
Quantum Information and Computation, Vol. 14, No. 1&2 (2014) 0056–0090
c© Rinton Press

QUANTUM ALGORITHMS FOR ONE-DIMENSIONAL

INFRASTRUCTURES

PRADEEP SARVEPALLI

Department of Electrical Engineering, IIT Madras

Chennai, Tamilnadu 600 036, India

PAWEL WOCJAN

Department of Electrical Engineering and Computer Science, University of Central Florida

Orlando, FL 32816, USA

Received June 11, 2012
Revised May 3, 2013

Infrastructures are group-like objects that make their appearance in arithmetic geome-
try in the study of computational problems related to number fields and function fields
over finite fields. The most prominent computational tasks of infrastructures are the
computation of the circumference of the infrastructure and the generalized discrete log-

arithms. Both these problems are not known to have efficient classical algorithms for
an arbitrary infrastructure. Our main contributions are polynomial time quantum algo-
rithms for one-dimensional infrastructures that satisfy certain conditions. For instance,
these conditions are always fulfilled for infrastructures obtained from number fields and

function fields, both of unit rank one. Since quadratic number fields give rise to such
infrastructures, this algorithm can be used to solve Pell’s equation and the principal
ideal problem. In this sense we generalize Hallgren’s quantum algorithms for quadratic

number fields, while also providing a polynomial speedup over them. Our more general
approach shows that these quantum algorithms can also be applied to infrastructures
obtained from complex cubic and totally complex quartic number fields. Our improved
way of analyzing the performance makes it possible to show that these algorithms suc-

ceed with constant probability independent of the problem size. In contrast, the lower
bound on the success probability due to Hallgren decreases as the fourth power of the
logarithm of the circumference. Our analysis also shows that fewer qubits are required.

We also contribute to the study of infrastructures, and show how to compute efficiently
within infrastructures.

Keywords: quantum algorithms, infrastructures, circumference, period finding, quantum

Fourier transform, discrete log problem

Communicated by: R Jozsa & M Mosca

1 Introduction

One of the most important challenges in quantum computing has been the task of finding

efficient algorithms for problems that are intractable on a classical computer. Following Shor’s

discovery of a polynomial time quantum algorithm for factoring integers and solving the

discrete logarithm problem [1], the key ideas of the period finding algorithm were generalized

56

P. Sarvepalli, P. Wocjan 57

and led to the framework of the hidden subgroup problem (HSP) [2]. The major algorithmic

success in this context is that the abelian HSP can be solved efficiently by a quantum algorithm

(while classical algorithms are inefficient). This quantum algorithm can also be viewed as

determining the structure of a hidden lattice Λ inside Z
n.

An important restriction of this quantum algorithm is that it only works for integral lattices.

But, Hallgren overcame this obstacle in the one-dimensional setting by generalizing Shor’s

period finding algorithm to the case where the period is irrational [3,4] (see also [5,6]). This

enabled him to give polynomial time quantum algorithms for computing the regulator of a

quadratic number field and solving the principal ideal problem. Schmidt and Vollmer [7,8] and

Hallgren [9] presented a polynomial time quantum algorithm for determining a hidden lattice

in R
n for fixed n. They showed that computing the unit group and solving the principal ideal

problem in number fields of fixed unit rank can be solved efficiently with this algorithm.aIn

contrast to Z
n, the success probability of the above quantum algorithms for finding a hidden

lattice in R
n decreases exponentially with the dimension, making them inefficient with respect

to the dimension. Thus, an important open problem is to determine whether there exist

quantum algorithms whose success probability decrease less rapidly with the dimension.

In this paper, we initiate the study of quantum algorithms for infrastructures. These group-

like structures are hidden beneath the number theoretic details of the above quantum algo-

rithms. They play an important role in the research on computational problems in global

fields, i.e. number fields and function fields over finite fields [10] (arithmetic geometry pro-

vides a unified treatment of global fields [11]). For instance, computing the unit group and

solving the principal ideal problem can both be translated to well defined problems of in-

frastructures, namely, the computation of the lattice characterizing the periodic symmetry of

the infrastructure and the computation of generalized discrete logarithms in these group-like

structures. Both these computational problems associated with the infrastructures are not

known to have efficient classical algorithms.

We focus here on arbitrary one-dimensional infrastructures and give polynomial time quan-

tum algorithms for computing the circumference and for computing the generalized discrete

logarithms. One-dimensional infrastructures arise from global fields of unit rank, and include

the special case of real quadratic number fields studied by Hallgren [4] and complex cubic and

quartic number fields [12]. Our algorithms perform better than the algorithms of [4] when

applied to these problems. The proposed algorithms achieve a super polynomial speedup over

the best known classical algorithms.

In summary, we make the following contributions:

• Firstly, although our algorithms are given in a more general setting, they have a lower

time and also space complexity than those in [3,4]. Denote by gH(m), sH(m), and pH(m)

the gate complexity (number of gates), the space complexity (number of qubits), and

the guaranteed success probability of the algorithms in [3, 4], where m = logM and M

is an upper bound on the product of the circumference of the infrastructure and the

reciprocal of the minimum distance between two adjacent elements of the infrastructure.b

aHallgren also showed in [9] how to compute the class group of a number field of fixed unit rank.
bThe success probability can obviously be boosted arbitrarily close to 1 at the cost of increasing time complexity

58 Quantum algorithms for one-dimensional infrastructures

Similarly, let g(m), s(m), and p(m) denote the gate complexity (number of gates), the

space complexity (number of qubits), and the guaranteed success probability of our

algorithms.

We have gH(m) ≥ g(m) and sH(m) ≥ s(m), while pH(m) ≤ p(m). We have pH(m) ≤
10−9 and pH(m) decreases as m−4, whereas p(m) ≥ 10−5 is bounded from below by a

constant for all m. The success probability of a quantum algorithm due to Schmid [6]

is bounded from below by 2−26.

• Secondly, our results when specialized to quadratic number fields provide a simpler

treatment of the computational problems, and can be easily applied without extensive

knowledge of number theory.

• Thirdly, we introduce an interesting technical result (Lemma 18) that could have wider

applicability in the analysis of quantum algorithms employing quantum Fourier trans-

form.

• Finally, we make a contribution to the study of one-dimensional infrastructures by show-

ing how to perform finite precision computations efficiently within the infrastructures.

These are useful even in the context of purely classical algorithms for infrastructures.

A natural direction for further investigation is the generalization of the proposed quantum

algorithms for higher dimensional infrastructures. These are presented in [13].

This paper is structured as follows. We first introduce the mathematical preliminaries, defin-

ing precisely the notion of an infrastructure and the computational problems associated with

them. We then show that these infrastructures can be endowed with a group structure and

review the relevant results related to the embedding of the infrastructures into circle groups.

We then introduce group homomorphisms that are key to solving the computational problems

associated to them. We also show that these homomorphisms can be computed efficiently.

These results should be of interest beyond the present context.

In section 3, we generalize the notion of periodic quantum states and prove a key technical

result related to the analysis of Fourier sampling. This result simplifies the analysis of the al-

gorithms and leads to a tighter bound on the success probabilities of the proposed algorithms.

In this section, we give a quantum algorithm for estimating the period of a pseudo-periodic

quantum state. This result could be applicable to situations beyond the current setting of

infrastructures.

In section 4, we show how to set up periodic quantum states from infrastructures and use the

quantum algorithm proposed in section 3 to estimate the circumference of the infrastructure.

In section 5, we present the quantum algorithm to solve the generalized discrete logarithm

problem.

by repeating the original algorithm multiple times and checking each time if the output is correct. Therefore,
we need to say in more detail what we mean by pH(m) and p(m). The guaranteed success probabilities pH(m)
and p(m) above correspond to the case that the Fourier sampling process has been only performed twice (or
equivalently, that only two so-called periodic states have been prepared.)

P. Sarvepalli, P. Wocjan 59

2 Infrastructures

We define infrastructures and state the two main computational problems associated to in-

frastructures. We restrict our attention to the one-dimensional infrastructures.

2.1 Definition of infrastructures

We refer the reader to [10, 14, 15] for more information on infrastructures. Our presentation

follows [14,16].

Definition 1: (Infrastructure) An infrastructure of circumference R is a pair (X, d) where

X is a finite set and d : X →֒ R/RZ an injective function on X.

Injectivity of d ensures that no two distinct elements of X have the same distance. We define

a function on the set X called the baby-step, bs : X → X as follows. Consider the following

set

Sx = {r ∈ R | r > 0 and d(x) + r mod R ∈ d(X)}. (1)

Let fx = minSx. Then bs(x) = x′ such that d(x′) = d(x) + fx mod R. We also define the

relative distance function

∆bs : X → R where ∆bs(x) = fx = minSx. (2)

Informally, the bs(x) gives the element next to x. The circumference of the infrastructure,

denoted R, can be expressed in terms of this relative distance function as follows:

R =
m−1∑

i=0

∆bs(xi). (3)

It is clear that bs−1, the inverse of bs, is well-defined. Further, a group-like structure is

imposed on the set X by means of a binary operator, called the giant-step. Consider the

set

Sx,y = {r ∈ R | r ≥ 0 and d(x) + d(y) + r mod R ∈ d(X)}.
Let fx,y = minSx,y. Then gs : X ×X → X is defined as:

gs(x, y) = z such that d(z) = d(x) + d(y) + fx,y mod R. (4)

We define the relative distance function ∆gs as:

∆gs : X ×X → R where ∆gs(x, y) = fx,y = minSx,y. (5)

The giant-step is commutative, but not associative. It is “almost associative” in the sense

that for two arbitrary elements x, y ∈ X the giant-step gives an element z ∈ X whose distance

satisfies d(z) ≈ d(x) + d(y).

In infrastructures arising out of quadratic number fields the elements of the infrastructure

correspond to the principal reduced ideals of the number field. The distance function is

60 Quantum algorithms for one-dimensional infrastructures

the norm of the ideals. One can cycle through these ideals using the so-called reduction

operator [5]; this function corresponds to the baby-step. One can also define the product of

ideals which after reduction corresponds to the giant-step, see [5].

The definitions of bs and gs and the relative distance functions ∆bs and ∆gs may suggest

that we need R and the distance function d to be able to compute them. However, this is

not the case. These functions can be computed efficiently without the knowledge of R or the

distance function d. To illustrate this point, let us explain how (discrete) infrastructures can

be considered as generalizations of finite cyclic groups.

Definition 2: (Discrete infrastructure) An infrastructure is said to be discrete if its

circumference R is a positive integer and its distance function d is integer-valued, i.e., d :

X →֒ Z/RZ.

Example 3: (Finite cyclic group) Suppose G = 〈g〉 is a finite cyclic group of order R

and generated by g. Then we can form an infrastructure out of G as follows. We let X = G

and define d(h) = logg h, for any h ∈ G, since every element h ∈ G is of the form gd(h) for

some d(h) ∈ Z. The baby step bs of the infrastructure corresponds simply to multiplication

of elements x by the generator g, while the giant step gs corresponds to the multiplication of

two elements x and y in G. The relative distance functions ∆bs and ∆gs are constant and

take on the values 1 and 0, respectively.

We can now interpret the order of G as the circumference of the infrastructure. The distance

function d(x) corresponds to the discrete logarithm of the element x with respect to the base

g. This example makes it clear why we cannot necessarily determine the circumference and

the distance function efficiently, even though we can efficiently evaluate the baby and giant

steps and their corresponding distance functions.

2.2 Computational problems

The main computational problems related to infrastructures are the computation of the cir-

cumference and the computation of generalized discrete logarithms.

We consider only infrastructures that satisfy the assumptions below. These are necessary to

be able to carry out basic arithmetic operations in infrastructures in polynomial time. The

cost is measured with respect to the input problem size n.

A1) The circumference satisfies R ≤ 2poly(n).

A2) Any element x ∈ X can be represented by a bit string of length poly(n).

A3) The elements bs(x), bs−1(x), gs(x, y) can be determined in time poly(n) for all x, y ∈ X.

A4) The relative distances ∆bs(x) and ∆gs(x, y) cannot necessarily be computed exactly. We

only obtain approximate values ∆̃bs(x) and ∆̃bs(x, y) with

|∆bs(x)− ∆̃bs(x)| <
1

2m
and |∆gs(x, y)− ∆̃gs(x, y)| <

1

2m
(6)

P. Sarvepalli, P. Wocjan 61

in timecpoly(n,m).

A5) The minimum distance dmin between any two elements of the infrastructure is bounded

from below by

dmin = min
x∈X

{∆bs(x)} ≥ 1

2poly(n)
. (7)

A6) The maximum distance dmax between any two elements of the infrastructure is bounded

from above by

dmax = max
x∈X

{∆bs(x)} ≤ poly(n). (8)

A7) There exists a positive integer k̄ ≤ poly(n) and a positive (rational) number dk̄ ≥ poly(n)

such that for all x ∈ X we have

k̄−1∑

i=0

∆bs(bs
i(x)) ≥ dk̄ , (9)

where bsi denotes the i-fold application of bs. In words, any k̄ consecutive elements span

a distance of a least dk̄.

We emphasize that these assumptions are not restrictive; in fact, they are routinely made in

the work on infrastructures. We have spelt them out explicitly for expository reasons. In

particular, infrastructures arising from quadratic number fields satisfy all the assumptions

made above; further justification for these assumptions for number fields is provided below.

The first three assumptions are obvious. The relative distances ∆bs and ∆gs could be arbitrary

real numbers and, thus, we cannot always obtain the exact values. Assumption A4 is made

because we cannot perform arithmetic with arbitrary real numbers. Assumptions A5 – A7

ensure that we can compute in certain circle groups associated to infrastructures and evaluate

certain homomorphisms into these groups efficiently in time poly(n).

The computational problems in infrastructures are :

• Computation of the circumference:

determine an m-bit approximation of the circumference R

• Generalized discrete logarithm problem:

given an element y ∈ X, determine an m-bit approximation of d(y)

The main contributions of this work are efficient quantum algorithms for infrastructures

satisfying assumptions A1 – A7. These algorithms make it possible to determine ⌊R⌉ and

⌊d(y)⌉ in time poly(n), where the notation ⌊r⌉ means either the floor or ceiling of the real

number r. Simple classical post processing allows us to obtain efficientlym-bit approximations

from these integral approximations. For the sake of completeness, we prove later how this

can be accomplished.

We now justify the validity of the above assumptions in the case of infrastructures from number

fields of unit rank 1 (such number fields give rise to one-dimensional infrastructures).

cNote that m here and elsewhere in the rest of paper is not related to the number of elements in the infras-
tructure.

62 Quantum algorithms for one-dimensional infrastructures

A1) This is shown in [17] (see also [18]).

A2) This is shown in [19, Corollary 3.7].

A3) In [12], it is shown that the baby steps and giant steps can be computed in O(Dǫ) for

arbitrary ǫ > 0 (where D is the absolute value of the discriminate, which is bounded

by 2poly(n)). However, if one traces through their references and updates the analysis

of the running time, one finds that everything is polynomial in log(D) and not just

subexponential [20].

A4) This assumption is valid since one can approximate logarithms of absolute values of

elements in number fields whose size is polynomially bounded in n.

A5) In [21, Example 9.4], it is shown that dmin can be of size 1/2poly(n). In [20], Fontein

informed us that A5 holds in general.

A6) This is shown in [12, Proposition 2.7 (i)].

A7) This is shown in [12, Proposition 2.7 (ii)].

The infrastructures from function fields are always discrete. This means that there are no

issues with finite precision. Therefore, the above computational problems can be solved

directly with the standard hidden subgroup approach. This is because the circle groups

corresponding to discrete infrastructures are just finite cyclic groups. In [20], Fontein informed

us that the relevant assumptions also hold in infrastructures from finite fields.

2.3 Circle groups from infrastructures

We now show that infrastructures naturally give rise to circle groups that are isomorphic to

R/RZ. This isomorphism is the key to solving the two computational problems in quantum

polynomial time. Here and in the next two subsections, we assume that we can compute ∆bs

and ∆gs exactly.

Picture the elements of X to be embedded in a circle of circumference R as follows. They are

placed along the circle starting with x0 at the topmost point of the circle and then moving

clockwise. Their position is determined by the distance function d. For instance, the element

xi is associated to the point d(xi) on the circle as depicted in figure 1.

x0 x1

xi

Fig. 1. Embedding an infrastructure into R/RZ

This embedding alone does not yet give rise to a valid group structure because d(xi) + d(xj)

P. Sarvepalli, P. Wocjan 63

is not necessarily an element of d(X). To obtain a group, we start with the set X × R and

the map ψ : X × R → R/RZ defined by

ψ(x, f) = d(x) + f (10)

for all (x, f) ∈ X × R. We call this the absolute distance of the pair (x, f).

For each d ∈ R/RZ, there exist infinitely many pairs (x, f) ∈ X × R with ψ(x, f) = d. To

avoid this infinitude, we continue by defining the equivalence relation ≡ on X ×R: two pairs

(x, f), (y, g) ∈ X × R are said to be equivalent if and only if ψ(x, f) = ψ(y, g) (which is the

same as d(x)+f ≡ d(y)+g mod R). We denote the equivalence class of (x, f) by [x, f].

Now the set X × R/ ≡ can be endowed with a group structure as follows.

Proposition 4: The absolute distance map ψ in Eq. (10) is a group isomorphism from

G := X×R/ ≡ to R/RZ, where the (commutative) group operation on G is defined by

[x, f] + [y, g] := [gs(x, y), f + g −∆gs(x, y)] (11)

for arbitrary pairs (x, f), (y, g) ∈ X × R.

Proof: The proof is straightforward. We just verify that ψ is a group homomorphism.

Letting ψ(x, f) = d(x) + f and ψ(y, g) = d(y) + g, we obtain ψ(gs(x, y), f + g −∆gs(x, y)) =

d(gs(x, y)) + f + g −∆gs(x, y). By the definition of the giant-step it holds that d(gs(x, y)) =

d(x) + d(y) + ∆gs(x, y). Thus, d(gs(x, y)) + f + g − ∆gs(x, y) = d(x) + d(y) + f + g =

ψ(x, f) + ψ(y, g). .

2.4 Group arithmetic based on f-representations

We have to use “nice” representatives for the equivalence classes of G to be able to compute

within this group efficiently. To this end, we introduce f -representations. Intuitively, the

f -representations fill in the missing points in the circle R/RZ, i.e., the set of points (R/RZ) \
d(X).

Definition 5: (f-representation) Let (X, d) be an infrastructure. A pair (x, f) ∈ X×R is

said to be an f -representation if 0 ≤ f < ∆bs(x). We denote the set of all f -representations

by Rep(I).

The following lemma was shown in [14] (see Proposition 2 and Corollary 1 therein) in a

slightly less general setting. We include this lemma for completeness. An important aspect

of this lemma is that the group operation can be realized without having any knowledge of R

or the distance function d (except for the knowledge that is revealed indirectly through the

particular interplay of the functions bs, gs, ∆bs, and ∆gs).

We mention that for arbitrary infrastructures, neither this lemma nor any simple method

make it possible to compute inverses in G. However, in the case of infrastructures in global

64 Quantum algorithms for one-dimensional infrastructures

fields there is an efficient classical way to compute (approximate) f -representations of inverses

in the corresponding circle groups.

Lemma 6: The group operation in G can be efficiently realized by using f -representations

to encode the equivalence classes. More precisely, it takes at most k̄⌈2dmax/dk̄⌉ = poly(n)

invocations of baby steps to obtain the f -representation corresponding to the sum of two

elements of G.

Proof: Let (x, f), (x′, f ′) ∈ Rep(I). Then, we have

[x, f] + [x′, f ′] = [gs(x, x′), f + f ′ −∆gs(x, x
′)] .

In general, the pair (x′′, f ′′) := (gs(x, x′), f + f ′ − ∆gs(x, x
′)) ∈ X × R is not a valid f -

representation. The task now is to find the f -representation that encodes the same equivalence

class in G as (x′′, f ′′). We use the bounds −dmax ≤ f ′′ = f+f ′−∆gs(x, x
′) ≤ f+f ′ ≤ 2dmax,

where dmax is the maximum distance between two consecutive elements of the infrastruc-

ture.

If f ′′ ≤ 0, then we iteratively replace (x′′, f ′′) with (bs−1(x′′), f ′′ + ∆bs(x
′′)) until it just

becomes positive. If f ′′ ≥ 0, then we iteratively replace (x′′, f ′′) with (bs(x′′), f ′′ −∆bs(x
′′))

until it is minimal while being nonnegative. Observe that this reduction process preserves

the absolute distance. Moreover, it takes at most k̄⌈2dmax/dk̄⌉ = poly(n) steps to obtain the

canonical representative in Rep(I) .

From now on, we identify G with Rep(I) and use (x, f) ∈ Rep(I) to denote the group elements

instead of [x, f] to simplify notation.

The corollary below is a simple consequence of the above lemma. We state it explicitly because

this result is extensively used in the quantum algorithms.

Corollary 7: (Double & multiply) Let (x, f) ∈ G be an arbitrary group element and

a ∈ Z an arbitrary nonnegative integer. Then, it takes at most O(k̄⌈2dmax/dk̄⌉ log(a)) =

poly(n) log(a) invocations of baby steps and at most O(log(a)) invocations of giant steps to

obtain the f -representation corresponding to a · (x, f).

Proof: The action of Z on the commutative group G is defined by

a · (x, f) := (x, f) + (x, f) + · · ·+ (x, f)
︸ ︷︷ ︸

a times

.

Consider the special case of computing a · (x, f) for a = 2i with some i. This takes at most

P. Sarvepalli, P. Wocjan 65

O(i) steps:

(x, f) = (x(0), f (0))

2(x, f) = (x(0), f (0)) + (x(0), f (0)) =
(
gs(x(0), x(0)), 2f (0) −∆gs(x

(0), x(0))
)

=: (x(1), f (1))

...

2i(x, f) = (x(i−1), f (i−1)) + (x(i−1), f (i−1))

=
(
gs(x(i−1), x(i−1)), 2f (i−1) −∆gs(x

(i−1), x(i−1))
)

(12)

=: (x(i), f (i)) .

In each step, we apply the above lemma to ensure that (x(i), f (i)) are valid f -representations.

Now suppose a = bi2
i + bi−12

i−1 + · · ·+ b02
0 in binary representation. Then, a · (x, f) can be

computed as

a · (x, f) =
i∑

j=0

bj · (x(j), f (j)) .

with at most i additions. We again use the above lemma to ensure that the partial sums are

valid f -representations.

In total, the whole process takes at most O(log(a)) giant-steps and O(k̄⌈2dmax/dk̄⌉ log(a))
baby-steps .

2.5 Group homomorphisms from R and Z× R into circle groups

In this subsection, we continue to assume that we can determine the functions ∆bs and ∆gs

exactly, and compute with arbitrary real numbers. In the next subsection, we will relax this

assumption.

Definition 8: Let h : R → G be the surjective group homomorphism, where h(r) is defined

to be the unique f -representation (x, f) ∈ Rep(I) with (x0, r) ≡ (x, f).

Recall that we define the distance function d such that d(x0) = 0, thus (x0, 0) is the identity

element of G.
The statement of the following lemma is obvious. We formulate it explicitly since it provides

the intuition required to understand the quantum algorithm for computing the circumfer-

ence.

Lemma 9: The kernel of h is equal to RZ. Thus, h is a periodic function on R with period

R.

Lemma 10: Let r ∈ [0, B] ⊂ R, where B is an arbitrary (but fixed) positive real number.

Then, we can determine the exact value h(r) usingO(log(B)k̄⌈2dmax/dk̄⌉) = O(log(B)poly(n))

66 Quantum algorithms for one-dimensional infrastructures

baby-steps and O(log(B)) giant-steps under the assumption that ∆bs and ∆gs can be com-

puted exactly.

Proof: In general, (x0, r) is not a valid f -representation. Thus, we need to find the corre-

sponding f -representation. If r is small and positive, then we can use baby-steps to find it

with at most k̄⌈r/dk̄⌉ invocations.

If r is large, then the baby-step method is not efficient anymore. We have to use giant-

steps as well. The idea is to use the double and multiply technique of Corollary 7. Let

xk̄ = bsk̄(x0). Then d(xk̄) ≥ dk̄. Let a = [r/d(xk̄)], where [x] denotes the nearest integer

to x. We can compute a · (xk̄, 0) = (x, f) using O(log(a)) = O(log(B)) giant-steps and

O(log(B)k̄⌈2dmax/dk̄⌉) baby-steps. Note that (x, f) ≡ (x0, ad(xk̄)). But, |ad(xk̄) − r| =

|[r/d(xk̄)]d(xk̄)− r| ≤ d(xk̄)/2. Therefore, (x, f) is at most within a distance of d(xk̄)/2 from

r. Thus we can find h(r) by using no more than k̄ additional invocations of either bs or

bs−1. The overall time complexity of evaluating h(r) is therefore O(log(B)k̄⌈2dmax/dk̄⌉) =

O(log(B)poly(n)), since dmax and k̄ are O(poly(n) by assumptions A6 and A7 .

Similar ideas can be applied when r is negative. The method proposed in Lemma 10 relies

essentially on the group arithmetic of G and thus is quite different from a generalization of

the binary search method.

Definition 11: Let x ∈ X be an arbitrary (but fixed) element of the infrastructure. Let

g : Z × R → G be the surjective homomorphism, where g(a, r) is defined to be the unique

f -representation corresponding to

a · (x, 0) + h(r) . (13)

We note that g(a, b) is same as the f -representation of h(ad(x)+b), where d(x) is the distance

of x.

The following statement on the kernel of the homomorphism g is obvious.

Lemma 12: The kernel of the above homomorphism g is equal to

{(a, r) : r ≡ −a d(x) mod R} .

Corollary 13: Let A be an arbitrary positive integer and B an arbitrary positive real number.

Then, we can determine the exact value g(a, b) for all pairs (a, r) ∈ {0, 1, . . . , A− 1} × [0, B]

in time O((logA+ logB)poly(n)) under the assumption that ∆bs and ∆gs can be computed

perfectly.

Proof: By definition g(a, r) = a · (x, 0)+h(r). The computation of a · (x, 0) can be performed

in O(log(A)k̄⌈2dmax/dk̄⌉) = O(log(A)poly(n)) time by Corollary 7, while the computation

of h(r) can be performed in O(log(B)k̄⌈2dmax/dk̄⌉) = O(log(B)poly(n)) time by Lemma 10.

The final group addition in G takes at most k̄ = poly(n) baby-steps, by Lemma 6 .

P. Sarvepalli, P. Wocjan 67

2.6 Efficient approximate group arithmetic and evaluation of the homomor-

phisms from R and Z× R

The previous assumption that we can compute ∆bs and ∆gs and represent arbitrary real

numbers is clearly an idealization. We made this assumption at first because we can explain

the intuition in a simpler and more elegant way when the homomorphisms h and g are

perfect. We now drop this assumption and work instead with the approximate versions ∆̃bs

and ∆̃gs.

Let L be some large positive integer. We only consider evaluation points r that are rational

numbers with denominator L.

Let h(r) = (x, f) be the perfect f -representation with (x, f) ≡ (x0, r). We can only determine

an approximate h̃(r) = (x̃, f̃) ∈ X ×R of h(r). This approximation can be realized efficiently

and has the following two properties:

P1. The first component is off at most by either a baby-step backward or forward, i.e.,

x̃ ∈ {bs−1(x), x, bs(x)}.

P2. If we have the promise that
1

L
≤ f ≤ ∆bs(x)−

1

L
(14)

holds, then the first component is correct, i.e., x̃ = x, and the second component f̃

satisfies

|f − f̃ | ≤ 1

2L
. (15)

Later, we will show that all evaluation points r necessary for the quantum algorithm are such

that the condition in Eq. (14) holds with high probability by adding a random shift to the

evaluation points.

Lemma 14: Let L be a positive integer with dmin > 1/L. We consider only evaluation points

of the form r = k/L with r < B. Let h(r) = (x, f) be the perfect f -representation. Then,

we can compute an approximate pair h̃(r) = (x̃, f̃) that satisfies P1, P2. The running time

is poly(log(B), log(L), n).

Proof: We analyze what happens if we run the algorithm in Lemma 10, but now rely on the

approximate versions ∆̃bs and ∆̃gs. Recall that the parameter m characterizes the precision

of the approximations. The maximal deviation between the approximate and perfect values

is smaller than 1/2m.

We use d̃acc(·) to denote the corresponding approximate accumulated distances of the (in-

termediate) f -representations and their first components. We use dacc(·) to denote the cor-

rect accumulated distance of the representations and elements (these distances exist even

though we cannot always compute them). The accumulated distances are not taken mod-

ulo R and take into account how the f -representation is generated. A key observation that

68 Quantum algorithms for one-dimensional infrastructures

we need in the proof is that dacc(x̃, f̃) = dacc(x̃) + f̃ and d̃acc(x̃, f̃) = d̃acc(x̃) + f̃ , so that

dacc(x̃, f̃)− d̃acc(x̃, f̃) = dacc(x̃)− d̃acc(x̃).

The characterizing condition of the perfect f -representation is

dacc(x) ≤ r < dacc(x) + ∆bs(x) . (16)

We can only guarantee

d̃acc(x̃) ≤ r < d̃acc(x̃) + ∆̃bs(x̃) (17)

for the approximate pair (x̃, f̃).

Assume that m has been chosen to be sufficiently large so that

|d̃acc(x̃)− dacc(x̃)| ≤
1

2L
(18)

holds. Together with Eq. (17) this implies

dacc(x̃)−
1

2L
≤ r < dacc(x̃) + ∆bs(x̃) +

1

2L
+

1

2m
. (19)

This condition on x̃ is weaker than the condition of the perfect x in Eq. (16). But since

1/2m < 1/L < dmin we must have x̃ ∈ {bs−1(x), x, bs (x)}, depending on which of the three

cases r < dacc(x̃), dacc(x̃) ≤ r < d̃acc(x̃) +∆bs(x̃), or d̃acc(x̃) +∆bs(x̃) ≤ r occurs. We cannot

have a deviation by more than one baby-step backward or forward because otherwise Eq. (17)

would not be satisfied.

If we know that f satisfies 1
L ≤ f ≤ ∆bs(x)− 1

L , then we can conclude that x̃ = x must hold.

This is because the first and third cases are excluded. The condition on f̃ is automatically

satisfied in this case since f̃ = r − d̃acc(x̃), which is the same as r − d̃acc(x).

We now show how to choose m so that the condition in Eq. (17) holds. The algorithm in

Lemma 10 has two steps. In the first step, we compute a · (xk̄, 0), where a = [r/d(xk̄)]. This

gives us a representation (x′, f ′), such that

|dacc(x′, f ′)− r| ≤ d(xk̄)

2
.

Then we apply a sequence of baby-steps to obtain an f -representation (x, f), which satisfies

dacc(x, f) = r.

Working with ∆̃bs and ∆̃gs, in the first step we actually compute (x̃′, f̃ ′) an approximation

of ã · (xk̄, 0), where ã = [r/d̃(xk̄)].

Let us analyze the error in this computation. The computation of ã · (xk̄, 0) itself can be

broken down into two parts: (i) computation of representations of the form (x̃(i), f̃ (i)) which

approximate 2i(xk̄, 0) and (ii) summing O(log ã) such representations.

The error at the very beginning e0 satisfies

e0 := |d̃acc(x̃(0))− dacc(x̃
(0))| = |d̃acc(x̃(0), f̃ (0))− dacc(x̃

(0), f̃ (0))| < k̄

2m
.

P. Sarvepalli, P. Wocjan 69

Note that d̃acc(x̃
(0)) ≥ dk̄ holds because if we get a value strictly smaller than dk̄ we can

replace it by dk̄, because of A7. The error in the ith step

ei := |d̃acc(x̃(i))− dacc(x̃
(i))| = |d̃acc(x̃(i), f̃ (i))− dacc(x̃

(i), f̃ (i))|

satisfies the recursion

ei < 2ei−1 +
1

2m
+

k̄

2m

⌈
2dmax

dk̄

⌉

(20)

The recursion relation can be easily explained by considering Eq. (12). The first term is due

to the fact that the error in f̃ (i−1) is multiplied by 2, the second term is due to one giant-step,

and the third term due to O(k̄⌈2dmax/dk̄⌉) baby-steps used to obtain a valid f -representation.

This implies

ei <
1

2m−i

(

k̄ + 1 + k̄

⌈
2dmax

dk̄

⌉)

. (21)

In order to obtain (x̃′, f̃ ′), we have to sum O(log ã) such f -representations, where i varies from

0 to log ã−1. Each sum adds an additional error term due to the giant step and the baby-steps

used for reduction. Therefore the error at the end of the first step is given by

e′ := |d̃acc(x̃′)− dacc(x̃
′)| = |d̃acc(x̃′, f̃ ′)− dacc(x̃

′, f̃ ′)|

=
ã

2m

(

k̄ + 1 + k̄

⌈
2dmax

dk̄

⌉)

+
log ã

2m

(

1 + k̄

⌈
2dmax

dk̄

⌉)

,

≤ r + dk̄
2mdk̄

(

k̄ + 1 + k̄

⌈
2dmax

dk̄

⌉)

+
log(r/dk̄ + 1)

2m

(

1 + k̄

⌈
2dmax

dk̄

⌉)

where we used the fact that ã ≤ r/dk̄+1. The f -representation (x′, f ′) is at most at a distanced

of dmaxk̄ from r. Thus (x̃′, f̃ ′) is at most a distance of (e′ + dmaxk̄) from r and we need to

take at most k̄
⌈
(e′ + dmaxk̄)/dk̄

⌉
baby-steps to obtain (x̃, f̃).

The error in the accumulated distances of the final representation (x̃, f̃) is given by

ẽ := |d̃acc(x̃)− dacc(x̃)| = |d̃acc(x̃, f̃)− dacc(x̃, f̃)|

= e′ +
k̄

2m

⌈
e′ + dmaxk̄

dk̄

⌉

The dominant term in the error is the first term e′, as it is proportional to r, while the second

term is proportional to r/2m and therefore does not contribute too much asm is large. We can

make the error smaller than 1/2L as required in Eq. (18) by choosingm = poly(log(B), log(L))

.

The proof does not actually require that the evaluation points are of the form k/L. Analogous

results hold for the homomorphism g. We state them without proof since the above argument

can be easily adapted.

Let g(a, r) = (x, f) be the perfect f -representation with (x, f) ≡ (x0, r). We can only deter-

mine an approximate g̃(a, r) = (x̃, f̃) ∈ X ×R of g(a, r). This approximation can be realized

dWe can tighten this by a factor of 2. But this suffices.

70 Quantum algorithms for one-dimensional infrastructures

efficiently and has the properties P1, P2.

Lemma 15: Let L be a positive integer with dmin > 1/L. We consider only evaluation points

of the form (a, r) with a ∈ {0, 1, . . . , A− 1} and r = k/L ∈ [0, B]. Let g(a, r) = (x, f) be the

perfect f -representation. Then, we can compute an approximate pair g̃(a, r) = (x̃, f̃) that

satisfies P1, and P2. The running time is poly(log(A), log(B), log(L), n).

3 Quantum Algorithm for Approximating the Period of Pseudo-periodic States

In this section we generalize the notion of periodic states introduced in [22]. We assume

that the quantum states are elements of a q-dimensional complex Hilbert space, denoted by

C
q.

3.1 Pseudo-periodic states

Definition 16: (Periodic state) A quantum state in C
q is periodic with period r ∈ Z at

offset k ∈ {0, 1, . . . , r − 1} if it is of the form

|ψ〉k,r :=
1√
p

p−1
∑

j=0

|k + jr〉, (22)

where p = ⌊(q − k − 1)/r + 1⌋. We denote a periodic state with period r at offset k by

|ψ〉k,r.
Periodic states can be created by the evaluation of injective functions over a uniform super-

position. To be more precise, we create the state |ψ〉 = q−1/2
∑q−1

i=0 |i〉|f(i)〉, and measure

the second register. We assume that f is periodic with period r. It is possible to recover the

period r by means of Fourier sampling. In fact, the period can be recovered even when r is

irrational. For this reason, we generalize these periodic states to a larger class of quantum

states called the pseudo-periodic states.

Definition 17: (Pseudo-periodic state) A pseudo-periodic state in C
q, with possibly

irrational period r ∈ R, is of the form:

|ψ〉k,r =
1√
p

p−1
∑

j=0

|⌊k + jr⌉〉, (23)

where k ∈ {0, 1, . . . , ⌊r⌋} and p is the largest integer such that ⌊k+(p− 1)r⌉ ≤ (q− 1).

Note that ⌊x⌉ can be either ⌊x⌋ or ⌈x⌉ so that p ∈ {⌊(q − 2)/r⌋, . . . , ⌊q/r⌋ + 1}, depending
on the particular value of the offset k. If we assume that r > 2, then we can restrict p ∈
{⌊q/r⌋ − 1, ⌊q/r⌋, ⌊q/r⌋+ 1}.
The weakly periodic functions defined in [4] are one class of functions which can induce such

pseudo-periodic states. As we show in this section, we can recover the period even when the

state is “almost” periodic. We observe that in the definition of the periodic states above,

P. Sarvepalli, P. Wocjan 71

there is an implicit dependence on the offset k; this offset is usually the outcome of some

measurement, and therefore random.

3.2 Perturbed geometric sums with missing terms

The following lemma is at the heart of the analysis of the quantum algorithms for infrastruc-

tures. It is crucial for understanding the performance of these algorithms. The special case

J = {0, 1, . . . , n−1} suffices to bound the probability of the algorithm for computing the cir-

cumference. The more general case where J is a proper subset of {0, 1, . . . , n−1} is necessary

for the analysis of the quantum algorithm for computing the discrete logarithms.

Lemma 18: (Perturbed geometric sums with missing terms) Let ω be the nth root

of unity e2πi/n, n ≥ 2, θ an arbitrary real-valued function defined on J ⊆ {0, . . . , n − 1}
satisfying the following conditions on θj and |J |:

|θj | ≤ n/32 (24a)

|J | ≥ n(1− cδ)/(1− 2 sin(π/32)) (24b)

where

cδ = sinc(δ) =
sin(πδ)

πδ
if |δ| < 1. (25)

Then the following inequality holds:

1

|J |2

∣
∣
∣
∣
∣
∣

∑

j∈J

ωδj+θj

∣
∣
∣
∣
∣
∣

2

≥
(

1− 2 sin(π/32)− (1− cδ)
n

|J |

)2

. (26)

Proof: Triangle inequality and upper bound on the absolute value of the unperturbed geo-

metric sum without missing terms imply

∣
∣
∣
∣
∣
∣

∑

j∈J

ωδj

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

∑

j∈J̄

ωδj

∣
∣
∣
∣
∣
∣

≥

∣
∣
∣
∣
∣
∣

∑

j∈J

ωδj +
∑

j∈J̄

ωδj

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

n−1∑

j=0

ωδj

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

1− ωδn

1− ωδ

∣
∣
∣
∣

=

∣
∣
∣
∣

sin(πδ)

sin(πδ/n)

∣
∣
∣
∣

(27)

≥
∣
∣
∣
∣

sin(πδ)

πδ/n

∣
∣
∣
∣
= ncδ, (28)

The equality in Eq. (27) follows from |1− eiϑ| = |e−iϑ/2 − eiϑ/2| = 2| sin(ϑ/2)| holding for all

ϑ ∈ R. For the inequality in Eq. (28) we used the fact that | sinϑ| ≤ |ϑ|, when |ϑ| < π/2.

72 Quantum algorithms for one-dimensional infrastructures

Subtracting the absolute value of the sum over J̄ from both sides of Eq. (28) and dividing by

|J | yields

1

|J |

∣
∣
∣
∣
∣
∣

∑

j∈J

ωδj

∣
∣
∣
∣
∣
∣

≥ cδ
n

|J | −
1

|J |

∣
∣
∣
∣
∣
∣

∑

j∈J̄

ωδj

∣
∣
∣
∣
∣
∣

≥ cδ
n

|J | −
J̄
|J |

= 1−
(

1− cδ

) n

|J | . (29)

We now bound the “perturbed” geometric sum. To this end, we use some basic ideas

from quantum information theory. Define the states |ψ〉 = 1√
|J |

∑

j∈J ω
δj |j〉 and |e〉 =

1√
|J |

∑

j∈J |j〉, the projector P = |e〉〈e|, and the diagonal unitary matrix U = diag(ωθ0 , . . . , ωθ|J |−1).

Observe that the square of the absolute value of unperturbed geometric sum is equal to

‖P |ψ〉‖2 and that of the perturbed one to ‖PU |ψ〉‖2. We have
∣
∣
∣‖P |ψ〉‖ − ‖PU |ψ〉‖

∣
∣
∣ ≤ ‖P |ψ〉 − PU |ψ〉‖

≤ ‖P‖ · ‖I − U‖ · ‖|ψ〉‖
= 2max

j

{

| sin(2πθj/(2n))|
}

≤ 2 sin(π/32) . (30)

The upper bound on ‖I −U‖ follows by noting that the entries of the diagonal matrix I −U

are 1−e2πiθj/n and using the above identity for the absolute value of expressions of this form.

Let ‖P |ψ〉‖ = x and ‖PU |ψ〉‖ = y. Then Eq. (30) implies the desired result since

y2 ≥
(
x− 2 sin(π/32)

)2 ≥
(

1− 2 sin(π/32)− (1− cδ)
n

|J |

)2

(31)

where we used Eq. (29) in the last step .

We pause to make two observations regarding the application of this result. First, we must

ensure that |J |/n ≥ (1−cδ)/(1−2 sin(π/32)) for δ ∈ [0, 1). Second, the choice of |θj | ≤ n/32,

can be improved in that we can tolerate a higher perturbation, depending on the actual value

of δ. Although, we retain this bound on θj throughout this paper for the sake of a clearer

exposition, optimizing this bound on θj based on δ will enable us to obtain better bounds on

the success probability of the quantum algorithms.

3.3 Presentation and proof of the quantum algorithm

Now we shall give a quantum algorithm for estimating the period of a pseudo-periodic state.

In general, these states arise from some periodic functions, therefore the proposed quantum

algorithm can be used to estimate the periods of such functions.

Theorem 19: Given a pair of pseudo-periodic states whose period S ∈ R is bounded as

M ≥ S > 1, then with a probability Ω(1) and in time poly(logS), Algorithm 1 gives a list of

P. Sarvepalli, P. Wocjan 73

real numbers L such that for some Ŝ ∈ L, we have |S − Ŝ| ≤ 1. Further, |L| = O(poly logS)

and the success probability is given by

psuccess ≥
1

2

(
1

32
− 2

S

)2(

1− 2S

q

)2(

sinc
(1

2
+

1

2S

)

− 2 sin(π/32)

)4

(32)

where M2 ≤ q < 2M2.

Algorithm 1 Approximate period of pseudo-periodic states

Require: A pair of pseudo-periodic states in C
q with period S ∈ R, where M is an upper

bound on S > 2 and q is an integer such that S2 ≤M2 ≤ q < 2M2.
1: For each pseudo-periodic state, apply a Fourier transform over Zq and measure to obtain
c and d.

2: Compute the convergents ci/di of c/d where di ≤ ⌊q/32⌋.
3: Return L =

{

[ciq/c] | di ≤ ⌊q/32⌋
}

as candidates for S.

Proof: Assume that the pseudo-periodic state is as follows:

|ψ〉o,S =
1

√

|J |
∑

j∈J

|⌊o+ jS⌉〉 .

where J = {0, 1, . . . , p − 1} and p ∈ {⌊q/S⌋ − 1, ⌊q/S⌋, ⌊q/S⌋ + 1}. Since we are Fourier

sampling, we may assume without loss of generality, that o = 0. Therefore, the measured

distribution will be the same as the one induced by Fourier sampling the following state:

1
√

|J |
∑

j∈J

|⌊jS⌉〉 (33)

Taking the Fourier transform over Zq we obtain

1
√

|J |
1√
q

∑

j∈J

q−1
∑

ℓ=0

ωℓ⌊jS⌉
q |ℓ〉. (34)

The Fourier transform at |ℓ〉 has the amplitude

1
√

q|J |
∑

j∈J

ω⌊jS⌉ℓ
q . (35)

We seek to find a lower bound on the probability of obtaining outcomes ℓ of the form [mq
S],

where m ∈ {0, 1, . . . , ⌊S⌋}. For a given m, [m q
S] denotes either the floor or ceiling so that

that m q
S = [m q

S] + ǫℓ with |ǫℓ| ≤ 1
2 . The probability of observing ℓ is given by

1

q|J |

∣
∣
∣
∣
∣
∣

∑

j∈J

ω
p
q
⌊jS⌉[m q

S
]

p

∣
∣
∣
∣
∣
∣

2

. (36)

74 Quantum algorithms for one-dimensional infrastructures

To bound this probability, we consider the exponent of ωp

p

q
⌊jS⌉[m q

S
] =

p

q
(jS + δj)(m

q

S
+ ǫℓ)

= pmj +
pSǫℓ
q

j +
pδjǫℓ
q

+
pmδj
S

= pmj +
pSǫℓ
q

j +
pδjǫℓ
q

+
pmδj
S

= pmj + δj + θj . (37)

The first term is a multiple of p, implying that it can be omitted in the exponent. The

factor δ = pSǫℓ
q in front of j in the second term is less or equal to (1 + S/q)/2 ≤ (1 +

1/S)/2. The absolute value of the sum of the third and fourth terms is less or equal to p/32

provided that m < ⌊S/32⌋. In this case, the phase perturbations θj caused by these two terms

satisfy Eq. (24a). Further, |J | = p ensures that Eq. (24b) is also satisfied and we can apply

Lemma 18. We conclude that the probability of obtaining |ℓ〉 is

1

q|J |

∣
∣
∣
∣
∣
∣

∑

j∈J

ω
p
q
⌊jS⌉[m q

S
]

p

∣
∣
∣
∣
∣
∣

2

≥ p

q

(

sinc
(1

2
+

1

2S

)

− 2 sin(π/32)

)2

≥
(
1

S
− 2

q

)(

sinc
(1

2
+

1

2S

)

− 2 sin(π/32)

)2

where the last inequality follows from p ≥ ⌊q/S⌋−1 ≥ q/S−2. So the probability of obtaining

any “good” ℓ, i.e. m ∈ {1, . . . , ⌊S/32− 1⌋}, is at least β, where

β =

(
S

32
− 2

)(
1

S
− 2

q

)(

sinc
(1

2
+

1

2S

)

− 2 sin(π/32)

)2

, (38)

where we used that ⌊S/32− 1⌋ ≥ (S/32 − 2). The measured value ℓ is a multiple of q/S

rounded to the nearest integer i.e. ℓ = [mq/S] for some m.

Unlike the case of period finding algorithm where the period is integral, the period S of

|ψ〉o,S cannot be reconstructed with Fourier sampling one (pseudo-periodic) quantum state.

However, as shown below, we can reconstruct using the method suggested by Hallgren in

[4]. Suppose we have two measurements c = [kq/S] and d = [lq/S], obtained by Fourier

sampling the pair of periodic states, then k/l occurs as a convergent of c/d and we can

compute an integer close to S by computing [kq/c]. Without loss of generality assume that

0 < k ≤ l < ⌊S/32⌋. Assume that c = kq/S+ǫc and d = lq/S+ǫd where −1/2 ≤ ǫc, ǫd ≤ 1/2.

Then
∣
∣
∣
∣

c

d
− k

l

∣
∣
∣
∣

=

∣
∣
∣
∣

kq + ǫcS

lq + ǫdS
− k

l

∣
∣
∣
∣
=

∣
∣
∣
∣

S(ǫcl − ǫdk)

l2q + ǫdSl

∣
∣
∣
∣

≤
∣
∣
∣
∣

S(l + k)/2

l2q − Sl/2

∣
∣
∣
∣
≤
∣
∣
∣
∣

Sl

l2q − Sl/2

∣
∣
∣
∣

=

∣
∣
∣
∣

1

lq/S − 1/2

∣
∣
∣
∣
<

1

2l2
,

P. Sarvepalli, P. Wocjan 75

under the assumption that 0 < k ≤ l < ⌊S/32⌋ and q ≥ S2. Thus k/l is a convergent of c/d.

Since l ≤ ⌊S/32⌋, we only need to compute the convergents ci/di whose denominators di are

less than ⌊q/32⌋. We now form the list of candidate estimates for S as

L =
{

[ciq/c] | di ≤ ⌊q/32⌋
}

. (39)

As the di grow exponentially, |L| = O(polylog(|S|)).
Since k/l is a convergent of c/d, we know that there exists an estimate Ŝ = [kq/c] ∈ L. We

now show that Ŝ satisfies |S − Ŝ| ≤ 1. Let c = kq/S + ǫc and Ŝ = kq/c, where |ǫc| ≤ 1/2.

Then, we can bound |S − Ŝ| as

|S − Ŝ| =

∣
∣
∣
∣
S − S

1 + ǫcS/kq

∣
∣
∣
∣
≤
∣
∣
∣
∣

ǫcS
2/kq

1 + ǫcS/kq

∣
∣
∣
∣

≤
∣
∣
∣
∣

ǫc/k

1 + ǫc/kS

∣
∣
∣
∣
because q ≥ S2

=
∣
∣
∣
ǫc
k

∣
∣
∣

∣
∣
∣
∣

1

1 + ǫc/kS

∣
∣
∣
∣

≤ 1

2k

1

1− 1/2kS
≤ 1

2k
· 2

≤ 1.

We now compute a lower bound on the success probability of the algorithm. We have already

seen that the probability of a pair of good measurements is given by (38). In order to be able

to recover the period S, we require k and l to be coprime. By Lemma A.1, the probability

that k, l are coprime is at least 1/2. Thus the overall success probability of the algorithm is

greater than β2/2 = Ω(1) .

The algorithm does not return a single value for the period but rather a small list of candi-

dates for the period. This presumes a post processing step by which we can single out the

solutions.

Further, we note that the previous algorithm uses a pair of pseudo-periodic states and if

these states are being prepared probabilistically, then we must factor that into the success

probability of the algorithm.

4 Quantum Algorithm for Approximating the Circumference

Our goal is to set up pseudo-periodic states whose period is a multiple of the circumference

of an infrastructure. Then the quantum algorithm of the preceding section can be applied to

extract an integer close to the circumference. With this knowledge, the circumference can be

computed to the desired accuracy by a classical algorithm.

4.1 Pseudo-periodic states from infrastructures

In section 2.6, we showed that an approximate version h̃ of h can be computed so that

properties P1, P2 are satisfied. For this approximate version to be useful, it is necessary

76 Quantum algorithms for one-dimensional infrastructures

that the f -representations at the evaluation points meet the condition stated in Eq. (14). In

this subsection, we show how to satisfy this condition which allows us to compute h̃ so that

the first component is always correct and the error in the second component is under control.

However, h̃ does not induce the periodic states that we discussed in the previous section.

To create a periodic quantum state it is essential to work with a “quantized” version of h̃.

Therefore we introduce the function hN : Z → X × Z by setting

hN (i) = (x̃, ⌊f̃N⌋), (40)

where h̃(i
N + j

L) = (x̃, f̃). When P2 is satisfied, it is helpful to interpret hN in the following

way: hN (i) = (x, k), then k is the number of sampling points between d(x)+⌊(i/N+j/L)/R⌋R
and i/N + j/L.

The incorrectness in h̃ cannot be avoided if the evaluation points r are chosen arbitrarily. As

already stated in Lemma 14, we assume that the evaluation points are of the form k/L for

some large integer L and bounded k. Even so, we cannot always evaluate h̃ correctly for every

k. Therefore, we further restrict the evaluation of h̃ to a subset of the points which are 1
N

uniformly spaced along a bounded interval, where N divides L. We choose N ≥ ⌈2/dmin⌉ so

that there are at least two evaluation points i
N and i+1

N between any two adjacent elements

of I. This is shown in figure 2. The dashed lines indicate the sampling points.

bs−1(x) x bs(x)

r = i
N

Fig. 2. Evaluating h̃ on a discrete set of uniformly spaced points.

But this is still inadequate to satisfy Eq. (14), as some of the evaluation points could be very

close to elements of the infrastructure. So we shift all the evaluation points by a random

offset of the form j
L , where j is chosen uniformly at random from {0, 1, . . . , L

N − 1}. This is

shown in figure 3. The solid lines indicate the shifted evaluation points and they are still of

the form k/L.

bs−1(x) x bs(x)

r = i
N + j

L

Fig. 3. The evaluation points are shifted by a random offset j/L so that none of them are too
close to the elements of the infrastructure.

Now we can show that with high probability Eq. (14) is satisfied and can use Lemma 14 to

guarantee that h̃ can be computed with the precision stated in Eq. (15).

Lemma 20: Let N ≥ ⌈2/dmin⌉. Suppose we evaluate hN at points i/N + j/L for i ∈
{0, . . . , q − 1}, where j chosen uniformly at random from {0, 1, . . . , L/N − 1}, and L is an

P. Sarvepalli, P. Wocjan 77

integer such that

L ≥ N

⌈
2k̄

(1− ph)

⌈
q

Ndk̄

⌉⌉

. (41)

Then with probability greater or equal to ph, no sampling point i/N + j/L is closer than 1/L

to any element x of the I, i.e.,
|(d(x)− i/N − j/L) mod R| ≥ 1/L. (42)

Proof: By assumption A7 there are at most k̄⌈q/Ndk̄⌉ elements of I in the interval [0, q/N].

There are L/N possible offsets to choose from. Since the offsets are spaced at 1/L, any

element x ∈ I can be within a distance of less than 1/2L for at most two offsets. The fraction

of offsets that are not useful is given by 2k̄⌈q/Ndk̄⌉/(L/N) ≤ 1−ph provided that L is chosen

as in Eq. (41) .

When L is chosen according to Lemma 20, we have hN (i) = (x, ⌊f̃N⌋), where h̃(i
N + j

L) =

(x, f̃). We use x instead of x̃ on purpose to emphasize again that the first component is

correct. It is crucial to observe that ⌊f̃N⌋ is equal to ⌊fN⌋. This is because P2 holds and

no evaluation point is within 1/L of any element of the infrastructure.

The preceding results imply that hN (i) can be computed efficiently and correctly.

Corollary 21: If Lemma 20 holds, then for all i with 0 ≤ i ≤ 2N2R2 the value hN (i) =

(x̃, ⌊f̃N⌋) is equal to (x, ⌊fN⌋), where h̃(i/N+j/L) = (x̃, f̃) and h(i/N+j/L) = (x, f).

Next we show that hN when evaluated over a finite interval induces a periodic state with

probability greater than or equal to 1/2, if we assume that no sampling point is too close to

any element of the infrastructure.

Lemma 22: Let N ≥ ⌈2/dmin⌉ and let |ψ〉 = q−1/2
∑q−1

i=0 |i〉|hN (i)〉. We assume that no

element of the infrastructure is too close to the sampling points i/N + j/L, where j and L

are chosen as in Lemma 20. Then, with probability greater than

pperiodic =

(

1− 1

Ndmin
− 1

NR

)(

1− 2NR

q

)

(43)

measuring the second register of |ψ〉 induces a periodic state with period NR,

|ψ〉k,NR =
1√
p

p−1
∑

ℓ=0

|⌊k + ℓNR⌉〉, (44)

where p is equal to one of the valuese⌊q/NR⌋ − 1, ⌊q/NR⌋, or ⌊q/NR⌋+ 1.

Proof: Denote the measurement outcome by (x,m). First, we show that if (x,m) satisfies

a certain condition, then the resulting post-measurement state is a pseudo-periodic state.

Second, we estimate the probability that we obtain such measurement outcome.

eNote that N ≥ ⌈2/dmin⌉, implies that NR > 2, and therefore, p must be at least ⌊q/NR⌋ − 1.

78 Quantum algorithms for one-dimensional infrastructures

Assume that hN (k) = (x,m) for some k ∈ {0, . . . , ⌊NR⌋}. Then, in ℓth period the sampling

points are at a distance αℓ +mℓ/N for mℓ ∈ {0, 1, . . . , ⌊N bs(x)⌋} from the element x. This

is illustrated in figure 4. Under the assumption of Lemma 20, 1/L ≤ αℓ ≤ 1/N − 1/L.

Consider now the sampling points for the zeroth period and some other period ℓ 6= 0.

x bs(x)

k − 1 k k + 1

(x, 0) (x, 1) (x,m)

α0

αℓ

Fig. 4. Evaluation points of hN (k) in the ℓth period.

Then, the following cases arise: 1/L ≤ αℓ ≤ α0, and α0 < αℓ ≤ 1/N − 1/L. As can be seen

from the figure above, if 1/L ≤ αℓ ≤ α0, then we must have hN (k) = hN (k + ⌊ℓNR⌋). On

the other hand, if α0 < αℓ ≤ 1/N − 1/L, then it is clear that hN (k) = hN (k+ ⌈ℓNR⌉) unless
k corresponds to the last sampling point between the elements x and y = bs(x) since in this

case hN (⌈k + ℓNR⌉) = (y, 0) 6= hN (k).

On the one hand, if k does not correspond to the last sampling point between two adjacent

elements of I, then for all ℓ ∈ {0, 1, . . . , p−1} we have hN (k+⌊ℓNR⌉) = hN (k). On the other

hand, if k corresponds to the last evaluation point between two elements, then the preimage

may not contain all ℓ.

We now estimate the probability of obtaining an outcome (x,m) such that hN (k) = (x,m)

and the offset k ∈ {0, . . . , ⌊NR⌋} does not correspond to the last evaluation point between

any two elements.

There are ⌊NR⌋ + 1 possible offsets in the zeroth period. At most ⌈R/dmin⌉ of these can

correspond to last evaluation points between two elements. We know that the preimage

of a “good” measurement outcome (x,m) contains at least ⌊q/NR⌋ − 1 elements. So, the

probability of obtaining a good measurement outcome is at least

pperiodic =
(⌊NR⌋+ 1− ⌈R/dmin⌉) · (⌊q/NR⌋ − 1)

q

≥ (NR−R/dmin − 1)(q/NR− 2)/q

=

(

1− 1

Ndmin
− 1

NR

)(

1− 2NR

q

)

.

4.2 Presentation and proof of the quantum algorithm

Theorem 23: (Estimating the circumference to arbitrary accuracy) Let I be an

infrastructure satisfying the assumptionsA1–A7. For any δ > 0, there is an efficient Las Vegas

algorithm that outputs an estimate R̂ of the circumference R of I such that |R−R̂| ≤ δ.

P. Sarvepalli, P. Wocjan 79

Let N ≥ ⌈2/dmin⌉, S = NR, ph the probability of evaluating hN correctly, and pperiodic the

probability of creating a periodic state, see Eq. (43). Then, the classical algorithm invokes

Algorithm 1 an expected O(1/qsuccess) number of times, where qsuccess is

qsuccess ≥
p2hp

2
periodic

2

(
1

32
− 2

S

)2(

1− 2S

q

)2(

sinc
(1

2
+

1

2S

)

− 2 sin(π/32)

)4

. (45)

The classical computations take poly(log(R), log(1/δ)) time.

Proof: We first create an pseudo-periodic state in C
q, where q is chosen as specified by

Algorithm 1. We create the superposition

|ψ〉 = 1√
q

q−1
∑

i=0

|i〉|hN (i)〉.

If the conditions of Lemma 20 are satisfied, then |ψ〉 will be created correctly with a probability

ph. Then by Lemma 22, measuring the second register of the state results in a periodic state

|ψ〉k,NR with probability ≥ 1/2, where p ∈ {⌊q/S⌋−1, ⌊q/S⌋, ⌊q/S⌋+1}. Algorithm 1 returns

L, a list of candidates for S, which contains an element Ŝ which satisfies |S − Ŝ| ≤ 1. The

probability of this event is

Pr(|S − Ŝ| ≤ 1) ≥ p2hp
2
periodicpsuccess , (46)

where psuccess is defined in Eq. (32). The factor of p2hp
2
periodic is due to the fact that the

Algorithm 1 needs to create a pair of the pseudo-periodic states.

Assume that |S − Ŝ| ≤ 1 is present (of course, we do not know this). This is equivalent to

|R−R′| ≤ 1/N , where R′ = Ŝ/N . We actually check for a slightly weaker condition namely,

|(R−R′) mod R| ≤ 1/N . But this suffices.

Recall that we always choose N ≥ ⌈2/dmin⌉. This implies that either h(R′) = (x0, f) with f ≤
1
N or h(R′) = (bs−1(x0), g) with g ≥ ∆bs(bs

−1(x0))−1/N . If we evaluate h̃, the approximate

version of h, at R′ with precision δprec ≤ 1
2N , then it remains the case that we can only obtain

either (x0, f̃) or (bs
−1(x0), g̃). If so we can conclude that |R−R′ mod R| ≤ 1/N .

Now assume that |(R−R′) mod R| > 1/N holds. In this case, we may or may not encounter

bs−1(x0) or x0 by evaluating h̃ at R′.

Because our test actually checked for |(R−R′) mod R| ≤ 1/N , we could have some spurious

solutions when R′ is a multiple of R. If this is the case, then we return the smallest such R′

as satisfying |R−R′| ≤ 1/N . We then obtain an estimate for R as follows.

Once we have encountered bs−1(x0) or x0, we can compute h̃(R′) with precision δ/2. If we

obtain (bs−1(x0), g̃), then we set

R̂ = R′ − g̃ +∆bs(bs
−1(x0)) , (47)

where we compute the distance ∆bs with precision δ/2. If we obtain (x0, f̃), then we set

R̂ = R′ − f̃ . All these computations can be carried out in poly(log(R), log(1/δ) time.

80 Quantum algorithms for one-dimensional infrastructures

The expected number of times we have to invoke the quantum algorithm to encounter bs−1(x0)

or x0 is clearly at most 1/qsuccess .

There is a subtle point worth spelling out. In each run of the algorithm, there are two

evaluations of hN . We assume that the same random shift is used in both these evaluations

and in any subsequent O(1/qsuccess) runs. Only if the algorithm fails in all these runs do we

change the offset and repeat the process.

Finally, it can be easily verified for sufficiently large S, say S ≥ 256, the lower bound on the

success probability is greater than a constant, irrespective of the size of the problem.

The proposed algorithm when specialized to number fields improves upon [4] in the following

aspects. The probability of success of the our algorithm is bounded from below by Eq. (32)

which is a constant 10−5. This is in contrast to [4] where the guaranteed success proba-

bility decreases as Ω(1/ log4(M)) (M ≥ NR) and is always less or equal to 10−9 (see [4,

Claim 3.5 and Lemma 3.4]). Our guaranteed success probability is also better than the one

in [6], which is only 2−26. Our higher guaranteed success probability implies that fewer rep-

etitions are required to boost the success probability to any desired level, thereby, leading to

lower gate complexity of the algorithm. In addition, our proposed algorithm requires a smaller

Quantum Fourier transform, thereby also lowering the space and time complexities.

5 Quantum Algorithm for Solving the Generalized Discrete Logarithm Problem

in Infrastructures

In this section we give a quantum algorithm for the discrete logarithm problem. Given an

element x of an infrastructure I = (X, d) we are required to find the distance of x, namely

d(x).

The function that is of interest in the computation of the discrete log problem is given by

g(a, b) : Z× R → I × R where g(a, r) = a · (x, 0) + h(r). By Lemma 15 we can compute the

approximate version g̃ of g, so that it satisfies properties P1, and P2.

As in the circumference case, we evaluate g̃ at carefully selected points to ensure that the first

component is always correct and quantize the second component. This resulting function is

gN (a, b) : Z× Z → I × Z

gN (a, b) =
(

ỹ,
⌊

f̃N
⌋)

, (48)

where g̃(a, b/N + j/L) = (ỹ, f̃).

The first component of gN is correct provided that Eq. (14) is satisfied for all evaluation

points of gN , i.e., none of the evaluation points are closer than 1/L to any element of the

infrastructure. As in the case of hN , we achieve this with high probability by applying a

random shift of the form j/L. The following lemma shows how to find a suitable L.

Lemma 24: (Offset for DLOG) Suppose I is an infrastructure that satisfies the assump-

P. Sarvepalli, P. Wocjan 81

tions A1-7. Let A ⊆ {0, 1, . . . , A− 1} and B ⊆ {0, 1, . . . , ⌊RN⌋ − 1}. Let

L ≥
⌈

2Ak̄

(1− pg)

⌈
1

dk̄

(

R− 1

N

)⌉⌉

N. (49)

Let j ∈ {0, 1, . . . , L/N−1} be chosen uniformly at random. Then, the probability that

∣
∣
∣
∣
(adx +

b

N
+
j

L
− dy) mod R

∣
∣
∣
∣
≥ 1

L
(50)

holds for all (a, b) ∈ A× B and all y ∈ X is greater or equal to pg.

Proof: Consider a fixed a ∈ A, then all the points adx+b/N+j/L are contained in the interval

[adx + j/L, adx + (⌊RN − 1⌋)/N + j/L]. This interval contains at most k̄⌈(R− 1/N)/dk̄⌉
elements y ∈ X since its length is ⌊RN − 1⌋/N ≤ (R− 1/N). Observe that no y ∈ X can be

closer than 1/L to any evaluation point of the above form for more than two offsets.

Hence, if we consider all a ∈ A, then at most 2Ak̄⌈(R− 1/N)/dk̄⌉ offsets are bad. Assuming

L as stated above, this implies that the probability that there is at least one element and

at least one evaluation point that are closer than 1/L to each other is at most (2Ak̄(R −
1/N)/dk̄)/(L/N) ≤ 1− pg .

We always compute R̂ with sufficiently high precision so that |R̂−R| < 1/(2N) holds. Then,

we have R̂ > R−1/2N and a suitable choice for L would be
⌈

2Ak̄
⌈

R̂/dk̄

⌉

/(1− pg)
⌉

N .

In the quantum algorithm for approximating the circumference, we encounter superpositions

of the form:

|ψ〉 = 1
√

|Ax,m|
∑

a∈Ax,m

|a〉|(x,m)〉,

whereAx,m has the special form {⌊k + jRN⌉ : j = 0, . . . , p} and (x,m) is equal to hN (k).

A somewhat similar type of quantum state appears in the discrete logarithm problem. A

major difference is that it involves a function of two variables

|ψ〉 = 1
√

|Ay,ℓ|
∑

(a,b)∈J

|a〉|b〉|(y, ℓ)〉,

where Ay,ℓ is now the preimage of (y, ℓ) ∈ im gN , i.e., gN (a, b) = (y, ℓ) for (a, b) ∈ Ay,ℓ.

The intuition based on Lemma 12, which characterizes the kernel of the perfect function g,

suggests that the elements in Ay,ℓ lie “close” to a line whose slope encodes the distance of

the element x. This statement is proved in Lemma 25, which establishes the exact relation

between a and b for gN . Lemma 26 establishes upper and lower bounds on the size of the

preimage of (y, ℓ).

The intuition based on the quantum algorithm for the discrete logarithm problem in finite

cyclic groups suggests that we can extract the slope by Fourier sampling. This statement is

82 Quantum algorithms for one-dimensional infrastructures

proved in Theorem 27.

Lemma 25: Let ∅ 6= A ⊆ {0, 1, 2, . . . , A − 1} where A is a positive integer and B ⊆
{0, 1, . . . , ⌊RN⌋ − 1}. Denote by gN (A× B) the image of the function gN , i.e.,

gN (A× B) = {gN (a, b) : a ∈ A , b ∈ B} . (51)

For each (y, ℓ) ∈ gN (A× B), the preimage g−1
N (y, ℓ) has the form

g−1
N (y, ℓ) = {(a, ba) : a ∈ Ay,ℓ} , (52)

where Ay,ℓ ⊆ A and assuming that a random shift of j/L has been applied to the evaluation

points, the values ba satisfy the condition

⌊

adx + ba
N + j

L

R

⌋

R+ dy + γa +
ℓ

N
= adx +

ba
N

+
j

L
(53)

with 1/L ≤ γa ≤ 1/N − 1/L. The cardinality of the image satisfies the inequalities

|B| ≤ |gN (A× B)| ≤ ⌊R(N + 1/dmin)⌋ . (54)

Proof: Let (y, ℓ) ∈ gN (A× B) be arbitrary. Suppose that (a, ba) ∈ g−1
N (y, ℓ). Then we must

have

dy +
ℓ

N
+ γa ≡ adx +

ba
N

+
j

L
mod R

= adx +
ba
N

+
j

L
−
⌊

adx + ba
N + j

L

R

⌋

R,

where 1/L ≤ γa ≤ 1/N − 1/L. This constraint on γa is due to the fact that none of the

sampling points are within a distance of less than 1/L from the elements of the infrastruc-

ture.

The second component ℓ is bounded from above by

ℓ ≤ N∆bs(y)

since the inequality

⌊

adx + ba
N + j

L

R

⌋

R+ dy + γa +
ℓ

N
<

⌊

adx + ba
N + j

L

R

⌋

R+ dy +∆bs(y)

holds for all (a, ba) with gN (a, ba) = (y, ℓ). This implies that the number of images whose

first component is equal to y is at most N∆bs(y) + 1. Summing over all elements of the

infrastructure yields the upper bound RN+R/dmin. We can improve this to ⌊R(N + 1/dmin)⌋
since the cardinality of gN (A × B) is an integer. Hence, |gN (A × B)| ≤ ⌊R(N + 1/dmin)⌋
.

P. Sarvepalli, P. Wocjan 83

A condition similar to Eq. (54) has been established in [4] for the principal ideal problem.

The condition as derived in [4] may not be satisfied for some infrastructures. Therefore, we

relax this constraint and clarify certain crucial assumptions on the size of the preimage in

Lemma 26.

Lemma 26: Let A and B be as in Lemma 25. Consider the probability distribution p = (py,ℓ)

on gN (A× B) where the probabilities of the elementary events (y, ℓ) are given by

py,ℓ =
|g−1

N (y, ℓ)|
|A||B| . (55)

Let X be the random variable that takes on the value |g−1
N (y, ℓ)| if the event (y, ℓ) occurs.

Then, we have

Pr
(
X ≥ κ|A|

)
≥ 1

1− κ

(|B|
⌊R(N + 1/dmin)⌋

− κ

)

(56)

for any κ ∈ (0, 1). The expected value E[X] is bounded from below by

E[X] =
∑

(y,ℓ)

py,ℓ |g−1
N (y, ℓ)|

= |A||B|
∑

(y,ℓ)

p2y,ℓ

≥ |A||B| 1

|gN (A× B)|

≥ |A||B| 1

⌊R(N + 1/dmin)⌋
.

We used that the sum
∑
p2y,ℓ is minimized when the probability distribution is uniform over

gN (A× B) and that |gN (A× B)| ≤ ⌊R(N + 1/dmin)⌋.

Let t = Pr(X ≥ κE[X]). Then, we must have

t|A|+ (1− t)κ|A| ≥ E[X] ≥ |A| |B|/⌊R(N + 1/dmin)⌋

since X is bounded by |A| from above. The desired lower bound on t follows now easily

Theorem 27: Let I be an infrastructure containing at least 3 elements and satisfying the

axioms A1–A7. For all x ∈ X, Algorithm 2 returns an integer d̂x such that |dx − d̂x| ≤ 1,

where dx is the distance of x.

Let pg be the probability of correctly evaluating gN and κ a real number with (1−sinc(3/4))/(1−
2 sin(π/32)) < κ < 1− 2/(2q+ 1). Then, the success probability of the algorithm is Ω(1) and

at least

pg max
κ

(

1− 2

(2q + 1)(1− κ)

)2
κ2

2

(

1− 2 sin(
π

32
)− (1− sinc(3/4))

κ

)4(
1

64
− 2

B

)2

(57)

84 Quantum algorithms for one-dimensional infrastructures

Algorithm 2 Generalized discrete logarithm.

1: Choose M ≥ ⌈2R+ 1⌉.
2: Determine R̂ and N such that

∣
∣
∣M
⌊

R̂N
⌉

−MRN
∣
∣
∣ ≤ 1/2 and N = q⌈2/dmin⌉ for a

positive integer with q ≤ 4M . Set B =
⌊

R̂N
⌉

and A =MB.

3: Choose L =
⌈

2Ak̄
⌈

R̂/dk̄

⌉

/(1− pg)
⌉

N .

4: Evaluate gN in superposition over {0, 1 . . . , A− 1} × {0, 1, . . . , B − 2} twice.
5: Fourier sample over ZA × ZB to obtain (h1, k1) and (h2, k2).
6: Find integers s, t such that sk1 + tk2 = 1, using the extended Euclidean algorithm.
7: Compute r = sh1+th2

NM

8: Return d̂x = r −
⌊

r/R̂
⌋

R̂.

where B =
⌊

R̂N
⌉

and q is chosen as in Algorithm 2.

Proof: We compute an estimate R̂ such that

|R− R̂| ≤ ǫ ≤ 1

16M2⌈2/dmin⌉
. (58)

We now show that there is an efficient method that determines positive integers B =
⌊

R̂N
⌉

and N such that

|MB −MNR| ≤ 1

2
. (59)

To do this, we bound this deviation by

|MB −MNR| = |M⌊NR̂⌉ −MNR̂+MNR̂−MNR| (60)

≤ |M⌊NR̂⌉ −MNR̂|+MNǫ (61)

The efficient method in Lemma A.2 gives us a convergent p/q with q ≤ 4M such that

∣
∣
∣
∣

p

q
− R̂⌈2/dmin⌉

∣
∣
∣
∣
≤ 1

4Mq
. (62)

The numerator p has the form
⌊

R̂⌈2/dmin⌉q
⌉

. The bound in Eq. (62) and the form of the

numerator directly imply that N = q⌈2/dmin⌉ has the desired properties. Both terms in

Eq. (61) are smaller than 1/4 for this choice.

Observe that B − 2 =
⌊

R̂N
⌉

− 2 ≤ ⌊RN⌋ − 1 because R̂ has been computed with such high

precision. We define the sets B = {0, 1, . . . , B − 2} and A = {0, 1, . . . , A− 1}.
We create the superposition

1
√

|A||B|
∑

a∈A

∑

b∈B

|a〉|b〉|gN (a, b)〉 .

P. Sarvepalli, P. Wocjan 85

We know that with probability greater or equal to pg all the values gN (a, b) are correct.

We measure the third register. Denote the outcome by (y, ℓ). Lemma 26, guarantees that

|Ay,ℓ| ≥ κ|A| holds with probability greater or equal to

pκ ≥ 1

1− κ

(|B|
⌊R(N + 1/dmin)⌋

− κ

)

. (63)

Since N = q⌈2/dmin⌉, we can bound pκ

pκ ≥ 1

1− κ

(
NR− 3

NR(1 + 1/2q)
− κ

)

, (64)

≥ 1

1− κ

(
2q − 1

2q + 1
− κ

)

= 1− 2

(2q + 1)(1− κ)
, (65)

where we used the assumption that I has at least 3 elements and therefore R > 3dmin, and

NR > 6q.

Lemma 25 implies that the post-measurement state has the form

1
√

|Ay,ℓ|
∑

a∈Ay,ℓ

|a〉|ba〉 (66)

and there exists a unique ba for each a ∈ Ay,ℓ such that

ba = −adxN +

⌊

adx + ba
N + j

L

R

⌋

RN + dyN + γaN + ℓ− jN

L
, (67)

where 1/L ≤ γa ≤ 1/N − 1/L. We rewrite the condition on ba as

ba = −adxN +

⌊

adx + ba
N + j

L

R

⌋

RN + γaN +∆ , (68)

where ∆ = dyN + ℓ− jN/L is constant.

We apply the quantum Fourier transform over ZA × ZB to the first registers and obtain the

superposition

1√
A

1√
B

∑

h∈A

B−1∑

k=0

1
√

|Ay,ℓ|
∑

a∈Ay,ℓ

ωah+Mbk
A |h〉|k〉 . (69)

The amplitude of the term |h〉|k〉 is given by

1√
A

1√
B

1
√

|Ay,ℓ|
∑

a∈Ay,ℓ

ωah+Mbak
A . (70)

The exponent of ωA in the previous equation is

ah+Mk

(

−adxN +

⌊

adx + γa +
ba
N + j/L

R

⌋

NR+ γaN +∆

)

. (71)

86 Quantum algorithms for one-dimensional infrastructures

The term Mk∆ is independent of a and can be dropped from the exponent since it does not

change the probability distribution.

We now show that we obtain a sample (h, k) such that

h = kdxMN −
⌊
kdx
R

⌋

MNR+ ǫh with |ǫh| ≤ 1
2 (72)

holds with high probability.f

As shown previously, N is chosen such that MNR−M
⌊

NR̂
⌉

= η with |η| ≤ 1
2 . To simplify

the notation, we use x to denote the distance dx of the element x throughout the rest of the

proof. The exponent of ωA modulo A is

a

(

kxMN −
⌊
kx

R

⌋

MNR+ ǫh

)

+Mk

(

−axN +

⌊

ax+ γa +
ba
N + j/L

R

⌋

NR+ γaN

)

=

(

k

⌈

ax+ γa +
ba
N + j/L

R

⌉

− a

⌊
kx

R

⌋)

MNR+ ǫha+MNγak

≡ η

(

k

⌈

ax+ γa +
ba
N + j/L

R

⌉

− a

⌊
kx

R

⌋)

+ ǫha+MNγak

= η

(

k
(ax

R
+ δa

)

− a

(
kx

R
+ ζ

))

+ ǫha+Mkγa

= ηδak − ηζa+ ǫha+MNγak

= δa+ θa . (73)

The (constant) factor δ := ǫh − ηζ in front of a is less than 3/4 in absolute value (ǫh ≤ 1
2 ,

ζ < 1 and η < 1
2). Assume we measure k ≤ ⌊B/64⌋ − 1. Then, for each a the term

θa := (ηδa+MNγa)k is less than A/32 in absolute value (since |δa| < 2 and |γaN | < 1).

We can now apply Lemma 18, to bound the probability of measuring (h, k) as in Eq. (72);

we denote this probability by phk. Note that A corresponds to n, the summation index a to

j and Ay,ℓ to the set J in the Lemma 18.

The probability phk is bounded from below by

phk ≥ |Ay,ℓ|
AB

(

1− 2 sin(π/32)−
(

1− sinc(3/4)
) 1

κ

)2

, (74)

fThe reason that we consider samples that have this particular form is as follows. Rearranging
the terms in the exponent we see that the sum is dominated by the terms ah − (kdx/R)MNR +
k⌊(adx + γa + ba/Nj/L)/R⌋MNR. The exponent can be approximated as ah − (kdx/R − ⌊adx/R⌋)MNR.
Therefore, the probability of (h, k) which is determined by the geometric sum

1

ABAy,ℓ

∣

∣

∣

∣

∣

∣

∑

a∈Ay,ℓ

ωah+Mbak

∣

∣

∣

∣

∣

∣

2

≈
1

ABAy,ℓ

∣

∣

∣

∣

∣

∣

∑

a∈Ay,ℓ

ω
a(h−(kdx

R
−

⌊

kdx
R

⌋

)MNR

∣

∣

∣

∣

∣

∣

2

is large when h = (kdx/R− ⌊kdx/R⌋)MNR+ ǫh, where ǫh is to ensure that h is an integer.

P. Sarvepalli, P. Wocjan 87

where cδ is as in Lemma 18.

The probability of any good pair (h, k) (with the restriction k ≤ ⌊B/64⌋−1) is bounded from

below by

κ

(

1− 2 sin(π/32)−
(

1− sinc(3/4)
) 1

κ

)2(
1

64
− 2

B

)

, (75)

where we used that |Ay,ℓ| ≥ κ|A| and ⌊B/64− 1⌋ ≥ B/64− 2.

We now show how to obtain an estimate of the distance of x from two good pairs (h1, k1) and

(h2, k2) with the additional restriction that k1, k2 are coprime. This is based on the method

in [4]. We have hi = kixNM − ⌊kix/R⌋RNM + ǫi with |ǫi| ≤ 1
2 . Since k1, k2 are coprime we

know there exist integers s, t such that sk1+ tk2 = 1, which can be computed by the extended

Euclidean algorithm. Let r = (sh1 + th2)/MN , then we have

sh1 + th2
MN

= sk1x− s

⌊
k1x

R

⌋

R+
sǫ1
MN

+ tk2x− t

⌊
k2x

R

⌋

R+
tǫ2
MN

= (sk1 + tk2)x− s

⌊
k1x

R

⌋

R− t

⌊
k2x

R

⌋

R+
sǫ1 + tǫ2
MN

= x− s

⌊
k1x

R

⌋

R− t

⌊
k2x

R

⌋

R+
sǫ1 + tǫ2
MN

= x−mR+ ǫr,

where ǫr = (sǫ1 + tǫ2)/MN . Since |s|, |t| ≤ max{k1, k2}, and k1, k2 ≤
[

R̂N
]

/32, it follows

that ǫr = sǫ1+tǫ2
MN ≤ ⌊RN⌋

MN < 1/2 by our choice of M . Furthermore, |m| ≤ NR/8, as |r| ≤
2M [NR̂][NR̂]/32MN < NR2/8.

We can estimate x by reducing r modulo R̂ to bring it within the range [0, R̂). This gives us

an estimate x̂ = x−m(R− R̂) + ǫr and the error |x− x̂| can be bounded as follows:

|x− x̂| ≤ |m(R− R̂)|+ ǫr ≤ |mǫ|+ |ǫr|

≤ NR

8

1

16M2⌈2/dmin⌉
+ |ǫr| ≤ 1,

where we used the fact that M > 2R and N ≤ 4M⌈2/dmin⌉ and |ǫr| < 1/2.

The probability of measuring two good samples (h1, k1) and (h2, k2) such that k1, k2 are

coprime is given by

psuccess ≥
1

2
(pκphk(1/64− 2/B))2pg, (76)

where pg is the probability of evaluating gN successfully .

We make the following observations regarding the success probability of the quantum al-

gorithm. First, a simpler lower bound on the success probability can be obtained without

having to maximize over κ in Eq. (57), by evaluating this expression at κ = (κ1 + κ2)/2,

where κ1 = (1 − cδ)/(1 − 2 sin(π/32)) and κ2 = 1− 2/(2q + 1). We also note the expression

can be further simplified to be completely independent of the size of the infrastructure as

follows.

88 Quantum algorithms for one-dimensional infrastructures

Second, under the assumption that R ≥ 256 and q ≥ 8, we can bound (1/64− 2/B) ≥ 1/128

and 2/(2q + 1) ≤ 1/8, and the lower bound on success probability simplifies to a constant

independent of the problem size.

max
κ

pg

(

1− 1

8(1− κ)

)2
κ2

2

(

1− 2 sin(
π

32
)− (1− sinc(3/4))

κ

)4(
1

128

)2

(77)

Although the expressions for the success probability may appear to be a little unwieldy, we

hope they provide insight into the various factors affecting the success probability.

Third, we can boost the success probability (strictly speaking, the lower bound on it) by

increasing q.

Fourth, we can truly improve upon the success probability by extending the set of usable

observations (h1, k1) and (h2, k2). Currently, we require that ki < ⌊B/64⌋, but this can be

relaxed significantly.

Acknowledgements

We would like to thank Felix Fontein for helpful discussions on infrastructures and suggestions

to improve the paper. P.W. thanks Joseph Brennen, Chen-Fu Chiang, and (Raymond) Yiu Yu

Ho for helpful discussions. P.S. thanks Robert Raussendorf for his generous support.

P.W. gratefully acknowledges the support from the NSF grant CCF-0726771 and the NSF

CAREER Award CCF-0746600. P.S. was sponsored by grants from CIFAR, MITACS and

NSERC.

References

1. P. W. Shor, (1997), Polynomial-time algorithms for prime factorization and discrete logarithms

on a quantum computer, Siam Journal on Computing, 26:1484–1509.
2. R. Jozsa, (2001), Quantum factoring, discrete logarithms, and the hidden subgroup problem, Com-

puting in Science & Engineering, 3:34–43.
3. S. Hallgren, (2002), Polynomial time quantum algorithm for Pell’s equation and the principal ideal

problem, In Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pages
653–658.

4. S. Hallgren, (2007), Polynomial-time quantum algorithms for Pell’s equation and the principal

ideal problem, Journal of the ACM, 54(1):1–19.
5. R. Jozsa, (2003), Quantum computation in algebraic number theory: Hallgren’s efficient algorithm

for solving Pell’s equation, Annals. of Physics, 306:241–279.
6. A. Schmidt, (2009), Quantum algorithms for many-to-one functions to solve the regulator and the

principal ideal problem, arXiv:0912.4807.
7. Arthur Schmidt and Ulrich Vollmer, (2004), Polynomial time quantum algorithm for the com-

putation of the unit group of a number field, Technical Report TI-1/04, Technische Universität
Darmstadt.

8. A. Schmidt and U. Vollmer, (2005), Polynomial time quantum algorithm for the computation of

the unit group of a number field, In Proceedings of the 37th Annual ACM Symposium on Theory
of Computing, pages 475–480.

P. Sarvepalli, P. Wocjan 89

9. S. Hallgren, (2005), Polynomial time quantum algorithm for the computation of the unit group of

a number field, In Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
pages 475–480.

10. F. Fontein, (2009), The infrastructure of a global field and baby step-giant step algorithms, Dis-
sertation, Universität Zürich.

11. D. Lorenzini, (1996), An Invitation to Arithmetic Geometry, volume 9 of Graduate Studies in
Mathematics. American Mathematical Society.

12. J. Buchmann and H. C. Williams, (1988), On the infrastructure of the principal ideal class of an

algebraic number field of unit rank one, Mathematics of Computation, 50(182):569–579.
13. F. Fontein and P. Wocjan, (2011), Quantum algorithm for computing the period lattice of an

infrastructure, arXiv:1111.1348.
14. F. Fontein, (2008), Groups from cyclic infrastructures and Pohlig-Hellman in certain infrastruc-

tures, arXiv:0803.2132.
15. F. Fontein, (2009), The infrastructures of a global field of arbitrary unit rank, arXiv:0809.1685.
16. F. Fontein, (2009), Infrastructures and global fields, http://math.fontein.de/infrastructures/.
17. J. W. Sands, (1991), Generalization of a theorem by Siegel, Acta Arithmetica, 58(1):47–57.
18. V. Arvind and P. Kurur Piyush, (2004) On the complexity of computing units in a number field, In

Algorithmic Number Theory, Proc. of 6th International Symposium, ANTS-VI, Burlington, VT,
June 2004, number 3076 in Lecture Notes on Computer Science, pages 72–86.

19. C. Thiel, (1995), Short proofs using compact representations of algebraic integers, Journal of
Complexity, 11:310–329.

20. F. Fontein, (2011), Personal communication.
21. R. Schoof, (2008), Computing Arakelov class groups, Algorithmic Number Theory, MSRI Publi-

cations, Vol. 44, pages 447–495,
22. P. Kaye, R. Laflamme, and M. Mosca, (2007), An introduction to quantum computing. Oxford

University Press.
23. S. R. Finch, (2003), Mathematical constants. Cambridge University Press.
24. D. Burton, (2010), Elementary Number Theory. McGraw-Hill, 7th edition.

Appendix A

We prove here some auxiliary results.

Lemma A.1: Let a and b be two random numbers chosen uniformly at random from

{1, . . . , N}. The probability that a and b are coprime is bounded from below by 1/2,

i.e.,

Pr(gcd(a, b) = 1) >
1

2
. (A.1)

Proof: Let p be an arbitrary prime. Then the probability that p divides a, denoted Pr(p | a),
is given by

Pr(p | a) =
⌊N

p ⌋
N

≤ 1

p
.

Thus,

Pr(p | gcd(a, b)) ≤ 1

p2
.

90 Quantum algorithms for one-dimensional infrastructures

We obtain an upper bound on the probability that there is a prime dividing the greatest

common divisor of a and b with the help of the union bound. This yields

Pr(gcd(a, b) > 1) ≤
∑

p

1

p2
,

where the summation index p ranges over all primes. The sum of squared reciprocals of primes

is known to be
∑

p

1

p2
=

∞∑

k=1

µ(k)

k
ln ζ(2k) = 0.4522474200 . . . ,

where µ denotes the Möbius mu function and ζ the Riemann zeta function [23, page 95].

Finally, we obtain the desired result

Pr(gcd(a, b) = 1) ≥ 1−
∑

p

1

p2
>

1

2

by considering the complementary event .

We now prove a result related to continued fractions. The reader can find more details about

continued fractions in [24].

Lemma A.2: Let pi/qi denote the convergents of a real number r ∈ R, for i ∈ N. Then for

any given constant c > 1, there exists a convergent pℓ/qℓ such that |r − pℓ/qℓ| < 1/cqℓ and

qℓ ≤ c.

Proof: Since c > 1 = q0 and qi form a monotonically increasing sequence for i > 1, there

exists such a convergent pℓ/qℓ such that qℓ ≤ c < qℓ+1 unless r has a finite continued fraction

expansion with all the qi < c. If the latter case occurs, then it follows that there exists a

convergent pℓ/qℓ such that r = pℓ/qℓ therefore for this convergent |r − p/q| = 0 < 1/c and

the statement of the lemma holds. Otherwise, r has a continued fraction expansion such that

qℓ ≤ c < qℓ+1. We know that the convergents satisfy the relation

∣
∣
∣
∣
r − pi

qi

∣
∣
∣
∣
<

1

qiqi+1
.

Therefore, we must have

∣
∣
∣
∣
r − pℓ

qℓ

∣
∣
∣
∣
<

1

qℓqℓ+1
<

1

cqℓ
,

where we used the fact that qℓ+1 > c .

