ψg|) = tr(SmnρA′

1
1′···A′

N
N ′) = 1. (b) They can be expanded by

the generalized Bell states with the same constraints [see the second row of Eq. (13)]. (c)

The amount of entanglement across the {A′
1, A

′
2, · · · , A′

N , 1
′, 2′, · · · , (N − 1)′} : {N ′} cut is

log2 d ebit, which ensures that the success probability of remotely concentrating one-qudit

information is one.

The key points for the physical or experimental realization of the RIC task above are

as follows: (i) preparation of the entangled channel, i.e., the generalized Bell states or GHZ

states, or the UBES of Eq. (22); (ii) realization of telecloning (or cloning) of an arbitrary

quantum state; (iii) implementation of the GBM. All these building blocks are achievable in

quantum optics as discussed in Ref. [37].

3 Discussion and conclusion

A more general RIC protocol should be a many-to-many protocol. However, it will be much

more complicated and cannot be obtained by directly generalizing the many-to-one protocol

shown above. As a matter of fact, there are two types of many-to-many RIC protocols. One

involves more than one receiver. The other aims at concentrating multi-qudit information to a

remote site. For the former case, we here consider the reverse process of the “many-to-many”

quantum information distribution presented in Ref. [22]. In the “many-to-many” information
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distribution protocol of Ref. [22], the information of an entangled state

|ϕ′〉 =
d−1∑

j=0

xj |j〉t1 |j〉t2 · · · |j〉tL (23)

shared by L spatially separated distributors is transmitted by telecloning procedure to M

receivers (M > L) situated at different locations. Naturally, the reverse process of it is to

remotely concentrate the information distributed inM particles back to L spatially separated

particles. LetM = 2N −1, this task can be implemented by slightly modifying the aforemen-

tioned many-to-one RIC protocol, with the high-dimensional Bell state |Bk2N−1,k2N 〉A′

N
N ′ in

Eqs. (13), (16), and (20) being replaced by the high-dimensional GHZ state

|Gk2N−1,k2N 〉 = I ⊗ Uk2N−1,k2N ⊗ U0,k2N ⊗ · · · ⊗ U0,k2N

︸ ︷︷ ︸

L−1

|G0,0〉A′

N
N ′

1
N ′

2
···N ′

L
,

|G0,0〉A′

N
N ′

1
N ′

2
···N ′

L
=

1√
d

d−1∑

j=0

|j〉A′

N
|j〉N ′

1
|j〉N ′

2
· · · |j〉N ′

L
,

Uk2N−1,k2N =

d−1∑

j=0

ωjk2N−1 |j + k2N 〉〈j|, (24)

and |ϕ〉N ′ and U−x,y
N ′ in Eq. (16) replaced by |ϕ′〉N ′

1
N ′

2
···N ′

L
and U−x,y

N ′

1

⊗ U0,y
N ′

2

⊗ · · · ⊗ U0,y
N ′

L

,

respectively.

As a direct extension of the aforementioned many-to-one RIC, the second type of many-

to-many RIC, which aims at concentrating multi-qudit information to a remote site, should

be the reverse process of L → N (N > L) optimal universal telecloning [48, 49]. However,

it is not clear whether the output state of L → N optimal universal cloning has the form

similar to that in Eq. (10). Thus we cannot construct the entangled channel by the idea

similar to that used in our many-to-one RIC protocol and choose suitable operations. We

here discuss alternatively a simple scenario, i.e., the reverse process of the following many-to-

many quantum information distribution. Suppose that Alice had distributed the information

of L identical but unknown d-level quantum states |ϕ〉⊗L into a (2N − L)-qudit state

|ψ〉{2N−L} =
1√
d

d−1∑

m,n=0

βn|Bmn〉{2N−2L}

(
U−m,n

)⊗L |ϕ〉⊗L (25)

shared by (2N − L) spatially separated clients. Note that this state is not necessarily to be

the output state of the so-called L→ N (N > L) optimal universal telecloning [48, 49]. The

reverse process is to remotely concentrate the distributed information in 2N − L spatially

separated particles back to L particles held by a receiver. It is easy to verify that such a RIC

task can be accomplished by the same procedure as the aforementioned many-to-one RIC

via the quantum channel |B0,0〉⊗N shared among the (2N − L) senders (each one holds one

particle of a Bell state) and a receiver (holds L particles of L Bell states).

In conclusion, we have studied the many-to-one RIC, i.e., the reverse process of 1 → N

universal telecloning, in d-level systems, which are applied to arbitrary N ≥ 2 and d ≥ 2

in principle. We have shown that the quantum channel of RIC can be different types of
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entangled states, including mixed states as well as pure ones, in contrast to telecloning which

requires a certain type of entangled channel. Such a difference may be due to the fact that

RIC can be considered to be a disentangling operation, whereas telecloning can be considered

to be an entangling operation. Although these entangled states are LOCC inequivalent, they

have a common feature, i.e., have d2 common commuting stabilizers. We have also revealed

concomitantly some interesting entanglement phenomena as follows. (a) Similar to qubit-

RIC, qudit-RIC can also be implemented by an UBES. Though such a multilevel UBES has

a similar form to the generalized Smolin UBES, it has some different features; particularly,

the former one has asymmetry and the latter one has symmetry. (b) Telecloning and RIC for

qubits can be achieved by using the same entangled channel, but there is no such feature for

qudits. Our many-to-one RIC protocol can be slightly modified to implement some many-

to-many RIC tasks. These protocols are experimentally achievable in the field of quantum

optics.

Subsequent to submitting this manuscript, Zhang et al. independently proposed a many-

to-one RIC protocol with the generalized Bell states acting as the entangled channel [48].

This paper has shown that many-to-one RIC can be realized by different channels including

both pure and mixed entangled states (even bound entangled states). As a matter of fact,

the entangled channel used in Ref. [48] is the same as that in Eq. (19) with c1 = c2 = · · · =
c2N = 0, i.e., a special case of the general channel in Eq. (13), of the present paper.
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Appendix A

In this appendix, we demonstrate that the cloning state of Eq. (9) can be rewritten as

form of Eq. (10). To satisfy Eq. (6), |φj〉 can be rewritten as

|φj〉12···NA1A2···AN−1
=

d−1∑

n=0

βn|λjn〉12···N−1,A1A2···AN−1
|j + n〉N , (A.1)

where

Rk,l
1 ⊗Rk,l

2 · · ·Rk,l
N−1 ⊗R−k,l

A1
⊗R−k,l

A2
· · ·R−k,l

AN−1
|λjn〉12···N−1,A1A2···AN−1

= ω−nk|λ
(j−l)

n

〉12···N−1,A1A2···AN−1
. (A.2)

Now let

|Bmn〉 =
1√
d

d−1∑

j=0

ωjm|λjn〉. (A.3)
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It can be verified that

Rk,l
1 ⊗Rk,l

2 · · ·Rk,l
N−1 ⊗R−k,l

A1
⊗R−k,l

A2
· · ·R−k,l

AN−1
|Bmn〉12···N−1,A1A2···AN−1

= ωlm−nk|Bmn〉12···N−1,A1A2···AN−1
. (A.4)

We notice that

Rk,l ⊗R−k,l|Bx,y〉 = ωlx−yk|Bx,y〉. (A.5)

Therefore, |Bmn〉12···N−1,A1A2···AN−1
can also be expressed as the form of Eq. (11). From

Eq. (A.3), we obtain

|λjn〉 =
1√
d

d−1∑

m=0

ω−jm|Bmn〉. (A.6)

Then Eq. (10) can be obtained by substituting Eqs. (A.1) and (A.6) into Eq. (9).

Appendix B

If k2 ≡ k4 ≡ · · · ≡ k2N ≡ 0, Pk1···k2N
≡ 1/dN−1, and u = 0, the state in Eq. (13) can be

expressed as

|Ψs1〉A′

1
1′A′

2
2′···A′

N
N ′

=
1√
dN−1

d−1∑

k3,k5,···,k2N−1=0

|B−k3−k5···−k2N−1,0〉A′

1
,1′

⊗|Bk3,0〉A′

2
,2′ ⊗ · · · ⊗ |Bk2N−1,0〉A′

N
,N ′

=
1√

d2N−1

d−1∑

k3,k5,···,k2N−1=0

d−1∑

j1,j3,···,j2N−1=0

ωj1(−k3−k5···−k2N−1)|j1〉A′

1
|j1〉1′

⊗ωj3k3 |j3〉A′

2
|j3〉2′ ⊗ · · · ⊗ ωj2N−1k2N−1 |j2N−1〉A′

N
|j2N−1〉N ′

=
1√

d2N−1

d−1∑

j1,j3,···,j2N−1=0

|j1〉A′

1
|j1〉1′ |j3〉A′

2
|j3〉2′ · · · |j2N−1〉A′

N
|j2N−1〉N ′

×
d−1∑

k3=0

ω(j1−j3)k3

d−1∑

k5=0

ω(j1−j5)k5 · · ·
d−1∑

k2N−1=0

ω(j1−j2N−1)k2N−1

=
1√
d

d−1∑

j1=0

|j1〉A′

1
|j1〉1′ |j1〉A′

2
|j1〉2′ · · · |j1〉A′

N
|j1〉N ′ . (B.1)

Here we have used the identity
∑d−1

k=0 ω
jk = dδj,0, where δj=0,0 = 1 and δj 6=0,0 = 0. Obviously,

the state of Eq. (B.1) is the same as that of Eq. (17), i.e., a normal generalized GHZ state.

Appendix C

This appendix shows the equivalence of the state in Eq. (2) to the state in Eq. (18) for d =

2. By substituting Eqs. (A.1) and (A.6) into Eq. (2), the telecloning state |Φ〉t′12···NA1A2···AN−1
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reads

|Φ〉t′12···NA1A2···AN−1
=

1

d

d−1∑

j=0

|j〉t′
d−1∑

y=0

βy

d−1∑

x=0

ω−jx|Bxy〉12···N−1,A1A2···AN−1
|j + y〉N

=
1

d
√
d

d−1∑

x,y,j=0

βyω
−jx|Bxy〉12···N−1,A1A2···AN−1

d−1∑

l=0

ω−lj |Bl,y〉t′N

=
1

d
√
d

d−1∑

x,y,j,l=0

βyω
−j(x+l)|Bxy〉12···N−1,A1A2···AN−1

d−1∑

l=0

|Bl,y〉t′N

=
1√
d

d−1∑

x,y=0

βy|Bxy〉12···N−1,A1A2···AN−1
|B−x,y〉t′N . (C.1)

Here we have used the identity

|j〉t′ |k〉N =
1√
d

d−1∑

l=0

ω−jl|Bl,k−j〉t′N (0 ≤ j, k ≤ d− 1), (C.2)

which can be obtained from Eq. (8). For d = 2, Eq. (C.1) reduces to

|Φ〉t′12···NA1A2···AN−1
=

1√
d

1∑

x,y=0

βy|Bxy〉12···N−1,A1A2···AN−1
|B−x,y〉t′N

=
1√
d

1∑

x,y=0

βy|Bxy〉12···N−1,A1A2···AN−1
|B−x,−y〉t′N , (C.3)

which is obviously the same as the state of Eq. (18) with d = 2.

Appendix D

We here prove that the state ρ′A′

1
1′A′

2
2′···A′

N
N ′ in Eq. (22) is an asymmetric UBES for any

d > 2, by using some results of Ref. [50]. We define an Abelian subgroup of the generalized

Pauli group [50],

S = {Smn =

N⊗

s=1

U−m,n
A′

s
⊗ Um,n

s′ : m,n = 0, 1, · · · , d− 1}, (D.1)

which is composed of d2 commuting operators. A state |ψ〉 is said to be stabilized by S, if

Smn|ψ〉 = 1, ∀ m,n = 0, 1, · · · , d − 1. All the states stabilized by S constitute a subspace,

denoted by HS , of the Hilbert space of n qudits. Define Ts = {A′
s, s

′} (s = 1, 2, · · · , N)

and Smn
Ts

= U−m,n
A′

s
⊗ Um,n

s′ . It can be verified that any two operators Smn
Ts

and Sm′n′

Ts
are

commutable, ∀ s = 1, 2, · · · , N . Then the two operators Smn, Sm′n′ ∈ S are said to commute

locally with respect to the partition {T1, T2, · · · , TN} of {A′
1, A

′
2, · · · , A′

N , 1
′, 2′, · · · , N ′}, and

S is said to be separable with respect to this partition [50].

It can be verified that

Smn
Ts

|Bxs,ys〉A′

ss
′ = ωysm−xsn|Bxs,ys〉A′

ss
′ , (D.2)
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∀ s = 1, 2, · · · , N ; i.e., {|Bxs,ys〉A′

ss
′ : xs, ys = 0, 1, · · · , d − 1} are the simultaneous eigen-

states of Smn
Ts

corresponding to the eigenvalues {ωysm−xsn : xs, ys = 0, 1, · · · , d − 1} for each

m,n = 0, 1, · · · , d−1. Then it is obvious that the 2N -qudit states {⊗N
s=1|Bxs,ys〉A′

s,s
′ : xs, ys =

0, 1, · · · , d − 1} are the simultaneous eigenstates of Smn with the eigenvalues

{ω
∑

N

s=1
ysm−

∑
N

s=1
xsn : xs, ys = 0, 1, · · · , d − 1} for each m,n = 0, 1, · · · , d − 1. In partic-

ular, each term of the state ρ′A′

1
1′A′

2
2′···A′

N
N ′ in Eq. (22) is the simultaneous eigenstate of Smn

with eigenvalue 1 for each m,n = 0, 1, · · · , d− 1. These eigenstates also form an orthonormal

basis of the stabilized space HS . According to Lemma 1 of Ref. [50], the state ρ′A′

1
1′A′

2
2′···A′

N
N ′

in Eq. (22) is the maximally mixed state over HS .

As have been shown that S is separable with respect to the partition {T1, T2, · · · , TN}.
It can also be verified that for any X 6= Y ∈ {A′

1, A
′
2, · · · , A′

N , 1
′, 2′, · · · , N ′}, there exists at

least one partition {g1, g2, · · · , gf} with X ∈ g1, Y ∈ g2 such that S is separable with respect

to this partition. These results satisfy the condition 1 in Theorem 1 of Ref. [50], which

indicates that ρ′A′

1
1′A′

2
2′···A′

N
N ′ is a bound entangled state. The unlockability or activability

of ρ′A′

1
1′A′

2
2′···A′

N
N ′ is obvious. For example, it can be unlocked as follows: let qudits A′

s

and s′ (s = 2, · · · , N) join together and perform a GBM on them; then depending on the

measurement outcome qudits A′
1 and 1′ is projected in a generalized Bell state, i.e., pure

entanglement is distilled out between qudits A′
1 and 1′. In fact STs

= {Smn
Ts

: m,n =

0, 1, · · · , d − 1} is obviously inseparable, ∀ s = 1, 2, · · · , N , which satisfies the condition 2 in

Theorem 1 of Ref. [50]. Thus ρ′A′

1
1′A′

2
2′···A′

N
N ′ is an UBES.

We now classify the 2N qudits of the state ρ′A′

1
1′A′

2
2′···A′

N
N ′ into two groups

G1={A′
1, A

′
2, · · · , A′

N} and G2 = {1′, 2′, · · · , N ′}. It is obvious that S acts symmetrically

on the N qudits of each group, which indicates that the state remains invariant when ex-

changing any two qudits inside the same group. However, when we exchange two qudits that

belong to two different groups, the state will change. Therefore, the UBES ρ′A′

1
1′A′

2
2′···A′

N
N ′

is asymmetric when d > 2.


