
Quantum Information and Computation, Vol. 14, No. 1&2 (2014) 0001–0030
c© Rinton Press

GATE-EFFICIENT DISCRETE SIMULATIONS OF

CONTINUOUS-TIME QUANTUM QUERY ALGORITHMS

DOMINIC W. BERRY

Department of Physics and Astronomy, Macquarie University

Sydney, NSW 2109, Australia

RICHARD CLEVE

David R. Cheriton School of Computer Science and Institute for Quantum Computing, University of Waterloo

Waterloo, Ontario N2L 3G1, Canada

SEVAG GHARIBIAN

Electrical Engineering & Computer Sciences, University of California

Berkeley, California 94720, USA

Received November 21, 2012
Revised May 15, 2013

We show how to efficiently simulate continuous-time quantum query algorithms that run
in time T in a manner that preserves the query complexity (within a polylogarithmic
factor) while also incurring a small overhead cost in the total number of gates between
queries. By small overhead, we mean T within a factor that is polylogarithmic in terms

of T and a cost measure that reflects the cost of computing the driving Hamiltonian.
This permits any continuous-time quantum algorithm based on an efficiently computable
driving Hamiltonian to be converted into a gate-efficient algorithm with similar running

time.

Keywords: Quantum computation, quantum query complexity

Communicated by: R Jozsa & R Wolf

1 Introduction and Summary of Result

The standard quantum query model can be represented as an oracle that performs the unitary

operation |j, k〉 7→ |j, k⊕xj〉, where x1x2 . . . xL ∈ {0, 1}L is the data, and ⊕ indicates modular

addition. A convenient representation of the oracle is given by removing the ancilla, and

having the oracle give a phase shift, so the unitary operation for the oracle, Q, acts as

Q|j〉 = (−1)xj |j〉. The fractional query model is a natural variant of this, where the operation

is Qλ|j〉 = (−1)λxj |j〉 = eiπλxj |j〉, and λ may be taken to be arbitrarily small (but positive).

In the fractional query model, each size-λ query is taken to have cost λ. The fractional query

model potentially provides more power than the standard query model, because additional

unitary operations (which are independent of xj) can be performed in between the fractional

queries.

Informally, the continuous-time query model [1] arises from the fractional query model in

the limit as λ approaches zero. More formally, in the continuous-time query model, the oracle

operation is replaced with an oracle Hamiltonian, HQ, which acts as HQ|j〉 = xj |j〉. Evolving

1

2 Gate-efficient discrete simulations of continuous-time quantum query algorithms

under this Hamiltonian for time π would result in a full discrete query. The additional

operations are replaced with a driving Hamiltonian independent of xj , which we denote H

(H may be time-dependent). The algorithm then becomes Hamiltonian evolution with the

sum of the oracle and driving Hamiltonians, and the complexity is quantified by the time of

evolution. The continuous-time and fractional query models are equivalent in the sense that

each can simulate the other (to any desired level of accuracy) with the same query cost. For

example, a continuous-time query algorithm can be approximated using fractional queries via

a Lie-Trotter formula [2]. The continuous-time and discrete query models are also effectively

equivalent, in that one can convert from one to the other with at most a polylogarithmic

overhead in the query cost [2].

Presently, we are concerned not just with the query cost, but with the cost in terms of

the number of additional gates and ancilla qubits needed. We show that any continuous-time

quantum query algorithm whose total query time is T and whose driving Hamiltonian is

implementable with G elementary gates (in a sense defined in Section 3) can be simulated by

a discrete-query quantum algorithm using the following resources:

• O(T log T/ log log T) queries

• O(TG log(T) + T log3(‖H‖T)) elementary gates [or O(TG log(T) + TG3) in terms of

just T and G]

• O(log3(‖H‖T)) qubits of space [or O(G3)].

This extends the previous result [2] where the query cost is the same, but where the orders

of the second and third resource costs are at least T 2polylogT and TpolylogT respectively.

The present result can also be compared with the result [3] where the query cost is superior

to ours, O(T) (which is asymptotically optimal), but whose methodology does not (as far

as we know) yield an efficient gate construction from an efficiently implementable driving

Hamiltonian.

Another advantage of our result is that it provides an exponential improvement in the

scaling (of the number of gates and ancilla qubits) with ‖H‖ over that in [2]. Here the

number of gates is polylogarithmic in ‖H‖, whereas it is superlinear in ‖H‖ in [2]. This is

important, as the norm of the driving Hamiltonian can potentially be large.

2 Significance to Quantum Computation

The continuous-time query model is an important tool for designing algorithms, and for

example yielded the algorithm for AND-OR tree evaluation [4]. The difficulty with continuous-

time quantum algorithms is that, in order to implement them on quantum computers, these

abstract query algorithms need to be translated into concrete algorithms with subroutines

substituted for the black-box queriesa. In these circumstances, what matters is the total gate

complexity, which can be large if the cost of the operations performed between the queries is

large, even if the number of queries is small. The contribution of our result is that it provides

aA query is typically not something that could be physically implemented directly via continuous-time Hamil-
tonian evolution, as in an analog quantum computer. A query corresponds to the coherent evaluation of a
classical function on several qubits, and requires several quantum gates to implement, regardless of whether
it is a full query or a fractional query.

D. W. Berry, R. Cleve, and S. Gharibian 3

a systematic way to obtain a gate-efficient discrete-query algorithm from any continuous-

time query algorithm where the driving Hamiltonian can be efficiently implemented. That

is, whenever the implementation cost of the driving Hamiltonian is small, the total gate

complexity is not much more than the query complexity times the cost of implementing each

query.

Consider applying the continuous-time quantum algorithm in [4] for AND-OR tree evalu-

ation to evaluate expressions of the form

∃x1∀x2∃x3 · · ·SxLf(x1, x2, . . . , xL), (1)

where one is given a polynomial (in L) size circuit implementation of f : {0, 1}L → {0, 1}.
The symbol S represents ∀ for even L, and ∃ for odd L. This corresponds to evaluating a

balanced binary AND-OR tree of size N = 2L. A continuous-time query algorithm achieving

time O(
√
N) cannot be simulated directly from f , because a small λ-fractional query to f

cannot be computed at cost proportional to λ; the algorithm must be efficiently translated

into the discrete-query framework to be implementable. But if we substitute the parameters

into the simulation in [2], we obtain a gate cost of order NpolylogN (losing the square-root

speedup) and consume order
√
NpolylogN qubits of space. The simulation in [3] does not

appear to yield any bounds less than O(N) on the gate cost. However, our present simulation

results in N1/2+o(1) gates and O(polylogN) space (using the fact that the driving Hamiltonian

in [4] can be implemented with No(1) gates). We remark that, for this particular example, a

better simulation that is specific to AND-OR tree evaluation (that was discovered after [4])

is known [5, 6].

3 Precise Statement of Main Result

Prior to stating our main result, we give a precise definition of the implementation cost

of a Hamiltonian acting on l qubits, which is the cost of realising the unitary operation

corresponding to evolution under the Hamiltonian from a start time to a finish time. A

preliminary idealised definition is as a unitary operation with the following properties. It

acts on three registers: a start time, a finish time and an l-qubit state. For any start and

finish times ts and tf , and any l-qubit state |ψ〉, the unitary operation maps |ts〉|tf 〉|ψ〉 to

|ts〉|tf 〉|ψ′〉, where |ψ′〉 is the state that results when |ψ〉 evolves under H from time ts to time

tf . Assuming that all three registers are finite-dimensional, this can be denoted as a gate

as in Fig. 1. We will not require the unitary to be implemented perfectly. We introduce a

precision parameter ε′, and permit the unitary evolution to be approximated within ε′. This

leads to the following definition.

Definition 1 Let H be a Hamiltonian acting on l qubits. Define H to be implementable

within precision ε′ with G gates if the following unitary operation can be implemented within

precision ε′ with G elementary gates. These elementary gates can be taken to be any unitary

gates acting on at most two qubits. The unitary acts on three registers: a start time and

finish time, and l qubits set to the initial state. The unitary maps |ts〉|tf 〉|ψ〉 to |ts〉|tf 〉|ψ′〉,
where |ψ′〉 is the state that results when |ψ〉 evolves under H from time ts to time tf . By

approximating within ε′, we mean with respect to the completely bounded norm.

We are now ready to state our main result.

4 Gate-efficient discrete simulations of continuous-time quantum query algorithms

|ts〉 |ts〉

|tf〉 |tf〉

H|ψ〉 |ψ′〉

Fig. 1. Controlled evolution under Hamiltonian H, with start time ts, finish time tf , and target

state |ψ〉.

Theorem 1 (Main) Let H(t) be a driving Hamiltonian that is approximately imple-

mentable within precision O(1/T) using G gates. Then the continuous-time query algorithm

can be simulated with constant error by a discrete-query quantum algorithm using the following

resources:

• O(T log T/ log log T) queries

• O(TG log(T) + T log3(‖H‖T)) elementary gates

• O(log3(‖H‖T)) qubits of space.

In particular, when G is polylog(T), this is Õ(T) queries, Õ(T) elementary gates, and

polylog(T) qubits of space. The norm ‖H‖ is taken to be ‖H‖ := supt∈[0,T] ‖H(t)‖ for time-

dependent H(t). Because the gate complexity scales linearly in G, we require the driving

Hamiltonian to be simulatable efficiently in order for the simulation to be gate-efficient. If,

for example, G scaled linearly in ‖H‖, then the gate complexity would be linear in ‖H‖T ,
which is similar to the complexity obtained by product formulae [7]. On the other hand, we

have a lower bound of G = Ω(log(‖H‖T)) (see Section 4.6). As a result, we could express the

gate complexity as O(TG log(T) + TG3), and the number of qubits of space as O(G3).

The remaining sections explain our algorithm, with the proof of Theorem 1 in Section 6.

4 Compressed CGMSY Construction

We will summarise the construction in [2], and then show how to make it more efficient by

compressing the control registers. Before doing so, we state the notation used throughout

this paper.

Notation. We denote the set of linear operators acting on complex Euclidean space X
as L(X). The spectral norm of operator A is ‖A ‖ := max{‖A|v〉 ‖2 : ‖ |v〉 ‖2 = 1}. The

norm of time dependent operator A(t) is given by ‖A‖ = supt ‖A(t)‖. The completely

bounded norm, or diamond norm, of superoperator Φ : L(X) 7→ L(Y) is defined as ‖Φ ‖♦ =∥∥Φ⊗ IL(X)

∥∥
1
, where the superoperator trace-norm is given by ‖Φ ‖1 = max

{
‖Φ(X) ‖tr |

X ∈ L(X), ‖X ‖tr ≤ 1
}
. All logarithms are taken to base 2. We define [m] := {1, . . . ,m}.

The tensor product of many zero computational basis states will be represented in compact

form as |0ℓ〉 := |0〉⊗ℓ.

D. W. Berry, R. Cleve, and S. Gharibian 5

4.1 Overview of the CGMSY Construction [2]

Our result is obtained by simulating the construction in [2], but by representing some of the

qubits in a highly compressed form. This compressed form was known by the authors of [2],

but it was not known that all of the steps of the construction can be carried out within the

compressed form—especially the measurement of control qubits.

The construction in [2] begins with a continuous-time query algorithm with total query

cost T . The overall Hamiltonian for the continuous-time query algorithm is a sum of the

oracle Hamiltonian and the driving Hamiltonian, so the evolution can be approximated via

a Lie-Trotter decomposition. As above, it is assumed that the driving Hamiltonian can

be simulated, and the evolution under the oracle Hamiltonian for a short time becomes a

fractional-time query.

The total time T is partitioned into segments corresponding to time intervals of the form

[t0, t0 +1/4], and with m of the Lie-Trotter time intervals within each segment. We call each

length 1/4 time interval a segment, to distinguish them from other time intervals considered.

In each of the Lie-Trotter time intervals there is a fractional query of size 1/4m. Here, m can

be chosen as a power of two without loss of generality; we henceforth assume this is the case.

In this work we consider the simulation of each of these segments.

Within each segment, there are m fractional queries which we wish to simulate. The

method in [2] is to then, for each fractional query, use a control qubit that is in the state

α|0〉+ iβ|1〉. The unitary operation for the discrete oracle, Q, is then implemented, controlled

by the control qubit. Given that the target system is initially in state |ζ〉, the state after this

controlled operation is

α|0〉 ⊗ |ζ〉+ iβ|1〉 ⊗Q|ζ〉. (2)

Finally, a projection measurement with outcome α|0〉 + β|1〉 yields the state in the target

system (omitting normalisation)

α2|ζ〉+ iβ2Q|ζ〉. (3)

The query Hamiltonian, HQ, has values on the diagonal equal to xj , whereas the discrete

query unitary Q has values on the diagonal of (−1)xj = 1− 2xj . Therefore the Hamiltonian

and unitary are related by HQ = (I −Q)/2. The I only gives a global phase factor and can

be ignored. Because Q is self-inverse, one obtains (omitting the phase factor)

e−iHQt = cos(t/2)I + i sin(t/2)Q. (4)

With t = 1/4m, one therefore obtains the correct operation via the above procedure if β ≈
1/
√
8m.

The number of calls to the oracle can then be reduced by, instead of considering controlled

operations at each time step individually, considering them jointly within a segment. That is,

considering the state of all control qubits together, for a given basis state the position of each

1 gives a time that Q is applied. As the only basis states with significant weighting are those

with a small number of ones, we can allow a maximum number k′ ∈ O(log(T)/ log log(T))

of applications of the oracle, with evolution under the driving Hamiltonian between them.

That is, the positions of the ones in the control qubits control the time of evolution under the

driving Hamiltonian.

6 Gate-efficient discrete simulations of continuous-time quantum query algorithms

|0〉 R P

V1 V2 V3 Vk′

R b1

|0〉 R P R b2

|0〉 R P R b3

|0〉 R P R bm

Q Q Q Q

Fig. 2. The construction from Ref. [2] to simulate a segment corresponding to a time interval of
length 1/4.

This procedure from [2] is represented in Fig. 2. The operations P and R are designed to

prepare the initial qubits and enable the final measurement, and are given by

P =

(
1 0
0 i

)
, R =

(
α β
β −α

)
with β ≈ 1/

√
8m. (5)

The sequence of operations PR acting on |0〉 prepares α|0〉 + iβ|1〉, and R followed by a

computational basis measurement of bj = 0 corresponds to the desired measurement outcome

α|0〉 + β|1〉. The gates V1, . . . , Vk′ are the unitaries corresponding to evolving the driving

Hamiltonian for various time intervals specified by the control qubits: V1 for the time interval

from t0 to the position of the first one in the control qubits; V2 for the time interval delineated

by the positions of the first and second ones in the control qubits; and so on. The simulation is

successful if b1 = · · · = bm = 0. The probability of obtaining each bj = 0 is at least 1− 1/4m,

and there are m measurements, so the probability of successful simulation is at least 3/4. The

value β2 ≈ 1/8m corresponds to a time interval of 1/4. This time interval is chosen to ensure

that the success probability is at least 3/4.

In the case that the simulation is not successful, there are errors at times corresponding

to the bj that are equal to 1. Reference [2] shows how to correct unsuccessful instances. Since

the errors are unitary operations, it is possible to undo the step that has just been performed,

then redo it. To undo the step, one inverts the construction given in Fig. 2, but with each

of the errors inverted. This inversion will also succeed with probability at least 3/4. If this

inversion does not succeed, then one attempts to undo it and then redo it, and so forth. This

procedure corresponds to a biased random walk, where a step to the right (corresponding

to a success) occurs with probability at least 3/4, and a step to the left (corresponding to a

failure) occurs with probability at most 1/4. Overall success for this random walk is obtained

when it advances one step to the right of its initial position.

That analysis continues to hold here without modification. The only subtlety is that we

also need to account for the number of gates needed to perform the gates Vj . Each gate may

need to be divided into a number of parts corresponding to the number of errors (ones) found.

It is shown in Ref. [2] that the average number of ones is O(1), so the average number of

oracle queries is at most multiplied by a constant factor. Moreover, if the total number of

oracle queries permitted is bounded by O(1/εtot) times the average value, then by the Markov

bound, the probability is at least 1−O(εtot) that the overall correction procedure terminates

within this bound [2]. Failure to terminate within the bound can be included in the εtot

D. W. Berry, R. Cleve, and S. Gharibian 7

allowable error. For the main result in Theorem 1, constant error is considered, so this does

not alter the result.

When analysing the complexity due to correcting unsuccessful instances, another factor

that needs to be considered is the additional complexity due to correcting the individual

errors. The average of this complexity was denoted C0 in Ref. [2], but an upper bound was

not considered. As before, an upper bound equal to O(1/εtot) times the average value will not

be exceeded with probability 1−O(εtot). Again this does not affect the result in Theorem 1

as constant error is considered. As a result of these considerations, when taking into account

the corrections, the number of oracle queries and the number of additional elementary gates

are at most multiplied by a constant factor. This means that the correction operations do

not alter the scaling, and we do not need to consider them further.

The feature of the analysis in [2] that is most crucial for this work is that the state of

the control registers R⊗m|0m〉 = (α|0〉 + β|1〉)⊗m is highly “compressible” in that most of

its amplitude is concentrated on basis states with low Hamming weight. A natural succinct

representation of this state is in terms of the positions of the ones in binary. We first define

such a succinct form precisely (Section 4.2). We then show how the above circuit can be

simulated with the control qubits in their succinct form in these three stages: the initial

stage (Sections 4.3 and 4.4), which is the construction of the state R⊗m|0m〉; the intermediate

stage (Section 4.5), where P⊗m is applied to the control qubits and then the queries and

driving operations occur; and the final stage (Section 5), which is where the control qubits

are measured with respect to the basis {R⊗m|x〉 : x ∈ {0, 1}m}.

4.2 Succinct Representation of Control Qubits

We now propose a succinct encoding scheme which accurately reproduces low Hamming weight

basis states. Specifically, consider the set of allm-bit strings whose Hamming weight is at most

k+ 1, where k is much smaller than m. The size of this set is bounded above by (m+ 1)k+1.

Our encoding scheme utilizes a set of size (m+1)k+1 strings to accurately represent this space

as follows. We use the notation |x| to denote the Hamming weight of x ∈ {0, 1}∗. The value

of k is chosen to ensure that the error due to omitting high Hamming weight components is

no more than ε, and therefore can be taken as

k = Θ

(
log(1/ε)

log log(1/ε)

)
. (6)

We also use a slightly smaller value k′ to ensure that the error is no more than ε′; the

relation between these primed variables is identical. The Hamming weight cutoff k is used

to limit errors that occur repeatedly in the compressed measurement protocol. In contrast,

Hamming weight cutoff k′ is used to limit errors that only occur once. In particular, we

limit the total number of controlled oracle calls to k′, because the error due to limiting the

Hamming weight there only occurs once. We also limit the number of ones that are measured

to k′. The Hamming weight cutoff k is used in our compressed encoding, as the error due to

this cutoff will contribute multiple times.

Definition 2 Define the encoding scheme Ck
n on |x〉 for x ∈ {0, 1}n, |x| ≤ k as follows. For

8 Gate-efficient discrete simulations of continuous-time quantum query algorithms

x = 0s110s210s3 . . . 0sh10t, where h := |x|, h ≤ k + 1 and t = n− s1 − · · · − sh − h,

Ck
n|x〉 = |s1, s2, . . . , sh, n, . . . , n︸ ︷︷ ︸

k+1−h

〉, (7)

where Ck
n|x〉 ∈ (Cn+1)⊗k+1. For h > k+1, Ck

n|x〉 encodes the positions of the first k+1 ones.

We have allowed the encoding to act upon n qubits for generality. We will initially use

n = m for state preparation, but will use n < m when we break apart the encoding for use in

the measurement. Note that the rotations R always use m, rather than n.

4.3 Initialization of Control Qubits in Alternative Encoding

We now show how to simulate the preparation of the state after operation R⊗m (but before

P⊗m, which is deferred to Section 4.5) in succinct form using the encoding of Definition 2.

In order to achieve this, we efficiently prepare a state according to the following Theorem.

Theorem 2 For n ≤ m and k as in Eq. (6), it is possible to prepare an approximation,

within trace distance O(ε), of the state

|Ξk
n〉 :=

∑

x∈{0,1}n

|x|≤k

αn−|x|β|x|Ck
n|x〉+ µ|ν′〉, (8)

where |ν′〉 ∈ (Cn+1)⊗k+1 is orthogonal to all the kets arising in the sum, via a quantum circuit

with complexity

O (k [logm+ log log(1/ε)]) . (9)

Before we prove this Theorem, there are a number of intermediate results that we need

to prove. The most important property of the state |Ξk
n〉 is that the inner products are the

same as for the uncompressed state.

Lemma 1 For n ≤ m and |x| ≤ k,

〈x|(Ck
n)

†|Ξk
n〉 = 〈x|R⊗n|0〉. (10)

For k as in Eq. (6), µ2 ∈ O(ε), and the norm of the component of R⊗n|0〉 with Hamming

weight greater than k is O(ε).

Proof. There are n control qubits, each of which is rotated by R, in order to give the state

(α|0〉+β|1〉)⊗n, where β ∈ Θ(1/
√
m). The amplitudes of terms in this superposition decrease

factorially with Hamming weight, and in particular, one can write

R⊗n|0〉 = (α|0〉+ β|1〉)⊗n

=
∑

x∈{0,1}n

αn−|x|β|x||x〉

=
∑

x∈{0,1}n

|x|≤k

αn−|x|β|x||x〉+
∑

x∈{0,1}n

|x|>k

αn−|x|β|x||x〉

=
∑

x∈{0,1}n

|x|≤k

αn−|x|β|x||x〉+ µ|ν〉. (11)

D. W. Berry, R. Cleve, and S. Gharibian 9

One then obtains that

〈x|R⊗n|0〉 = αn−|x|β|x| = 〈x|(Ck
n)

†|Ξk
n〉, (12)

as required. On the last line of Eq. (11), |ν〉 is orthogonal to every basis state in the sum

that precedes it, and therefore µ here is the same as in Eq. (8). Moreover µ2 ∈ 1/2O(k)k!, so

using k as in Eq. (6), µ2 ∈ O(ε). This means that the norm of the component with Hamming

weight greater than k is O(ε) �.

We now show how to construct an approximation (within distance ε) of the state in Eq. (8)

using poly (k, logm) gates. Note that, to accomplish this, we must avoid any approach based

on first constructing the expanded state in Eq. (11) then applying Ck
n, since this would

immediately entail order m gates. Our efficient approach is to first prepare a state similar

to Eq. (11) using a slightly different encoding scheme than Ck
n, denoted Bk

n,q. We then

postprocess the state so that the encoding is changed from Bk
n,q to Ck

n [i.e. Eq. (8)].

We now introduce the encoding Bk
n,q by explicit construction. Specifically, it is based on

the exponential superposition state, which can be efficiently constructed.

Lemma 2 The exponential superposition state

|φq〉 :=
q−1∑

s=0

βαs|s〉+ αq|q〉, (13)

where q = 2r, can be prepared using O(r) elementary operations.

Proof. The state |φq〉 is very simple to prepare as follows. Define the unitary matrix

M(γ) :=
1√

1 + γ2

(
1 −γ
γ 1

)
. (14)

Note that

M(α2r−1

)⊗ · · · ⊗M(α2)⊗M(α)|0r〉

=
β√

1− α2q

(
|0 . . . 00〉+ α|0 . . . 01〉+ α2|0 . . . 10〉+ · · ·+ αq−1|1 . . . 11〉

)

=
1√

1− α2q

q−1∑

s=0

βαs|s〉. (15)

Therefore, a circuit that maps |0r+1〉 to |φq〉 can be obtained by first applying a one-qubit

gate on the first qubit to put it in state
√
1− α2q|0〉 + αq|1〉, and then applying a sequence

of controlled-M(α2j) gates (each controlled by the first qubit being in state |0〉) to create the

state

β|0〉
(
|0 . . . 00〉+ α|0 . . . 01〉+ α2|0 . . . 10〉+ · · ·+ αq−1|1 . . . 11〉

)
+ αq|1〉|0 · · · 00〉

= β
(
|00 . . . 00〉+ α|00 . . . 01〉+ α2|00 . . . 10〉+ · · ·+ αq−1|01 . . . 11〉

)
+ αq|10 · · · 00〉

= |φq〉. (16)

As there is one single-qubit gate, and r two-qubit controlled gates used, the total number of

gates is O(r) �.

10 Gate-efficient discrete simulations of continuous-time quantum query algorithms

The reason why state |φq〉 is useful is because, for q ≥ n, |φq〉⊗k+1 yields a state similar to

Eq. (8). The encoding, which we will call Bk
n,q|x〉, is slightly different than Ck

n|x〉, but can be

efficiently translated into Ck
n|x〉 with some “clean-up” operations. Specifically, the encoding

is as defined below.

Definition 3 Define the encoding scheme Bk
n,q on |x〉 for x ∈ {0, 1}n, |x| ≤ k as follows.

For x = 0s110s210s3 . . . 0sh10t, where h := |x|, h ≤ k and t = n− s1 − · · · − sh − h,

Bk
n,q|x〉 = |s1, . . . , sh〉




q−t−1∑

j=0

αjβ|j + t〉+ αq−t|q〉


 |φq〉⊗k−h, (17)

where Bk
n,q|x〉 ∈ (Cq+1)⊗k+1.

The state is then given as in the following theorem.

Theorem 3 For q ≥ n, the states Bk
n,q|x〉 for |x| ≤ k are orthonormal and

|φq〉⊗k+1 =
∑

x∈{0,1}n

|x|≤k

αn−|x|β|x|Bk
n,q|x〉+ µ|ν′〉, (18)

for some |ν′〉 orthogonal to all Bk
n,q|x〉 for |x| ≤ k.

Proof. The state |φq〉⊗k+1 is a superposition of (computational) basis states of the form

|s1, . . . , sk+1〉, where s1, . . . , sk+1 ∈ {0, 1, . . . , q}. Intuitively, it is useful to think of each such

basis state as an encoding of a binary string 0s110s21 · · · 0sk+11 (whose Hamming weight is

k + 1 and length is s1 + · · · + sk+1 + k + 1). We will show that these basis states can be

naturally partitioned into equivalence classes: one for each prefix x ∈ {0, 1}n with |x| ≤ k,

and one for all the remaining basis states.

Let x ∈ {0, 1}n with h = |x| ≤ k be of the form x = 0s110s210s3 . . . 0sh10t. Consider the

set Px that consists of all |s′1, s′2, . . . , s′k+1〉 that are encodings of strings whose n-bit prefix

is x. The set Px consists of all |s′1, s′2, . . . , s′k+1〉 such that (s′1, s
′
2, . . . , s

′
h) = (s1, s2, . . . , sh),

s′h+1 ∈ {t, . . . , q}, and s′h+2, . . . , s
′
k+1 ∈ {0, . . . , q}. It follows that the sum of all the terms in

the superposition

|φq〉⊗k+1 =

q∑

s′1=0

q∑

s′2=0

· · ·
q∑

s′k+1
=0

αs′1+s′1+···+s′k+1β|{ℓ|s′ℓ<q}||s′1, s′2, . . . , s′k+1〉 (19)

that correspond to elements of Px is

αs1β · · ·αshβ|s1, . . . , sh〉




q−1∑

j=t

αjβ|j〉+ αq|q〉


 |φq〉⊗k−h

= αs1β · · ·αshβαt|s1, . . . , sh〉




q−t−1∑

j=0

αjβ|j + t〉+ αq−t|q〉


 |φq〉⊗k−h

= αn−|x|β|x|Bk
n,q|x〉, (20)

which is the appropriate weighting for Bk
n,q|x〉 in the sum in Eq. (18).

Thus, the basis states in the superposition in Eq. (19) corresponding to encodings of

strings x ∈ {0, 1}n of Hamming weight at most k can be grouped into equivalence classes Px.

D. W. Berry, R. Cleve, and S. Gharibian 11

What about the remaining terms in |φq〉⊗k+1 which do not fall in any Px? These are the

|s1, . . . , sk+1〉 where s1 + · · ·+ sk+1 + k + 1 ≤ n. Therefore, we can set

µ|ν′〉 =
∑

s1+···+sk+1+k+1≤n

αs1+···+sk+1βk+1|s1, . . . , sk+1〉, (21)

where µ ∈ R is chosen so that |ν′〉 is normalised. All the Bk
n,q|x〉 and |ν′〉 are mutually

orthogonal since they are constructed from a partition of the basis states �.

4.4 Converting from the B Encoding to the C Encoding

We have thus far shown how to prepare states in the encoding Bk
n,q. As mentioned above,

we can now convert from the encoding Bk
n,q to our desired encoding Ck

n. We find that it is

possible to efficiently convert between the encodings with the efficiency given by the following

lemma.

Lemma 3 For n ≤ m it is possible to convert from the state |φq〉⊗k+1 to |Ξk
n〉 within error

O(ε) for log q ∈ Θ(logm+ log log(1/ε)) and q a power of two, and using

O (k [logm+ log log(1/ε)]) (22)

elementary operations.

Proof. This is achieved by “cleaning up” the registers that follow register h = |x| in Bk
n,q|x〉

[compare Eq. (7) with Eq. (17)]. The difference is that, instead of these registers being in the

state |n〉, they are in the state |φq〉 (for registers h+ 2 to k + 1). Register h+ 1 is in a state

that is similar to |φq−t〉, except that the basis states are shifted by t. Therefore, we need a

way of converting these registers to the state |n〉. However, this conversion depends on both

h and t, so we first need these quantities. We will first give a simplified explanation, then

expand on the technical details. To determine h and t, we compute the prefix sums

|s1〉|s2〉 · · · |sk+1〉 7→ |s1 + 1〉|s1 + s2 + 2〉 · · · |s1 + s2 + · · ·+ sk+1 + k + 1〉. (23)

This gives the absolute positions of the ones. The value of h can be determined by finding

the first register with a value larger than n (which would give a position for a one past the

end of the string).

Now we can identify register h+1. For this register, we wish to subtract t, so that the state

of this register [as in Eq. (17)] becomes |φq−t〉. At this stage we have computed the prefix

sums, and subtracting n+1 from this modified register gives the same result as subtracting t

from the unmodified register. That is, we do not need to explicitly compute t to subtract it,

because it is obtained implicitly in the prefix sum. For all the other registers we then undo

the prefix sums.

At this stage we have h in an ancilla, and we have subtracted t from register h+ 1. Now

we can undo the procedure to prepare |φq〉 in registers h+1 to k+1. Register h+1 is actually

in state |φq−t〉 rather than |φq〉, but it is a good approximation of state |φq〉. Therefore the

inverse preparation yields states |0〉 in registers h + 1 to k + 1, with this being approximate

for register h + 1. It is trivial to convert |0〉 to |n〉, then uncompute the value of h in the

ancilla register. This then completes the conversion of the encoding.

In summary the overall procedure is as follows.

12 Gate-efficient discrete simulations of continuous-time quantum query algorithms

1. Compute the prefix sums.

2. Compute h = |x| in an ancilla register.

3. Uncompute the prefix sums for registers other than h + 1, and subtract n + 1 from

register h+ 1.

4. Invert the procedure to prepare |φq〉 from |0〉 on registers h + 1 to k + 1, and swap

register h+ 1 with the error flag register.

5. Flip one qubit on registers h+ 1 to k + 1 to change |0〉 to |n〉.

6. Uncompute h in the ancilla register.

Next we explain the technical details, including the error flag register. When computing

the prefix sums, we can first consider the case of low-Hamming weight strings with h ≤ k. For

the first h registers the result is at most n, whereas for register h+1, the result is (coherently)

more than n. To prevent the value in register h + 1 wrapping around modulo n, we instead

expand the registers to dimension n+ q+2, and perform the computations modulo n+ q+2.

Because the value in register h + 1 is no more than that in h (which is ≤ n) plus q + 1, the

value is ≤ n + q + 1, and does not wrap around modulo n + q + 2. The values in registers

h+ 2 to k+ 1 may wrap around, but this does not affect the calculation. This covers steps 1

and 2 above.

Next, considering step 3, the value in register h+ 1 will be

s1 + . . .+ sh + sh+1 + h+ 1 = n− t+ sh+1 + 1. (24)

We aim to obtain sh+1 − t in this register. If we had computed the value of t, we could

uncompute the prefix sums, then subtract t. However, it is obvious from Eq. (24) that we

can just subtract n + 1 instead. Note that this is the first register that is larger than n, so

subtracting n+1 does not result in a negative number. We also need to uncompute the prefix

sums for all registers other than register h + 1. This can be achieved by working backwards

from register k + 1 to h+ 2 uncomputing prefix sums, subtracting n+ 1 from register h+ 1,

then uncomputing prefix sums from register h back to 1.

Next we consider the inverse preparation in step 4. At this stage, we have subtracted t

from register h+ 1 yielding the exponential state

|φq−t〉 =
q−t−1∑

s=0

βαs|s〉+ αq−t|q − t〉. (25)

By choosing q to be sufficiently large, |φq−t〉 is close to |φq〉, and inverting the procedure

for preparing |φq〉 yields an accurate approximation of |0r+1〉. To be more precise, note that

〈φq−t|φq〉 = 1−(1−β)α2(q−t). Therefore, we have 〈φq−t|φq〉 ≥ 1−ε if q ≥ m+(1/β2) log(1/ε).

To achieve this, |φq〉 need only consist of log(m + 1/β2) + log log(1/ε) + O(1) qubits. In

particular, in our context where β = Θ(1/
√
m), the number of qubits is logm+log log(1/ε)+

O(1), so the precision scales double exponentially with the number of additional qubits beyond

logm.

D. W. Berry, R. Cleve, and S. Gharibian 13

This approximate step could alternatively be performed using the state preparation pro-

cedure of Grover and Rudolph [8]. Another alternative is to use amplitude amplification to

ensure that the register is set to zero correctly. These alternatives would also not be exact,

because they would require the coherent calculation of trigonometric functions.

It is convenient for the analysis to swap register h + 1 with an “error flag” register that

has been prepared in the |0〉 state. Then, if this register is measured as not zero, it flags that

the clean-up operation has not occurred properly. On the other hand, register h+1 is exactly

|0〉.
We also need to take account of the action of the conversion procedure on the state |ν′〉.

This state is a superposition of basis states |s1, . . . , sk+1〉, where s1 + . . .+ sk+1 + k + 1 ≤ n.

This means that, when we compute the prefix sums, the last register will not be > n. In

this case, we can set h = k + 1, and then make no changes to the other registers in steps 3

to 5 for this value of h. This means that |ν′〉 is unchanged. The exact form of this state is

unimportant, because it corresponds to an error. However, |ν′〉 is a superposition of strings

of Hamming weight h+ 1 encoded using Ck
n, and remains so under the conversion.

In summary, the overall preparation procedure is to prepare the state |φq〉⊗k+1, then

perform the clean-up procedure consisting of steps 1 to 6 above. By choosing log q ∈ Θ(logm+

log log(1/ε)) (for q a power of two), this then yields the state (8) within distance O(ε). Our

circuit has size given by Eq. (22). The final state has no values in its registers larger than n,

so it can be stored in registers of dimension n+ 1, though higher dimensions are required in

intermediate steps �.

To prepare the state, we have started with all qubits of registers in the state |0〉. It is

convenient to start with these registers in the state |n〉, flip one qubit in each register to give

|0〉, then perform the preparation procedure as described above. Then we are mapping the

state Ck
n|0n〉 (which is the state |n〉⊗k+1) to the succinct representation of (α|0〉+ β|1〉)⊗n as

defined in Eq. (8).

Finally we can easily prove Theorem 2 using the above results.

Proof. (of Theorem 2) First, using Lemma 2 we can prepare the state |φq〉 using O(r)

elementary operations, and can therefore prepare |φq〉⊗k+1, for log q ∈ Θ(logm+log log(1/ε))

using

O (k [logm+ log log(1/ε)]) (26)

elementary operations. Then, by Lemma 3 we can convert to the state |Ξk
n〉 within O(ε) with

the same complexity �.

4.5 Phase Gates, Queries and Driving Operations

Applying the phase gates, P⊗m, to the control qubits in their succinct representation is

straightforward because P⊗m|x〉 = i|x||x〉. We need only compute |x| in an ancilla register,

apply |s〉 7→ is|s〉, and then uncompute |x| in the ancilla.

To apply the driving operations, we note that our definition of driving Hamiltonian imple-

mentation fits perfectly in this context, once we compute the prefix sums to give the positions

of the ones, as in Eq. (23). In the compressed representation, V1 is the implementation of

the driving Hamiltonian with ts hardwired to 0 and tf controlled by the first register. V2 is

the implementation with ts controlled by the first register and tf controlled by the second

register, and so on. At the end, the prefix sums can be uncomputed.

14 Gate-efficient discrete simulations of continuous-time quantum query algorithms

4.6 The Value of m Needed

In the CGMSY construction the number of fractional queries m comes from breaking up the

evolution under the oracle and the driving Hamiltonian via a product formula. To obtain

error bound by εtot with evolution over time T and driving Hamiltonian with norm ‖H‖,
the number of time intervals needed in a Lie-Trotter-Suzuki product formula for constant

Hamiltonian H is O(‖H‖T (‖H‖T/εtot)δ) [7]. For the CGMSY construction the intervals

need to be of equal size, which restricts δ to 1/2.

For time-dependent Hamiltonians, the complexity of Lie-Trotter-Suzuki product formulae

will depend on the magnitude of the derivatives of H when one is sampling the Hamiltonians

at different times [9]. The situation we have here is somewhat different, because we assume

that the evolution under the time-dependent driving Hamiltonian can be implemented. In

this case, the error does not depend on the time derivative, and the error for a short time

interval δt can be bounded as ‖H‖δt2 (this is easily derived from Eq. (2.3) of Ref. [10]).

Hence the number of intervals to limit the overall error to O(εtot) need be no greater than

O(‖H‖T 2/εtot). The number of intervals in one CGMSY segment of length O(1) is therefore

m = O(‖H‖T/εtot).
Another question is the precision that the time needs to be specified to in order to limit

the overall error to εtot. It is easily shown that the error in the time needs to be bound

as O(ε′/‖H‖) in order to limit the error in a single operation to ε′. If the time is being

specified on the interval [0, T], then the number of bits needed for the time is ⌈log(‖H‖T/ε′)⌉.
Because there are O(1) controlled Hamiltonian evolutions in each CGMSY segment, we need

ε′ = O(εtot/T). This gives the number of bits for the time as log(‖H‖T 2/εtot) +O(1) (where

the constant O(1) is because ε′ may have a constant of proportionality with εtot/T).

This result is consistent with the value of m used, because log(‖H‖T 2/εtot)+O(1) bits are

needed to specify an integer from 0 to O(mT). In the CGMSY construction, a superposition

over the m time intervals is used, so the number of qubits needed is ⌈logm⌉. The number

of the CGMSY segment also needs to be stored, but that can be stored in O(log T) classical

bits.

One can use the number of bits for the time to place a lower bound on the complexity

of implementing the driving Hamiltonian. To obtain overall accuracy O(εtot), the driving

Hamiltonian needs accuracy of O(εtot/‖H‖T) in the time. There are Θ(‖H‖T 2/εtot) starting

and finishing times, so by a counting argument the gate complexity is Ω(log(‖H‖T/εtot)). If
the driving Hamiltonian is constant, then it is only the length of the time which is important,

and that is limited to O(1). The number of times is then Θ(‖H‖T/εtot), but the lower

bound on the complexity is still Ω(log(‖H‖T/εtot)). For constant error we therefore have

G = Ω(log(‖H‖T)), as used in Section 3.

5 Measurement of the Control Qubits

What remains is to perform the final measurement. This should logically correspond to what

happens if the state is decoded from its succinct representation to m qubits and then, for

each qubit, an R gate is applied and it is measured in the computational basis. Of course,

this cannot be literally implemented this way, because it would increase the gate and space

usage to at least m; our task is to logically perform this while remaining in the succinct

representation.

D. W. Berry, R. Cleve, and S. Gharibian 15

Recall now that in Section 4.3, we constructed a procedure that approximately prepares

R⊗n|0n〉 (for any n ≤ m) in succinct form [see |Ξk
n〉 in Eq. (8)]. We define Un to be the ideal

unitary that would exactly prepare the state |Ξk
n〉. The action of the ideal state preparation

procedure is then UnC
k
n|0n〉 ≈ Ck

nR
⊗n|0n〉. The procedure we have described does not exactly

perform this unitary, but it is within distance O(ε). Also, we do not have an exact equality,

because representations of terms with Hamming weight greater than k in R⊗n|0n〉 are not

obtained with the correct weights. More precisely, we have

UnC
k
n|0n〉 =

∑

x∈{0,1}n

|x|≤k

αn−|x|β|x|Ck
n|x〉+ µ|ν′〉. (27)

This is to be compared with the uncompressed setting [Eq. (11)], in which we have

R⊗n|0n〉 =
∑

x∈{0,1}n

|x|≤k

αn−|x|β|x||x〉+ µ|ν〉. (28)

In terms of the logical data, Un and R⊗n produce almost the same state when applied to |0n〉.
Returning to the issue of measurement, recall that initially we have prepared the state

in a compressed form of R⊗m|0m〉 (i.e., with n = m). In the uncompressed basis we would

like to perform R⊗m, then perform a computational basis measurement. In the particular

case that the computational basis measurement yielded all zeros, the measurement operator

is |0m〉〈0m|R⊗m. Because we are performing all operations in the compressed basis, this

measurement operator can be represented by Ck
m|0m〉〈0m|R⊗m(Ck

m)†. Because R is self-

inverse, this is approximately the same as Ck
m|0m〉〈0m|(Ck

m)†U †
m. That is, to achieve this

measurement result we first invert the preparation procedure described by Um. Then, because

Ck
m|0m〉 = |m〉⊗k+1 is a computational basis state, we can achieve the desired result by

performing a computational basis measurement.

Ideally, this is what we want, but we also need to be able to find the positions of the ones

in the case that the all-zero string is not obtained. At first glance, one might imagine that

applying U †
m in place of R⊗m would yield a succinct representation of the final outcome state,

so measuring in the computational basis would provide the correct result. Unfortunately, this

does not accurately simulate the final measurement except in the case where the all-zero string

is obtained. The problem is that Um and R⊗m are only in close agreement when applied to

the logical state |0m〉. For any other logical state |x〉 (for non-zero x ∈ {0, 1}m), applying Um

and R⊗m need not yield states in any close agreement.

Our first observation towards overcoming this problem is that we can at least perform an

incomplete measurement that captures a seemingly small part of what we are seeking: we

can cause the state to either collapse to logical |0m〉 or to the subspace that is the orthogonal

complement of this state—and with the correct probabilities. This is achieved by performing

U †
m and then the 2-outcome incomplete projective measurement that distinguishes between

the logical state |0m〉 and its orthogonal complement |0m〉⊥, and then applying Um to the

resulting collapsed state. Our method to complete the measurement is to apply the above

procedure recursively, on the two halves of the logical string. We now first motivate this

procedure intuitively, followed by further technical details and a rigorous proof of correctness.

16 Gate-efficient discrete simulations of continuous-time quantum query algorithms

5.1 Measuring in Succinct Form: Intuition

The intuition behind our measurement strategy is given by the following simple thought

experiment. Consider the problem of measuring an m-qubit state |ψ〉 in the computational

basis. This can be accomplished by performing a sequence of two-outcome measurements in

a variety of ways. One obvious approach is to measure the state of the first qubit, then the

second qubit, and so on. Each final outcome x ∈ {0, 1}m will occur with exactly the same

probability as with the original complete measurement. We now describe an alternative—and

unconventional—approach for simulating the same measurement.

First, perform the measurement distinguishing between |0m〉 and |0m〉⊥, its orthogonal

complement. If the state collapses to |0m〉 we halt, outputting 0m. Otherwise (when the state

collapses to |0m〉⊥), apply the measurement |0m/2〉 vs. |0m/2〉⊥ to the first m/2 qubits. If that

part of the state collapses to |0m/2〉 then output 0m/2 for the first m/2 bits; otherwise recurse

further. Once this recursive measurement procedure for the first m/2 qubits has terminated,

repeat it for the second m/2 qubits. Each final outcome x ∈ {0, 1}m occurs with exactly

the same probability as with the original complete measurement. Note that although this

process may appear complicated, it terminates fast whenever the Hamming weight of the

final outcome x is small: for Hamming weight up to k′, at most k′ logm steps are performed.

Our actual scenario is different than the one described above in that the final measurement

is in the basis {R⊗m|x〉 : m ∈ {0, 1}m} rather than the computational basis. However, our

logical Um and U †
m permit us to approximate the R⊗m|0m〉 vs. R⊗m|0m〉⊥ measurement well.

Also, making use of the fact that the underlying operation that we are simulating has a

tensor product structure, R⊗m|x1x2〉 = R⊗m/2|x1〉R⊗m/2|x2〉 for any x1, x2 ∈ {0, 1}m/2, we

can emulate the recursive procedure in the above thought experiment. We now make this

rigorous.

5.2 Measuring in Succinct Form: Details

We now introduce Alg. 4, which formalises the intuition behind the recursive measurement

outlined above, and show that it simulates the desired measurement in succinct form. Recall

that we assume without loss of generality that m is a power of 2.

Before stating Alg. 4, we require a lemma which allows us to efficiently “split” the encoded

version of string x = x1x2 into the concatenation of the encoded versions of x1 and x2.

Lemma 4 Let x = x1x2 for x ∈ {0, 1}n with |x| ≤ k, x1, x2 ∈ {0, 1}n/2 and n a power of 2.

Then there exists a quantum circuit with complexity O(k log n) for achieving the mapping

Ck
n|x1x2〉 7→ Ck

n/2|x1〉 ⊗ Ck
n/2|x2〉, (29)

where Ck
n|x1x2〉, Ck

n/2|x1〉, Ck
n/2|x2〉 ∈ (Cn+1)⊗k+1.

Proof. Because both Ck
n|x1x2〉 and Ck

n/2|x1〉 ⊗ Ck
n/2|x2〉 are computational basis states,

the procedure that is performed is the same as would be performed classically, except that it

must be performed coherently. That is, there is a reversible classical procedure to split the

encoding in the computational basis, which immediately provides a coherent procedure for

splitting the encoding. Because there are O(k) registers of size O(log n), the complexity of

this procedure is O(k log n) �.

The formal statement of the recursive measurement algorithm is given in Alg. 4. To per-

form our recursive measurement, we simply call MEASURE(A, 1,m), where A is the register

D. W. Berry, R. Cleve, and S. Gharibian 17

Algorithm 4 S = MEASURE(A , m1 , m2).

• Input: A – Registers corresponding to space (Cm+1)⊗k+1 containing the subset
{m1, . . . ,m2} of the encoded control qubits.

m1 – The starting index m1 ∈ [m] of the encoded qubits in A.
m2 – The ending index m2 ∈ [m] of the encoded qubits in A.

• Precondition: m2 −m1 + 1 is a power of two.

• Output: A set of indices S ⊆ [m] containing the positions where an uncompressed
measurement would have found ones in the uncompressed setting.

Perform a measurement described by the measurement operatorsMm2−m1+1
c,0 andMm2−m1+1

c,1 ,

where Mn
c,0 := UnC

k
n|0n〉〈0n|(Ck

n)
†U †

n and Mn
c,1 := I −Mn

c,0. Label the measurement result d.
Then

1. (Zero detected) If d = 0: Return S = ∅.
2. (Base case) If d = 1 and m1 = m2: Return S = {m1}.
3. (Recurse) If d = 1 and m2 > m1: Split A to A1 and A2, containing the encoded forms

of the first and second halves, respectively, of the control qubits. Then return

S = MEASURE(A1,m1, (m1+m2−1)/2)∪MEASURE(A2, (m1+m2+1)/2,m2). (30)

containing our compressed control qubits. Once the procedure finishes running, it will return

the locations of all the ones an uncompressed measurement would have obtained when mea-

suring the uncompressed version of A. We truncate the recursive measurement procedure if

k′ ones have been located, to limit the complexity of the procedure.

We now introduce a notation that will be used throughout the remainder of the paper in

order to simplify reference to quantities in the uncompressed protocol versus the compressed

protocol. For quantities (states, operators or probabilities) in the compressed protocol, we

will use a superscript or subscript “c”, whereas we will use “u” for the uncompressed protocol.

To refer to quantities defined for both, we will use “η”. We also use n to refer to operations

acting on a compressed sub-portion of the string of length n (instead of m for the full string).

To perform the measurement described by the measurement operators Mn
c,d in Alg. 4, we

apply U †
n, perform the measurement that distinguishes the encoded all-zero state from all

other states, then apply Un. In this form it is clear why we need to perform the operation

Un after the measurement: it means that all states orthogonal to that corresponding to

measurement result 0 are unchanged, because they are just acted upon by the identity. The

final Un operation is also included for the 0 measurement result for simplicity, but it is not

needed. As these measurement operators are projections, they are the same as the positive

operator-valued measure elements.

For simplicity we have described the measurement in terms of the exact compressed mea-

surement operatorsMn
c,d via the unitaries Un and U †

n. We do not perform these measurements

exactly, but the results are within O(ε). More specifically, denoting the actual measurement

operator that is performed by M̃n
c,d, we have the following result.

Lemma 5 Our technique of approximately performing Mn
c,d given above results in a trace

18 Gate-efficient discrete simulations of continuous-time quantum query algorithms

distance error bounded as
∥∥∥M̃n

c,dρ(M̃
n
c,d)

† −Mn
c,dρ(M

n
c,d)

†
∥∥∥
tr
≤ O (εTr(ρ)) . (31)

Note that this Lemma bounds the error in terms of the norm of the initial state, rather

than the final state after the measurement. This means that there may be large error in the

normalised state for a measurement result with low probability of occurring. This Lemma

follows from linearity of the errors, but for completeness we provide a proof in Appendix A.

To show that the algorithm correctly simulates the desired uncompressed measurement, we

consider a similar recursive measurement on the uncompressed state. We show that, except for

the imprecision due to approximating Un and omitting high Hamming weight components, the

low Hamming weight portions of the states in Eqs. (27) and (28) evolve identically. Moreover,

this holds even if the control qubits are entangled with a target register, as is generally the

case here.

In the uncompressed setting, the state of the control and target registers before the final

measurement can be described as approximately

|ψ̃u〉 :=
∑

x∈{0,1}m

|x|≤k

γ
()
x,0|x〉|wx〉, (32)

where |wx〉 describes the state of the target register where the queries Q are applied. Note

that |ψ̃u〉 is unnormalised, as we have omitted the high Hamming weight component. Sim-

ilarly, in the compressed setting, before the final measurement we approximately have the

(unnormalised) state

|ψ̃c〉 :=
∑

x∈{0,1}m

|x|≤k

γ
()
x,0C

k
m|x〉|wx〉, (33)

where the states |wx〉 coincide with those in the uncompressed case. The coefficients γ
()
x,0 are

the same in each case, and are equal to i|x|ξmx . We use this notation for consistency with the

coefficients for the intermediate states in Eqs. (35) and (36) below.

We consider a measurement in the uncompressed case that is the same as in Alg. 4. We

show that the results obtained in the two cases are close, but there are two sources of error:

(1) the error incurred due to the high Hamming weight component of the state, and (2) the

error due to not implementing Un exactly. First we discuss the error-free case, i.e. where (1)

we omit the high Hamming weight component, and where (2) Un is implemented exactly. We

subsequently reintroduce both sources of error and analyse their impacts. In the error-free

analysis, we show the following.

Theorem 5 (Error-free simulation) Assume we are in the error-free setting defined

above. Then, suppose that before the final measurement, the states of the uncompressed and

compressed control and target qubits are given by Eqs. (32) and (33), respectively. Then,

Alg. 4 exactly simulates the uncompressed R⊗m measurement in the following sense:

1. After running Alg. 4, the probability of obtaining a given measurement result is the same

as for the uncompressed R⊗m measurement, and

2. for a given measurement result the state of the target register in both uncompressed and

compressed settings matches.

D. W. Berry, R. Cleve, and S. Gharibian 19

Proof. Measuring R⊗m|ψ̃〉 in the computational basis can also be simulated using a recursive

approach; namely, we apply R⊗m, followed by the incomplete measurement of |0m〉 versus

its orthogonal complement, then apply R⊗m. This can be represented by the measurement

operators Mm
u,d, with

Mn
u,0 := R⊗n|0n〉〈0n|R⊗n, (34)

and Mn
u,1 := I −Mn

u,0. Similar to Alg. 4, we are including the application of R⊗m for both

measurement results for simplicity, though it is not needed for result 0. If we obtain 1 as

the outcome, we recurse on the two blocks of m/2 qubits by applying the measurement with

operators M
m/2
u,d , and so forth.

To prove the result, we simply need to show that at each step in the recursion the states

resulting from measurement operators Mn
c,d and Mn

u,d are equivalent. Let us denote the

measurement result obtained at each step in the recursive measurement scheme by dj . Then,

at step ℓ, we have measurement results d1, . . . , dℓ−1, and will have a state that depends on

those measurement results. Let us assume that at this step we have equivalent states for the

compressed and uncompressed cases. The base case is that for ℓ = 1, where the initial states

(32) and (33) are equivalent. Then the states for the two cases can be expressed as

|ψ(d1,...,dℓ−1)
c,ℓ−1 〉 =

∑

|x|≤k

γ
(d1,...,dℓ−1)
x,ℓ−1 (Ck

n ⊗ Ck
rest)|x〉|wx〉, (35)

|ψ(d1,...,dℓ−1)
u,ℓ−1 〉 =

∑

|x|≤k

γ
(d1,...,dℓ−1)
x,ℓ−1 |x〉|wx〉. (36)

At this stage the encoding will be a succinct encoding on a subset of n of the digits of x,

and another encoding of the remaining digits (denoted Ck
rest), the exact form of which is

unimportant for this analysis. The subset of n of the digits of x will depend on d1, . . . , dℓ−1.

This dependence has not been indicated here for brevity. We also omit x ∈ {0, 1}m from the

sum for brevity.

In order for the results obtained for the compressed and uncompressed cases to be equiv-

alent, all that is required is that the amplitude weightings γ
(d1,...,dℓ−1)
x,ℓ−1 in Eqs. (35) and (36)

are the same. The results are equivalent in the sense that the probability of the measurement

results, as well as the state of the target system for a given measurement result, are the same.

The probability of the measurement results will be obtained from the normalisation of the

state, which must be the same if the amplitudes are the same. Similarly the resulting state

in the target system will be the same if the amplitudes are the same.

We will adopt the notation that Irest indicates the identity on the remaining registers, so

the overall measurement operator is Mn
c,d ⊗ Irest. We will also adopt the notation that xn is

the subset of n digits of the string x, and xrest is the remaining digits. Then we have, using

Lemma 1,

〈0n|R⊗n|xn〉 = 〈xn|R⊗n|0n〉 = 〈xn|(Ck
n)

†UnC
k
n|0n〉 = 〈0n|(Ck

n)
†U †

nC
k
n|xn〉. (37)

For the compressed case, consider performing the measurement with operators Mn
c,d. In the

20 Gate-efficient discrete simulations of continuous-time quantum query algorithms

case that the measurement result is d = 0, our compressed state becomes

(Mn
c,0 ⊗ Irest)|ψ(d1,...,dℓ−1)

c,ℓ−1 〉

≈
(
UnC

k
n|0n〉〈0n|(Ck

n)
†U †

n ⊗ Irest
)

∑

|x|≤k

γ
(d1,...,dℓ−1)
x,ℓ−1 (Ck

n ⊗ Ck
rest)|x〉|wx〉




=
∑

|x|≤k

γ
(d1,...,dℓ−1)
x,ℓ−1

(
〈0n|(Ck

n)
†U †

nC
k
n|xn〉

)
UnC

k
n|0n〉Ck

rest|xrest〉|wx〉

=
∑

|x|≤k

γ
(d1,...,dℓ−1)
x,ℓ−1 〈0n|R⊗n|xn〉UnC

k
n|0n〉Ck

rest|xrest〉|wx〉

≈
∑

|x|≤k

γ
(d1,...,dℓ−1)
x,ℓ−1 〈0n|R⊗n|xn〉


∑

|y|≤k

ξnyC
k
n|y〉


Ck

rest|xrest〉|wx〉 =: |ψ̃(d1,...,dℓ−1,0)
c,ℓ 〉, (38)

where ξny = αn−|y|β|y|, and y is an n-digit string. The approximate equality in the first line

of Eq. (38) is because the measurement operator Mn
c,0 cannot be obtained exactly, because

the unitary Un is not performed exactly. The approximate equality in the last line is because

the high Hamming weight components have been omitted. In the error-free setting the error

in these approximations is ignored.

In comparison, in the uncompressed setting, a similar calculation yields, for d = 0,

(Mn
u,0 ⊗ Irest)|ψ(d1,...,dℓ−1)

u,ℓ−1 〉 = (R⊗n|0n〉〈0n|R⊗n ⊗ Irest)|ψ(d1,...,dℓ−1)
u,ℓ−1 〉

≈
∑

|x|≤k

γ
(d1,...,dℓ−1)
x,ℓ−1 〈0n|R⊗n|xn〉


∑

|y|≤k

ξny |y〉


 |xrest〉|wx〉 =: |ψ(d1,...,dℓ−1,0)

u,ℓ 〉. (39)

The approximate equality in the last line is again due to omitting high Hamming weight

components. In the error-free setting the error in this approximation is ignored. In the case

that the measurement result is d = 1, then the states obtained are
(
I −Mn

c,0 ⊗ Irest
)
|ψ(d1,...,dℓ−1)

c,ℓ−1 〉 = |ψ(d1,...,dℓ−1)
c,ℓ−1 〉 − |ψ̃(d1,...,dℓ−1,0)

c,ℓ 〉 =: |ψ̃(d1,...,dℓ−1,1)
c,ℓ 〉,

(
I −Mn

u,0 ⊗ Irest
)
|ψ(d1,...,dℓ−1)

u,ℓ−1 〉 = |ψ(d1,...,dℓ−1)
u,ℓ−1 〉 − |ψ(d1,...,dℓ−1,0)

u,ℓ 〉 =: |ψ(d1,...,dℓ−1,1)
u,ℓ 〉. (40)

Above we have defined resulting states after the measurements in the uncompressed and

compressed setting of |ψ(d1,...,dℓ)
u,ℓ 〉 and |ψ̃(d1,...,dℓ)

c,ℓ 〉, respectively. The quantity |ψ̃(d1,...,dℓ)
c,ℓ 〉 is

the state in the compressed case before the change in the compression. To obtain the state

|ψ(d1,...,dℓ)
c,ℓ 〉, the compression of the string must be changed as per Lemma 4. This can be

done without error, and does not change the amplitudes.

Omitting the high Hamming weight states, we start with states |ψ̃η〉, which have the same

amplitudes in the compressed and uncompressed cases. Then, by the above reasoning, if the

amplitudes are the same at step ℓ− 1, they are the same at step ℓ. Therefore, by induction,

the amplitudes must be the same after the full recursive measurement. Therefore the same

amplitudes are obtained for the compressed and uncompressed cases, so the results obtained

in the compressed and uncompressed cases are equivalent. That is, the probabilities of the

measurement results and the state of the target register for a given measurement result match

�.

D. W. Berry, R. Cleve, and S. Gharibian 21

Theorem 5 shows that if we focus solely on the low Hamming weight subspace, and if we

assume we can prepare the state Ck
n|0n〉 exactly, then our succinct recursive measurement

Alg. 4 perfectly simulates the uncompressed measurement. We now analyse the error incurred

when these two assumptions are dropped. First we need to identify the appropriate measure

of the error in the measurement. We would like to bound the average trace distance; i.e.

D :=
∑

b

pc
b
‖ρu

b
− ρc

b
‖tr, (41)

where pη
b
is the probability of obtaining the measurement result b = (b1, . . . , bm), and ρη

b
is

the state for the target system. We would also like to bound the error in the probabilities

obtained. This is because measurement results with many ones will be difficult to correct,

so we need to ensure that the probabilities for those measurement results remain small. The

error in the probability distribution can be quantified by

∆p :=
∑

b

|pu
b
− pc

b
|. (42)

We can bound both those errors using the quantity

Dav :=
∑

b

‖pu
b
ρu
b
− pc

b
ρc
b
‖tr. (43)

Because the trace distance is non-increasing under channels, and we obtain ∆p by applying

the completely depolarising channel to both ρu
b
and ρc

b
in Eq. (43), we have ∆p ≤ Dav. Then

we have

pc
b
‖ρu

b
− ρc

b
‖tr ≤ ‖pc

b
ρu
b
− pu

b
ρu
b
‖tr + ‖pu

b
ρu
b
− pc

b
ρc
b
‖tr ≤ 2‖pu

b
ρu
b
− pc

b
ρc
b
‖tr. (44)

Summing over b then gives D ≤ 2Dav.

Theorem 6 (Error bounds) The error between compressed and uncompressed schemes

can be bounded as

Dav = O(ε′ + εk′ logm). (45)

Proof. In order to bound the value of Dav, we have four main sources of error:

1. Omitting the high Hamming weight components of the initial states.

2. Omitting measurement results with Hamming weight greater than k′.

3. Omitting high Hamming weight components in each step of the recursive measurement.

4. Inaccuracy in performing the Un operations in each step of the recursive measurement.

Error sources 1 and 2 introduce error O(ε) and O(ε′), respectively. The contribution of the

error from sources 3 and 4 may be bounded as follows. In locating the position of a single

one in the measurement result, there is a contribution of O(ε) to the error from each of the

steps as described in Eq. (38). These need to be performed logm times, and as a result the

contribution to the error is O(ε logm). If h ones need to be located, the worst case is where

the sequence of measurements to locate these ones is independent, so the total contribution

22 Gate-efficient discrete simulations of continuous-time quantum query algorithms

to the error from sources 3 and 4 is O(hε logm). Since the error due to locating no more than

k′ ones will be O(ε′), we can take h ≤ k′, and bound the overall error by O(εk′ logm + ε′).

A more rigorous form of this proof is given in Appendix B �.

Error sources 3 and 4 give a contribution to the error of O(ε) times the norm of the

state for each step of the recursive measurement. However, for many initial sequences of

measurement results, at step ℓ all ones have already been located, so there are no further

measurements needed. This means that the measurements at this point are just the identity,

and no further error is introduced for that sequence of initial measurement results. This

means that bounding the additional error by O(ε) for each ℓ overestimates the error. We will

show that the error can be bound by using the mean number of ones that are measured. In

the case of the uncompressed measurements, the probability of each one is ≤ 2α2β2. Because

β2 ≈ 1/8m, the expected number of ones is ≤ 2β2m = O(1).

Theorem 7 (Improved error bounds) Provided ε = O(1/(k′ logm)), the error be-

tween the compressed and uncompressed schemes can be bounded as

Dav = O(ε′ + ε logm). (46)

Proof. More specifically, ρη,ℓ−1 (defined in Eq. (B.15)) will have a component where the

recursive measurement scheme has not terminated yet, and another measurement needs to be

performed. This component will be that where the ancillas contain d1, . . . , dℓ−1 corresponding

to sequences of measurement results such that further measurements need to be performed.

There will also be a component corresponding to sequences of measurement results where the

recursive measurement scheme has finished. We will denote the components corresponding to

that where the recursive measurement has not terminated or has terminated by ρconη,ℓ−1 and

ρfinη,ℓ−1, respectively. More explicitly, if we denote by Scon and Sfin the sets of measurement

results (d1, . . . , dℓ−1) that correspond to a recursive measurement that has not terminated or

has terminated, respectively, then we have

ρ
con/fin
η,ℓ−1 :=

∑

(d1,...,dℓ−1)∈Scon/fin

|dℓ−1〉〈dℓ−1| ⊗ . . .⊗ |d1〉〈d1| ⊗ |ψ(d1,...,dℓ−1)
η,ℓ−1 〉〈ψ(d1,...,dℓ−1)

η,ℓ−1 |. (47)

Because the measurement acts only on ρconη,ℓ−1, and the error in the measurement is bound

by O(ε) times the trace of the state the measurement acts upon, the error in approximating

Eη,ℓ(ρη,ℓ−1) by ρη,ℓ (Eη,ℓ is defined in Eq. (B.12)) will be bounded byO(εTr(ρconη,ℓ−1)). Therefore

the total error from sources 3 and 4 is bounded by

O

(
ε

K∑

ℓ=1

Tr(ρconη,ℓ−1)

)
. (48)

But, because the number of measurement steps need be no larger than 1 + h logm, where h

is the number of ones found by the measurement, the probability that the number of ones is

≥ h is no less than Tr(ρconη,h logm). Denoting the probability that the number of ones is ≥ h by

D. W. Berry, R. Cleve, and S. Gharibian 23

p(|b| ≥ h), we can bound the sum of the traces by

K∑

ℓ=1

Tr(ρconη,ℓ−1) ≤
K∑

ℓ=1

Tr(ρconη,⌊(ℓ−1)/ logm⌋ logm)

≤ logm

m∑

h=0

p(|b| ≥ h) = (〈|b|〉+ 1) logm. (49)

Next we need to take into account the fact that here the expectation value of the number

of ones is for the approximate states ρconu,ℓ−1, not for the exact uncompressed measurement

scheme. To take account of this difference, we can use the cumulative error to bound the

error in the norm of the state at each step. Note that the norm of ρconη,ℓ−1 is the same for η = u

and η = c, so we only need perform the analysis for η = u. Let Aℓ−1 denote the norm, for

the exact uncompressed measurement, of the component where the recursive measurement

scheme has not stopped before step ℓ. In addition, let Eℓ−1 denote the cumulative error before

step ℓ. Then the increment in the error is bound by ε times the norm of the non-terminated

component, which is bound by Aℓ−1 plus the cumulative error.

Eℓ ≤ Eℓ−1 +O(εAℓ−1 + εEℓ−1)

= Eℓ−1[1 +O(ε)] +O(εAℓ−1). (50)

Multiplying both sides by [1 +O(ε)]K−ℓ, we obtain

Eℓ[1 +O(ε)]K−ℓ ≤ Eℓ−1[1 +O(ε)]K−(ℓ−1) +O(εAℓ−1[1 +O(ε)]K−ℓ). (51)

As a result, the final error is bound by

EK ≤
K∑

ℓ=1

O(εAℓ−1[1 +O(ε)]K−ℓ)

≤ [1 +O(ε)]K
K∑

ℓ=1

O(εAℓ−1)

≤ O(exp(εK)ε(〈|b|〉+ 1) logm). (52)

Here the expectation value of the number of ones is for the exact scheme, which is O(1),

and we therefore find that the error is bound by O(exp(εK)ε logm). Recall that we take

K = O(k′ logm). This means that, provided ε = O(1/(k′ logm)), exp(εK) is O(1), and we

obtain scaling of the error of O(ε logm). Adding O(ε′ + ε) to take account of error sources 1

and 2 yields the result given in the Theorem �.

Given the conditions of this Theorem, the overall error for each time step is O(ε′+ε logm).

This includes error in simulating the driving Hamiltonian. The driving Hamiltonian may be

applied up to k′ times, though the expected number of times is O(1). As the allowable error

in the driving Hamiltonian is O(ε′), that gives a contribution of O(ε′) to the error in each

time step. As there are O(T) time steps, the total error is O(ε′T + εT logm). To limit the

error of the overall scheme to εtot, we take ε′ = O(εtot/T) and ε = O(εtot/(T logm)). Then

k′ = O(log(1/ε′)) = O(log(T/εtot)). As we consider large T and small εtot, we therefore

have ε = O(1/[log(T/εtot) logm]) = O(1/(k′ logm)). This means that the condition of the

Theorem is satisfied with this choice of parameters, and the total error will be bounded by

εtot.

24 Gate-efficient discrete simulations of continuous-time quantum query algorithms

6 Proof of Main Theorem

Finally we are in a position to prove Theorem 1.

Proof. (of Theorem 1) First, the number of oracle queries is O(k′T), because we have

divided the simulation into O(T) time intervals, and limit the number of queries required

within each time interval to O(k′). The value of k′ is chosen to ensure that the error due to

omitting high Hamming-weight states O(1) times within each time interval is no more than

ε′. We can bound the total error by εtot if we take ε
′ = O(εtot/T), which means that k′ scales

as

k′ = O

(
log(T/εtot)

log log(T/εtot)

)
. (53)

Then the overall number of oracle calls scales as

O

(
T log(T/εtot)

log log(T/εtot)

)
. (54)

Omitting the dependence on εtot gives the result given in the statement of the Theorem.

Next we discuss the number of gates required for Alg. 4. The maximum number of steps in

the recursive procedure is 1+2k′ logm, but the expected number of steps is O(logm). For the

full algorithm for the evolution over time T , there are many of these recursive measurements,

and the probability of the average number of steps differing significantly from its expected

value is small. Similarly to the analysis in Section 4.1, an upper bound of O(1/εtot) times

the average value will not be exceeded with probability 1 − O(εtot). As εtot is taken to be

constant, this does not affect the final result. Because Un and U †
n are performed at each step,

these operations are performed O(logm) times. As was found above, the complexity of the

operation Un is O(k[logm+log log(1/ε)]). Therefore the overall complexity for this time step

is O(k[(logm)2 + logm log log(1/ε)]).

It is also necessary to perform O(k′) time evolutions under the driving Hamiltonian. In

the definition of the problem we let G be the number of gates required for the simulation of

the driving Hamiltonian, so that the number of gates to simulate the driving Hamiltonian in

this time step is O(k′G). Therefore, the scaling for the total number of gates is

O
(
TGk′ + Tk[(logm)2 + logm log log(1/ε)]

)
. (55)

Next we use ε′ = O(εtot/T) and ε = O(εtot/(T logm)). As discussed in Section 4.6, we can

take logm = O(log(‖H‖T/εtot)). Considering the scaling with large ‖H‖, the total number

of gates simplifies to

O

(
TG log(T/εtot)

log log(T/εtot)
+

T log[(T logm)/εtot]

log log[(T logm)/εtot]
(logm)2

)
. (56)

A further simplification may be obtained by ignoring the double-log factors in the denomina-

tors, and then using the scaling of logm to give

O
(
TG log(T/εtot) + T [log(T/εtot) + log log ‖H‖][log(T/εtot) + log ‖H‖]2

)
. (57)

The number of gates can then be bounded in a simpler but looser form as

O
(
TG log(T/εtot) + T [log(‖H‖T/εtot)]3

)
. (58)

D. W. Berry, R. Cleve, and S. Gharibian 25

Omitting εtot, because we take this quantity to be constant, gives the scaling in the Theorem.

The number of qubits required for the algorithm is dominated by the number of qubits

required for the recursive measurement scheme. The number of qubits used for the ancilla

space is O(k[logm+ log log(1/ε)]). In the recursive measurement scheme it may be necessary

to duplicate the ancilla space k′ times to ensure that a maximum of k′ ones are detected. The

overall space used is therefore

O

(
log[(T logm)/εtot]

log log[(T logm)/εtot]

log(T/εtot)

log log(T/εtot)
[logm+ log log(T logm/εtot)]

)
. (59)

Cancelling the double-log, then omitting double-log factors in the denominator gives

O (log[(T logm)/εtot] log(T/εtot) logm) . (60)

Using the scaling of m then gives

O (log(T/εtot)[log(T/εtot) + log log ‖H‖] log(‖H‖T/εtot)) . (61)

A simpler bound can be given as

O
(
[log(‖H‖T/εtot)]3

)
. (62)

Again omitting εtot gives the scaling in the statement of the Theorem.

Note also that the allowable error in the driving Hamiltonian is O(ε′), which is O(εtot/T).

For constant εtot, the allowable error in the implementation of the driving Hamiltonian is

O(1/T), as given in the statement of the Theorem �.

7 Conclusions

We have shown that any continuous-time query algorithm of cost T can be implemented with

a number of discrete queries close to linear in T , and with a number of gates that is also close

to linear in T . This means that any continuous-time quantum algorithm can be converted

into an efficient discrete-query algorithm. In contrast, using the algorithm of Ref. [2] directly

would result in a number of gates that is linear in mT . That is, the gate complexity would

be superlinear in ‖H‖T , and similar to what would be obtained just using product formulae.

Our results provide an even better improvement in the scaling with ‖H‖; the number

of gates is polylogarithmic in this quantity, rather than superlinear. As the norm of the

driving Hamiltonian can potentially be very large, this can potentially provide a very large

improvement in efficiency. In both cases, the query complexity is independent of ‖H‖, but it
does not appear to be possible to completely remove the dependence of the number of gates

on ‖H‖ via this approach.

The methods we have presented may also be used as an alternative to product formulae

when simulating state evolution for a sum of Hamiltonians, where one Hamiltonian is self-

inverse, and the other has large norm, ‖H‖. Previous work has considered the complexity of

Hamiltonian simulation via product formulae where one Hamiltonian has much larger norm

[11]. Even using that approach, the complexity is only reduced from O(‖H‖T (‖H‖T/εtot)δ) to
O(‖H‖T (T/εtot)δ). In comparison, here we have obtained complexity that is polylogarithmic

in ‖H‖.

26 Gate-efficient discrete simulations of continuous-time quantum query algorithms

Acknowledgements

Research supported by Canada’s NSERC, CIFAR, MITACS, the U.S. ARO, and ARC grant

FT100100761.

References

1. E. Farhi and S. Gutmann (1998), Analog analogue of a digital quantum computation, Phys. Rev.
A, 57, pp. 2403–2406.

2. R. Cleve, D. Gottesman, M. Mosca, R. Somma, and D. Yonge-Mallo (2009), Efficient discrete-

time simulations of continuous-time quantum query algorithms, In Proc. 41st ACM Symposium

on Theory of Computing, pp. 409–416.
3. T. Lee, R. Mittal, B. W. Reichardt, R. Špalek, and M. Szegedy (2011), Quantum query complexity

of state conversion, In Proc. 52nd IEEE Symposium on Foundations of Computer Science, pp. 344–
353; arXiv:1011.3020.

4. E. Farhi, J. Goldstone, and S. Gutmann (2008), A quantum algorithm for the Hamiltonian NAND

tree, Theory of Computing, 4, pp. 169–190.
5. A. M. Childs, R. Cleve, S. P. Jordan, and D. Yonge-Mallo (2009), Discrete-query quantum algo-

rithm for NAND trees, Theory of Computing, 5, pp. 119–123.
6. A. Ambainis, A. M. Childs, B. W. Reichardt, R. Špalek, and S. Zhang (2007), Any AND-OR

formula of size N can be evaluated in time N
1/2+o(1) on a quantum computer, In Proc. 48th IEEE

Symposium on Foundations of Computer Science, pp. 363–372.
7. D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders (2007), Efficient quantum algorithms for

simulating sparse Hamiltonians, Commun. Math. Phys., 270, pp. 359–371.
8. L. Grover and T. Rudolph (2002), Creating superpositions that correspond to efficiently integrable

probability distributions, arXiv:quant-ph/0208112.
9. N. Wiebe, D. W. Berry, P. Høyer, and B. C. Sanders (2010), Higher order decompositions of

ordered operator exponentials, J. Phys. A: Math. Theor., 43, 065203.
10. J. Huyghebaert and H. De Raedt (1990), Product formula methods for time-dependent Schrodinger

problems, J. Phys. A: Math. Gen., 23, pp. 5777–5793.
11. A. Papageorgiou and C. Zhang (2012), On the efficiency of quantum algorithms for Hamiltonian

simulation, Quantum Information Processing, 11, pp. 541–561; arXiv:1005.1318.

Appendix A

The difference between the desired measurement operator Mn
c,d and the actual measure-

ment operator M̃n
c,d is because we will use operations on an expanded space that includes an

error-flag ancilla. Recall that, because |φq−t〉 is not exactly equal to |φq〉, we have a register

that is not exactly reset to zero, and this is swapped into an ancilla register. The unitary

operations in this expanded space will be denoted Ũn and Ũ †
n. Then the action of Ũn is

ŨnC
k
n|0n〉 ⊗ |0〉 =

∑

x∈{0,1}n

|x|≤k+1

ξnx
[√

1− εxC
k
n|x〉 ⊗ |0〉+√

εx|errx〉 ⊗ |1〉
]
. (A.1)

Here the tensor product with |0〉 on the left-hand side indicates the use of ancillas that are

initially in the state zero. The amplitudes ξnx are the amplitudes for each Ck
n|x〉 in the state

(8). These amplitudes include those for |x| = k + 1 for the state |ν′〉, which corresponds to

encoded Hamming-weight k + 1 states. For |x| ≤ k, we have ξnx = αn−|x|β|x|. The tensor

product with |0〉 on the right-hand side indicates ancillas that will be set to zero in the case

D. W. Berry, R. Cleve, and S. Gharibian 27

of success. The parameter εx is ≤ ε, and can in general depend on x. The state |errx〉 is an
error state.

For the ideal state preparation, we have

〈x|(Ck
n)

†UnC
k
n|0n〉 = ξnx . (A.2)

Using the expression for the action of Ũn, we find

[(〈x|(Ck
n)

†)⊗ 〈0|][ŨnC
k
n|0n〉 ⊗ |0〉] = ξnx

√
1− εx = 〈x|(Ck

n)
†UnC

k
n|0n〉[1−O(ε)]. (A.3)

There is no contribution from the error register, because the error flag is orthogonal to zero

for that register.

To perform the measurement, we append ancillas in the zero state, and perform Ũ †
n. Then

we perform the measurement that projects onto Ck
n|0n〉⊗ |0〉 and its orthogonal complement.

Here the tensor product with |0〉 indicates the extra ancillas used by the full preparation

procedure Ũn. Then we perform Ũn.

The action of this measurement will have error O(ε) from that used in the algorithm.

First, consider the resulting state for 0 measurement result and initial state Ck
n|x〉.

M̃n
c,0C

k
n|x〉 ⊗ |0〉 = Ũn[C

k
n|0n〉〈0n|(Ck

n)
† ⊗ |0〉〈0|]Ũ †

nC
k
n|x〉 ⊗ |0〉

= ŨnC
k
n|0n〉 ⊗ |0〉[〈x|〈0|(Ck

n)
†ŨnC

k
n|0n〉|0〉]∗

= ŨnC
k
n|0n〉 ⊗ |0〉[〈x|(Ck

n)
†UnC

k
n|0n〉]∗[1−O(ε)]

= ŨnC
k
n|0n〉 ⊗ |0〉[〈0n|(Ck

n)
†U †

nC
k
n|x〉][1−O(ε)]. (A.4)

The action of the exact measurement operator is

Mn
c,0C

k
n|x〉|0〉 = UnC

k
n|0n〉 ⊗ |0〉[〈0n|(Ck

n)
†U †

nC
k
n|x〉]. (A.5)

In addition, ŨnC
k
n|0n〉 ⊗ |0〉 is an approximation of UnC

k
n|0n〉 ⊗ |0〉 with trace distance O(ε).

It is therefore clear that the trace distance between M̃n
c,0C

k
n|x〉|0〉 and Mn

c,0C
k
n|x〉|0〉 is O(ε).

Similarly, the trace distance will be O(ε) for any normalised pure state superposition of |x〉.
By convexity of trace distance, for state ρ, the trace distance will be O (εTr(ρ)).

The resulting state for measurement result 1 is then

M̃n
c,1C

k
n|x〉 ⊗ |0〉 = Ck

n|x〉|0〉 − ŨnC
k
n|0n〉 ⊗ |0〉[〈0|(Ck

n)
†U †

nC
k
n|x〉][1−O(ε)]. (A.6)

This is because Ũn is exactly the inverse of Ũ †
n in the expanded space. The error for mea-

surement result 1 is therefore the same as for measurement result 0. Therefore, for both

measurement results the trace distance for initial state ρ will be O (εTr(ρ)).

Appendix B

To make the analysis of Theorem 6 rigorous, we first want to omit the high Hamming

weight measurement results. For the measurements in the uncompressed case, the probability

of measurement results with Hamming weight over k′ is O(ε′). This is because the probability

of obtaining each one is no more than 2α2β2. Because we take β2 ≈ 1/8m, the probability

of obtaining more than k′ ones with k′ = Θ(log(1/ε′)/ log log(1/ε′)) is O(ε′). Recall that we

28 Gate-efficient discrete simulations of continuous-time quantum query algorithms

place a bound ε′ on errors that only occur once in each time step, and use a corresponding

Hamming weight cutoff k′, whereas we use k for limiting errors that occur multiple times in

the measurement process.

To bound Dav, we also need to take account of the probability of high Hamming weight

measurement results for the uncompressed measurement. We can do this in the following

way. First use

∑

|b|>k′

(pc
b
− pu

b
) =

∑

|b|≤k′

(pu
b
− pc

b
) ≤

∑

|b|≤k′

|pu
b
− pc

b
| ≤

∑

|b|≤k′

‖pu
b
ρu
b
− pc

b
ρc
b
‖tr. (B.1)

Therefore we can bound Dav by

Dav ≤
∑

|b|>k′

(pc
b
+ pu

b
) +

∑

|b|≤k′

‖pu
b
ρu
b
− pc

b
ρc
b
‖tr

=
∑

|b|>k′

(pc
b
− pu

b
) + 2

∑

|b|>k

pu
b
+
∑

|b|≤k′

‖pu
b
ρu
b
− pc

b
ρc
b
‖tr

≤ O(ε′) + 2
∑

|b|≤k′

‖pu
b
ρu
b
− pc

b
ρc
b
‖tr. (B.2)

This means that omitting the high Hamming weight measurement results can only change

the results by a multiplying factor and an O(ε′) term. For convenience we define

D′
av :=

∑

|b|≤k′

‖pu
b
pu
b
− pc

b
ρc
b
‖tr. (B.3)

Next we note that the distance measure can be written as a trace distance between two

states, rather than the average of trace distances. That is,

D′
av =

∥∥∥∥∥∥

∑

|b|≤k′

(pu
b
|b〉〈b| ⊗ ρu

b
− pc

b
|b〉〈b| ⊗ ρc

b
)

∥∥∥∥∥∥
tr

. (B.4)

The reason for this is that the complete matrix is block-diagonal, with pu
b
pu
b
− pc

b
ρc
b
as the

blocks on the diagonal. The trace distance for the entire density matrix is just the sum of the

trace distances for the blocks on the diagonal, which is the definition of D′
av.

Let us denote by |ψη〉 the states obtained after preparation and controlled operations.

Then we have

pη
b
ρη
b
= Trctrl(Mη,b|ψη〉〈ψη|M†

η,b). (B.5)

Here Trctrl indicates a trace over the control registers. Then we have

D′
av =

∥∥∥∥∥∥

∑

|b|≤k′

[
|b〉〈b| ⊗ Trctrl

(
Mu,b|ψu〉〈ψu|M†

u,b

)
− |b〉〈b| ⊗ Trctrl

(
Mc,b|ψc〉〈ψc|M†

c,b

)]
∥∥∥∥∥∥
tr

.

(B.6)

Now note that the maps defined by

Eη(ρ) :=
∑

b

|b〉〈b| ⊗ Trctrl(Mη,bρM
†
η,b), (B.7)

D. W. Berry, R. Cleve, and S. Gharibian 29

are completely-positive trace-preserving (CPTP). This means that trace distance will not

increase under these maps. Now describing the states with the high Hamming weight com-

ponents removed by |ψ̃η〉, we have

∥∥∥∥∥∥

∑

|b|≤k′

[
|b〉〈b| ⊗ Trctrl

(
Mη,b|ψ̃η〉〈ψ̃η|M†

η,b

)
− |b〉〈b| ⊗ Trctrl

(
Mη,b|ψη〉〈ψη|M†

η,b

)]
∥∥∥∥∥∥
tr

≤
∥∥∥Eη(|ψ̃η〉〈ψ̃η|)− Eη(|ψη〉〈ψη|)

∥∥∥
tr
≤
∥∥∥|ψ̃η〉〈ψ̃η| − |ψη〉〈ψη|

∥∥∥
tr
= O(ε). (B.8)

As a result, using the triangle inequality gives

D′
av ≤ O(ε)

+

∥∥∥∥∥∥

∑

|b|≤k′

[
|b〉〈b| ⊗ Trctrl

(
Mu,b|ψ̃u〉〈ψ̃u|M†

u,b

)
− |b〉〈b| ⊗ Trctrl

(
Mc,b|ψ̃c〉〈ψ̃c|M†

c,b

)]
∥∥∥∥∥∥
tr

.

(B.9)

Next, each measurement operator Mη,b can be obtained by a sequence of measurement

operators in our recursive measurement scheme, which will yield a sequence of measurement

results d1, d2, Each b will correspond to a unique sequence of dℓ measurement results.

(Recall that bj are the individual results of measurements on uncompressed qubits, whereas

dℓ are the individual results from the recursive measurement.) Therefore we can relabel the

basis states such that we have

D′
av

=

∥∥∥∥∥
∑

d

{
|d〉〈d| ⊗ Trctrl

[
M ′

u,d|ψu〉〈ψu|(M ′
u,d)

†
]
− |d〉〈d| ⊗ Trctrl

[
M ′

c,d|ψc〉〈ψc|(M ′
c,d)

†
]}
∥∥∥∥∥
tr

.

(B.10)

Now the measurement operators that are chosen at step ℓ in the recursive measurement

scheme will depend on the measurement results that have been obtained at steps 1 to ℓ− 1.

Therefore we can write the measurement operators as

M ′
η,d =

K∏

ℓ=1

M
(d1,...,dℓ−1)
η,dℓ

. (B.11)

Here K is the number of measurement operators to locate the ones. For measurement result

b, the number of measurements required is no more than 1 + 2|b| logm. As we are taking b

such that |b| ≤ k′, we can take K = 1 + 2k′ logm.

Using this notation, we can define CPTP maps by

Eη,ℓ(ρ) :=
∑

d1,...,dℓ

|dℓ〉〈dℓ| ⊗M
(d1,...,dℓ−1)
η,dℓ,proj

ρ(M
(d1,...,dℓ−1)
η,dℓ,proj

)†, (B.12)

where

M
(d1,...,dℓ−1)
η,dℓ,proj

:= |dℓ−1〉〈dℓ−1| ⊗ · · · ⊗ |d1〉〈d1| ⊗M
(d1,...,dℓ−1)
η,dℓ

. (B.13)

30 Gate-efficient discrete simulations of continuous-time quantum query algorithms

Each map simply performs the appropriate measurement based on the prior measurement

results (which are stored in ancillas), and appends an ancilla depending on the result of the

measurement. In term of these maps, the trace distance we wish to bound may be written as

D′
av = ‖TrctrlEu,K . . . Eu,1(|ψu〉〈ψu|)− TrctrlEc,K . . . Ec,1(|ψc〉〈ψc|)‖tr . (B.14)

As has been noted above, we can omit the high Hamming weight contributions to the

states |ψη〉, with a possible change in the trace distance of O(ε). The reason for this is

that the trace distance is non-increasing under CPTP maps. Our goal is now to successively

approximate each of the maps in the sequence, at each stage bounding the introduced error

by O(ε). At the end we will obtain two identical states, and then bound D′
av by O(Kε).

More specifically, we want to approximate the evolution of the states for given measure-

ment results as in Eqs. (38) and (39). Note that the reasoning given in the proof of Theorem 5

also gives a recursive method to determine the amplitudes in the states |ψ(d1,...,dℓ)
η,ℓ 〉, starting

from γ
()
x,0 = i|x|ξmx . This means that the definitions of these states are unambiguous. We

now consider the approximate unnormalised states after ℓ− 1 measurements in the recursive

measurement scheme |ψ(d1,...,dℓ−1)
η,ℓ−1 〉, as given by Eqs. (35) and (36). We then define the states

including the ancilla qubits containing the measurement results as

ρη,ℓ−1 :=
∑

d1,...,dℓ−1

|dℓ−1〉〈dℓ−1| ⊗ . . .⊗ |d1〉〈d1| ⊗ |ψ(d1,...,dℓ−1)
η,ℓ−1 〉〈ψ(d1,...,dℓ−1)

η,ℓ−1 |. (B.15)

We wish to bound the error in approximating Eη,ℓ(ρη,ℓ−1) by ρη,ℓ.

In approximating Eu,ℓ(ρu,ℓ−1) by ρu,ℓ there is only one approximation: that of omitting

the high Hamming weight states in applying the rotation. The error in this approximation

will be O(ε) times the norm of the state. Because the norm of the state is only changed by

omitting high Hamming weight components, it can only be decreased. Therefore the error

is O(ε). Similarly, there is error in approximating Ec,ℓ(ρc,ℓ−1) by ρc,ℓ due to omitting high

Hamming weight components, which is bounded by O(ε). There is also error because the

Un rotations are not performed exactly. Two such rotations are performed, each with error

bounded by O(ε), resulting in the overall error being bounded by O(ε).

Therefore, we can start with Eq. (B.10), remove the high Hamming weight components

from the initial states, then proceed taking ℓ = 1 to K, replacing Eη,ℓ(ρη,ℓ−1) by ρη,ℓ at each

step. At each step the distance is increased by O(ε), and there are K steps, so we obtain

D′
av ≤ O(Kε) + ‖Trctrl(ρu,K)− Trctrl(ρc,K)‖tr . (B.16)

But, because the same amplitudes have been obtained for the compressed and uncompressed

cases, the same state is obtained after tracing over the control registers, and Trctrl(ρu,K) =

Trctrl(ρc,K). Therefore we obtain

D′
av = O(Kε) = O(εk′ logm). (B.17)

As Dav = O(ε′ +D′
av), this yields Eq. (45), as required.

