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The information-theoretic approach to Bell’s theorem is developed with use of the con-
ditional q-entropies. The q-entropic measures fulfill many similar properties to the stan-

dard Shannon entropy. In general, both the locality and noncontextuality notions are
usually treated with use of the so-called marginal scenarios. These hypotheses lead to
the existence of a joint probability distribution, which marginalizes to all particular ones.
Assuming the existence of such a joint probability distribution, we derive the family of

inequalities of Bell’s type in terms of conditional q-entropies for all q ≥ 1. Quantum vio-
lations of the new inequalities are exemplified within the Clauser–Horne–Shimony–Holt
(CHSH) and Klyachko–Can–Binicioǧlu–Shumovsky (KCBS) scenarios. An extension to
the case of n-cycle scenario is briefly mentioned. The new inequalities with conditional

q-entropies allow to expand a class of probability distributions, for which the nonlocality
or contextuality can be detected within entropic formulation. The q-entropic inequalities
can also be useful in analyzing cases with detection inefficiencies. Using two models of

such a kind, we consider some potential advantages of the q-entropic formulation.

Keywords: Bell theorem, contextuality hypothesis, marginal scenario, conditional q-
entropy, chain rule
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1. Introduction

The notion of entanglement plays a key role in studies of non-classical features of quantum

theory. Due to impressive advances, entangled quantum states are now treated as tools for

information processing [1]. An existence of purely quantum correlations was emphasized in the

Schrödinger “cat paradox” paper [2] and the Einstein–Podolsky–Rosen paper [3]. Nonlocal

correlations are brightly manifested in specified experiments similar to Bohm’s version of the

EPR argument [4]. In such experiments, spacelike separated observers share subsystems of an

entangled quantum system. From an intuitive viewpoint, the following assumptions seem to

be relevant. First, one assumes that physical quantities have well established values previous

to any measurement. Second, no signals can travel faster than the speed of light. A less

known point is the assumption of measurement independence [5, 6]. The assumptions lead

to restrictions commonly referred to as Bell inequalities. The fundamental result is that such

restrictions on correlations are overcome within quantum mechanics [7]. Today, a role of Bell

inequalities widely ranges from the foundations [8] up to applications in quantum information

processing like quantum key distillation [9, 10] and randomness expansion [11]. In a certain

sense, Leggett–Garg inequalities [12] are closely related to Bell ones. On the other hand,

996



A. E. Rastegin 997

Leggett–Garg inequalities probe correlations of a single system measured at different times.

A theoretical background, experimental tests and some proposals for such inequalities are

reviewed in Ref. [13]. In Ref. [14], this issue is examined within the entropic approach.

Like the locality, the noncontextuality assumption is also natural from the classical view-

point. In quantum theory, this pertains only to mutually compatible observables, which are

simultaneously diagonalizable. Hence, performed measurement of one of such observables

does not stipulate results of further measurements of other. It turns out that no noncon-

textual hidden-variable models can reproduce all the predictions of quantum theory [15, 16].

This result known as the Kochen–Specker theorem was independently obtained by Bell (for

details, see Ref. [17]). The recent paper [18] focused on the causality, which is also deeply

rooted in our understanding of the macro world. In quantum mechanics, we may conceive

situations in which a single event can be equally a cause and an effect of another one [18].

As discussed results concern measurement statistics, they are statements about probability

distributions. In general, there are various ways to express probabilistic properties. Although

many formulations of Bell’s theorem use inequalities, the Greenberger–Horne–Zeilinger ar-

gument has provided a claim without inequalities [19]. The EPR and GHZ states can give

suitable tools in considering three-partite entanglement [20]. Bell inequalities can be treated

geometrically within multilinear-contraction framework [21]. Entropic formulations of Bell’s

theorem have been proposed in Ref. [22] and further examined in Ref. [23]. Various entropic

measures are indispensable tools in analyzing secure protocols [24].

There exist several concrete scenarios to realize Bell’s theorem as an experimentally tested

statement. The Clauser–Horne–Shimony–Holt (CHSH) scenario [25] is probably the most

known setup of such a kind. The CHSH inequality imposes a restriction on mean values of

the corresponding observables. Its violation allows to renounce local hidden-variable models

[26, 27]. The Klyachko–Can–Binicioǧlu–Shumovsky (KCBS) scenario [28] is also the subject of

active research. The entropic approach has been applied to both the CHSH [22, 29] and KCBS

scenarios [29, 30]. These scenarios can be treated respectively as the n = 4 and n = 5 cases

of more general n-cycle scenario [31, 32]. For the n-cycle scenario, the quantum violations

occur for all n, though technical motives make their observation harder for large n [33].

Various aspects of entropic inequalities for marginal problems are considered in Ref. [34]. The

information-theoretical results are usually expressed in terms of standard functionals based on

the Shannon entropy. Applying statistical methods in numerous topics, some extensions were

found to be useful. The Rényi [35] and Tsallis [36] entropies are both especially important

generalizations. The nonlocality and contextuality are genuine quantum features related also

to the field of quantum information processing. So, it is of importance to develop the entropic

approach to Bell inequalities with use of generalized entropies.

The aim of the present paper is to study information-theoretic formulations of Bell’s

theorem in terms of the conditional Tsallis entropies. It turns out that important achievements

can be reached in this way. The paper is organized as follows. In Sect. 2, basic properties of

the Tsallis entropies are recalled. We also prove two required statements about the conditional

q-entropy, one of them for q ≥ 1 only. In Sect. 3, marginal scenarios are discussed from the

viewpoint of their use in studying Bell inequalities. For the CHSH scenario, inequalities of

Bell’s type in terms of the conditional q-entropies are obtained in Sect. 4. We also mention

an extension to the n-cycle scenario, which is currently the subject of active research [31, 32].



998 Tests for quantum contextuality in terms of q-entropies

In Sect. 5, we consider q-entropic inequalities with q ≥ 1 for the KCBS scenario. In both the

cases, violations of the obtained inequalities could be tested in the experiment. As is shown,

q-entropic inequalities with suitably chosen q > 1 can detect the nonlocality or contextuality

of some probability distributions, for which inequalities with the standard entropy fail. We

also analyze the q-entropic inequalities within two models of detection inefficiencies. In other

words, the family of q-entropic inequalities is much more powerful to reveal such properties.

In Sect. 6, we conclude the paper with a summary of results.

2. Conditional q-entropies and their properties

In this section, we recall definitions of the Tsallis entropies and related conditional entropies.

Required properties of these entropic functionals are discussed as well. Let the variable A

take values on the set ΩA with corresponding probability distribution
{

p(a) : a ∈ ΩA

}

. The

Tsallis entropy of order q > 0 6= 1 is defined by [36]

Hq(A) :=
1

1− q

(

∑

a∈ΩA

p(a)q − 1

)

. (1)

With the factor
(

21−q − 1
)−1

instead of (1−q)−1, this entropic form was derived from several

axioms by Havrda and Charvát [37]. Let B be another variable taking values on the set

ΩB with probability distribution
{

p(b) : b ∈ ΩB

}

. The joint q-entropy Hq(A,B) is defined

similarly to Eq. (1), but with joint probabilities p(a, b) instead of p(a). It is sometimes

convenient to rewrite the entropy (1) as

Hq(A) = −
∑

a∈ΩA

p(a)q lnq p(a) =
∑

a∈ΩA

p(a) lnq
1

p(a)
. (2)

The q-logarithm lnq x =
(

x1−q − 1
)

/(1− q) is defined for q > 0 6= 1 and x > 0, and it obeys

lnq(1/x) = −xq−1 lnq x. In the limit q → 1, we obtain lnq x→ lnx and the standard Shannon

entropy

H1(A) = −
∑

a∈ΩA

p(a) ln p(a) . (3)

For brevity, we will usually omit the symbol of the set ΩA in entropic sums. Properties of

quantum counterpart of the entropy (1) are examined in Ref. [38]. Applications of various

entropic functions in studying quantum systems are discussed in the book [39].

To analyze more realistic cases with detector inefficiencies, the following questions will

rise. For the given η ∈ [0; 1] and probability distribution
{

p(a) : a ∈ ΩA

}

, the set

{pη} :=
{

ηp(a) : a ∈ ΩA

}

∪ {1− η} (4)

is a probability distribution as well. This probability distribution corresponds to some random

variable Aη. We aim to relate the entropy Hq(Aη) with Hq(A) and the binary q-entropy

hq(η) := − ηq lnq η − (1− η)q lnq(1− η) . (5)

From three probability distributions, we can built another probability distribution

{pηη} :=
{

η2p(a)
}

∪
{

η(1− η)p(b)
}

∪
{

η(1− η)p(c)
}

∪
{

(1− η)2
}

. (6)



A. E. Rastegin 999

In this case, we aim to relate the obtained q-entropy with the q-entropies of the initial prob-

ability distributions. The following statement takes place.

Lemma 1 Let random variable Aη take its values according to the probability distribution

(4). For all q > 0, the q-entropies satisfy

Hq(Aη) = ηqHq(A) + hq(η) . (7)

Let random variable Aηη take its values according to the probability distribution (6). For all

q > 0, the q-entropies satisfy

Hq(Aηη) = η2qHq(A) + ηq(1− η)q
(

Hq(B) +Hq(C)
)

+
(

ηq + (1− η)q + 1
)

hq(η) . (8)

Proof. We first assume q > 0 6= 1. Substituting the distribution (4) into Eq. (1) directly

leads to the formula

(1− q)Hq(Aη) = ηq
(

∑

a
p(a)q − 1

)

+ ηq + (1− η)q − 1 . (9)

Dividing Eq. (9) by (1 − q) gives the claim (7). Similarly to Eq. (9), we further write the

term (1− q)Hq(Aηη) as

η2q

(

∑

a

p(a)q − 1

)

+ηq(1−η)q
(

∑

b

p(b)q +
∑

c

p(c)q − 2

)

+η2q+2ηq(1−η)q+(1−η)2q−1 .

(10)

By the identity η2q + 2ηq(1− η)q + (1− η)2q − 1 =
(

ηq + (1− η)q + 1
)(

ηq + (1− η)q − 1
)

, we

get the claim (8) from Eq. (10) after dividing by (1 − q). The standard case is recovered in

the limit q → 1. �

The second summand in the right-hand side of Eq. (7) can easily be checked with any

deterministic probability distribution. If the initial distribution {p(a)} is deterministic, then

the deformed distribution (4) includes only two nonzero probabilities, namely η and (1− η).

As Hq(A) = 0, the right-hand side of Eq. (7) actually gives the binary q-entropy. Similarly,

the third summand in the right-hand side of Eq. (8) could be checked with three deterministic

probability distributions.

Originally, the Braunstein–Caves inequality was formulated with use of the conditional

entropy and its generic properties [22]. The writers of Ref. [23] derived entropic Bell inequal-

ities by considering the so-called entropy Venn diagrams. The entropy of A conditional on

knowing B is defined as [40]

H1(A|B) :=
∑

b
p(b)H1(A|b) = −

∑

a

∑

b
p(a, b) ln p(a|b) , (11)

where H1(A|b) := −∑a p(a|b) ln p(a|b) and p(a|b) = p(a, b) p(b)−1 according to the Bayes

rule. The quantity (11) will be referred to as the standard conditional entropy. Further, we

will use its q-entropic extension. By means of the particular functional

Hq(A|b) := −
∑

a

p(a|b)q lnq p(a|b) =
∑

a

p(a|b) lnq
1

p(a|b) , (12)

one defines the conditional q-entropy [41, 42]

Hq(A|B) :=
∑

b
p(b)qHq(A|b) . (13)
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In the limit q → 1, this definition is reduced to Eq. (11). The above entropic measures with

q = 2 have been used in Ref. [44] for estimating the error probability on checking statistical

hypotheses. Below, we will extensively use the following properties of the entropic function

(13). For all q > 0, the entropy (13) satisfies

Hq(A,B) = Hq(B|A) +Hq(A) = Hq(A|B) +Hq(B) . (14)

This formula expresses the chain rule for the conditional q-entropy [41]. It can easily be

derived in line with the definitions (2) and (13) by means of the identity

lnq(xy) = lnq x+ x1−q lnq y . (15)

The mutual information is widely used in information theory [40]. Similarly to the standard

case, the mutual q-information can be defined as [41]

Iq(A : B) := Hq(A)−Hq(A|B) . (16)

For q = 1, we have the standard mutual information I1(A : B) = H1(A) −H1(A|B). Using

normalized Tsallis entropies, the corresponding mutual information was introduced in Ref.

[45]. We can rewrite (16) in the form

Iq(A : B) = Iq(B : A) = Hq(A) +Hq(B)−Hq(A,B) , (17)

since Hq(A|B) = Hq(A,B) − Hq(B) by Eq. (14). So, the quantity (16) is symmetric in its

entries. Quantum violations of the Clauser–Horne–Shimony–Holt inequality is limited from

above by the Tsirel’son bound [46]. This bound can be derived from the assumption that the

chain rule holds for a generalized mutual information proposed in Ref. [47].

The chain rule (14) can further be extended to more than two variables. According to

theorem 2.4 of Ref. [41], one obeys

Hq(A1, A2, . . . , An) =
∑n

j=1
Hq(Aj |Aj−1, . . . , A1) . (18)

Using Eq. (14) and non-negativity of the conditional q-entropy, we immediately obtain

Hq(A) ≤ Hq(A,B) , Hq(B) ≤ Hq(A,B) . (19)

In the next section, we will also use inequalities of the following form.

Lemma 2 For real q ≥ 1 and integer n ≥ 1, the conditional q-entropy satisfies

Hq(A|B1, . . . , Bn−1, Bn) ≤ Hq(A|B1, . . . , Bn−1) . (20)

Proof. Let us assume q > 1. First, we prove the claim for n = 2. The conditional

q-entropy Hq(A|B,C) can be rewritten as

Hq(A|B,C) =
∑

ab

p(b)q
∑

c

(

p(b, c)

p(b)

)q

fq
(

p(a|b, c)
)

, (21)

where the function fq(x) :=
(

xq − x
)

/(1 − q) is concave. Since
∑

c p(c|b) = 1, we have

p(c|b)q ≤ p(c|b) for q ≥ 1. So, the sum with respect to c obeys

∑

c
p(c|b)qfq

(

p(a|b, c)
)

≤
∑

c
p(c|b) fq

(

p(a|b, c)
)

≤ fq

(

∑

c
p(c|b) p(a|b, c)

)

, (22)
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due to Jensen’s inequality. As the numbers p(c|b) p(a|b, c) = p(b, c) p(b)−1p(a, b, c) p(b, c)−1 =

p(a, b, c) p(b)−1 are summarized to p(a, b) p(b)−1 = p(a|b), the right-hand side of Eq. (22)

reads fq
(

p(a|b)
)

. Combining this with Eq. (21) then gives

Hq(A|B,C) ≤
∑

ab
p(b)qfq

(

p(a|b)
)

= Hq(A|B) . (23)

By a parallel argument, we easily have the case n = 1, namely

Hq(A|B) ≤ Hq(A) . (24)

The proof of Eq. (20) is completed by an extension with respect to n. The case q = 1 can be

recovered by repeating the above reasons with the concave function f1(x) = −x lnx. �
Note that the formula (24) implies positivity of the mutual q-information (16) for all

q ≥ 1. There exists another form of the conditional q-entropy [41]. However, this form does

not succeed some useful relations including the chain rule. Properties of both forms of the

conditional q-entropy are discussed in the papers [41, 42]. The Fano inequality in terms of

q-entropies and some of its applications are considered in Refs. [41, 43]. We will use the

conditional q-entropy of order q ≥ 1 for expressing inequalities of Bell’s type.

3. Marginal scenarios and Bell inequalities

The notion of marginal scenarios provides a general way to treat the noncontextuality of

probability distributions [29, 34]. In a marginal problem, we ask whether a given family of

marginal distributions for some set of random variables arises from some joint distribution of

these variables [34]. Both Bell scenarios and contextuality scenarios can be unified in the fol-

lowing way [29]. Let
{

X1, . . . , Xn

}

be a finite set of observables, and let M =
{

S1, . . . , S|M|

}

be a family of subsets Si ⊆
{

X1, . . . , Xn

}

. Such subsets are assumed to be comprised from

commuting observables. In other words, each subset contains jointly measurable quantities.

Hence, the two conditions S ∈ M and S′ ⊆ S must imply S′ ∈ M. When the family M
obeys this implication, we call it “marginal scenario”. For a formal consistency, the empty

set ∅ is assumed to be included into M.

From the physical viewpoint, one obtains some joint measurement statistics for each S ∈
M. In real experiments, physicists usually deal with a collection of pairs of compatible

observables. Suppose that {X,Y } ∈ M. By Pr(x, y|X,Y ), we denote the probability of

obtaining the outcomes x for X and y for Y in their joint measurement. A similar notation

will be used for more than two compatible observables. Note that the notation Pr(x, y|X,Y )

assumes the specific physical context. In this sense, such probabilities should be distinguished

from usual conditional probabilities. The introduced probabilities are used to pose formally

criteria that given probabilistic model is not contextual [34]. An approach based on the

algebraic language has been developed by Abramsky and Brandenburger [48].

Within an intuitive approach, we assign some hidden variable λ to any physical model. It

is assumed that this variable completely predetermines the future behavior. If the actual value

of λ was known, the probabilities pX(x|λ) of each observableX are assumed to be independent

of measurement statistics of all other observables [29]. Hence, for mutually compatible X and

Y we can write

Pr(x, y|X,Y ) =
∑

λ
̺(λ) pX(x|λ) pY (y|λ) . (25)



1002 Tests for quantum contextuality in terms of q-entropies

Here, unknown quantities ̺(λ) must obey ̺(λ) ≥ 0 and
∑

λ ̺(λ) = 1. Similarly to Eq. (25),

we can deal with more than two compatible observables. The noncontextuality of a given

model in marginal scenario M implies the existence of a joint probability distribution

Pr(x1, . . . , xn|X1, . . . , Xn) = p(x1, . . . , xn) , (26)

which marginalizes to the model distributions for all S ∈ M [34, 48]. We then aim to decide,

whether the considered probabilistic model obeys this criterion. It can be rewritten in terms

of mean values or entropic functions.

Original Bell inequalities [7] were written in terms of mean values. Results of such a

kind usually pertain to experiments, which probe entanglement between spacelike separated

subsystems. The CHSH scenario is probably the most known setup. Let observables A and

A′ be used for one subsystem, and let observables B and B′ be used for other. Both the pairs

{A,A′} and {B,B′} are not jointly measurable. On the other hand, each element of {A,A′}
is compatible with each element of {B,B′}, since they are related to different subsystems. So,

the marginal scenario includes the four singletons {A}, {A′}, {B}, {B′}, and the four pairs

{A,B}, {A,B′}, {A′, B}, {A′, B′}. In the usual CHSH scenario, each of the observables has

two possible outcomes. Let outcomes be rescaled to ±1. The existence of a joint probability

distribution for this scenario then leads to the CHSH inequality [25]

〈AB′〉+ 〈A′B′〉+ 〈A′B〉 − 〈AB〉 ≤ 2 . (27)

Quantum mechanics predicts that the left-hand side of Eq. (27) can increase up to 2
√
2 [46].

Violations of Eq. (27) have been tested in experiments [26, 27]. Similarly, we formulate the

scenario with arbitrary number of outcomes for observables. Assuming the existence of a joint

probability distribution, Braunstein and Caves derived entropic inequality [22]

H1(A|B) ≤ H1(A|B′) +H1(B
′|A′) +H1(A

′|B) . (28)

The conditional entropy is asymmetric in its entries. The authors of Ref. [29] rewrite Eq.

(28) in terms of the symmetrical mutual information, namely

I1(A : B′) + I1(A
′ : B′) + I1(A

′ : B)− I1(A : B) ≤ H1(A
′) +H1(B

′) . (29)

In a structure, the information-theoretic inequality (29) is similar to the usual CHSH inequal-

ity (27). When we apply Eq. (29) to test the nonlocality of a probability distribution, the

following symmetries should be taken into account. By a permutation, the right-hand side of

this inequality can be rewritten with every pair of compatible observables.

Unlike the CHSH scenario, the KCBS scenario [28] is not associated with correlations

between the measurements on different subsystems. The latter pertain to the measurements

statistics for a single system. Here, we deal with five quantities X1, X2, X3, X4, X5, such that

each pair {Xj , Xj+1} is jointly measurable. If quantities take values ±1, then the existence

of a joint probability distribution leads to the pentagram inequality [28]

∑5

j=1
〈XjXj+1〉 ≥ −3 . (30)

The corresponding entropic formulation is expressed as [30]

H1(X1|X5) ≤ H1(X1|X2) +H1(X2|X3) +H1(X3|X4) +H1(X4|X5) . (31)
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The writers of Ref. [29] gave this inequality in other form known as the entropic Klyachko

inequality. Advantages of entropic formulations are the following. First, they can handle any

finite number of outcomes. Second, the entropic approach allows to study more realistic cases

with detection inefficiencies [29]. Further, we will consider the following two models.

In the first model, two compatible observables are measured jointly by a single detector.

By η ∈ [0; 1], we quantify a detection efficiency. The no-click event is represented by additional

outcome (∅,∅). The new probability distribution includes the probabilities [29]

Pr(η)(xj , xj+1|Xj , Xj+1) = ηPr(xj , xj+1|Xj , Xj+1) , (32)

Pr(η)(∅,∅|Xj , Xj+1) = 1− η , (33)

where xj , xj+1 ∈ {−1,+1}. This probability distribution marginalizes to the single-observable

distribution

Pr(η)(xj |Xj) = ηPr(xj |Xj) , Pr(η)(∅|Xj) = 1− η . (34)

In this model, the no-click event occurs for both observables simultaneously with the proba-

bility (33). As shown in Ref. [29], the entropic Klyachko inequality merely scales by η. Thus,

the inequality has a violation for all η > 0. Violations take place in the same cases, for which

the inequality with η = 1 is violated. We will further show that these properties remain valid

for the corresponding q-entropic inequalities.

In the second model, the joint measurement of Xj and Xj+1 is performed by two detectors.

We assume that each of detectors has an efficiency of η ∈ [0; 1]. It can be realized within

some sequential scheme with a nondemolition measurement in the first detector [29]. For any

jointly measurable pair, one writes the probabilities

Pr(ηη)(xj , xj+1|Xj , Xj+1) = η2 Pr(xj , xj+1|Xj , Xj+1) , (35)

Pr(ηη)(xj ,∅|Xj , Xj+1) = η(1− η) Pr(xj |Xj) , (36)

Pr(ηη)(∅,∅|Xj , Xj+1) = (1− η)2 , (37)

where Pr(ηη)(∅, xj+1|Xj , Xj+1) is expressed similarly to Eq. (36). This probability distribu-

tion also marginalizes to the single-observable distribution (34). In this model, the required

detection efficiency for witnessing quantum violations turned out be very high, η ≈ 0.995 [29].

In the following, we will consider this issue for q-entropic inequalities of the Bell type.

The CHSH and KCBS scenarios are both particular cases of the n-cycle [31, 32]. This

notion is defined for any number n ≥ 3 of observables X1, . . . , Xn in a cyclic configuration.

We demand that two observables Xj and Xj+1 be jointly measurable for all j = 1, . . . , n. The

complete characterization of the n-cycle scenario has been given for dichotomic observables,

when possible outcomes are ±1. Let each of n factors γj be either −1 or +1, and let the total

number of γj = −1 be odd. Then the noncontextuality implies [32]

∑n

j=1
γj〈XjXj+1〉 ≤ n− 2 . (38)

All 2n−1 inequalities of the form (38) characterize the n-cycle noncontextual polytope [32].

The CHSH inequality (27) is an example of Eq. (38) for n = 4. Entropic formulations for the

n-cycle scenario are examined in Refs. [29, 34].
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4. Entropic inequalities for the CHSH scenario

In this section, we formulate Bell’s theorem in terms of the conditional q-entropies for the

CHSH scenario. The q-entropic inequalities will be derived from the existence of joint prob-

ability distribution p
(

a, b′, a′, b
)

. This joint distribution should marginalize to the model

distributions for all jointly measurable pairs. For instance, for the pair {A,B} we have

p(a, b) =
∑

b′a′

p(a, b′, a′, b) , (39)

and similarly for other jointly measurable subsets. Due to relations of the form (19), we write

Hq(A,B) ≤ Hq(A,B
′, A′, B) = Hq(A|B′, A′, B) +Hq(B

′|A′, B) +Hq(A
′|B) +Hq(B) . (40)

Here, the entropy Hq(A,B
′, A′, B) was expressed with respect to the chain rule (18). Sub-

tracting Hq(B) and using Eq. (14), one further obtains

Hq(A|B) ≤ Hq(A|B′, A′, B) +Hq(B
′|A′, B) +Hq(A

′|B) . (41)

According to Lemma 2, for q ≥ 1 we write

Hq(A|B′, A′, B) ≤ Hq(A|B′) , Hq(B
′|A′, B) ≤ Hq(B

′|A′) . (42)

Combining these relations with Eq. (41), we have arrived at the entropic inequality

Hq(A|B) ≤ Hq(A|B′) +Hq(B
′|A′) +Hq(A

′|B) , (43)

which holds for q ≥ 1. Predictions of quantum mechanics sometimes lead to a violation of Eq.

(43). For q = 1, this formula is reduced to the Braunstein–Caves inequality (28). Using the

conditional q-entropies, we herewith obtained a one-parametric extension of the main result

of Ref. [22]. In terms of the mutual q-information, for q ≥ 1 we also have

Iq(A : B′) + Iq(A
′ : B′) + Iq(A

′ : B)− Iq(A : B) ≤ Hq(A
′) +Hq(B

′) . (44)

It follows from Eq. (43) by immediate use of the definition (16). Similarly to Eq. (29), we

should keep in mind possible permutations of the jointly measurable pairs in Eq. (44).

To observe violations of Eq. (43), we will deal with the four observables

A = ~a · ~σ ⊗ 11 , A
′ = ~a′ · ~σ ⊗ 11 , (45)

B = 11⊗~b · ~σ , B
′ = 11⊗~b′ · ~σ . (46)

Here, the three-dimensional vectors ~a, ~a′, ~b, and ~b′ are unit; the ~σ is the vector of Pauli

matrices. Violations of Eq. (43) can be characterized by the quantity

Cq = Hq(A|B)−Hq(A|B′)−Hq(B
′|A′)−Hq(A

′|B) . (47)

Following Ref. [22], we consider coplanar three-dimensional vectors ~a, ~b′, ~a′, and ~b, with the

angles ∡(~a,~b′) = ∡(~b′,~a′) = ∡(~a′,~b) = γ/3 and ∡(~a,~b) = γ. The initial state of two spin-1/2

systems is the state of zero total spin, namely

|Φ〉 = 1√
2

(

|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉
)

. (48)
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In Eq. (48), the quantization axis is completely arbitrary. With such a choice, the character-

istic quantity (47) can be rewritten as

Cq = Hq(A|B)− 3Hq(B
′|A′) . (49)

Here, the first term corresponds to the angle γ between two unit vectors, and the second one

corresponds to the angle γ/3 between two unit vectors. Positive values of Cq imply violations

of the locality hypothesis. It is useful to measure these positive values with a natural scale

of entropic values. So, we will relate Cq with the number lnq 2, which represents the maximal

binary q-entropy. That is, the results are reported in terms of the relative quantity

Rq := (lnq 2)
−1 Cq . (50)

Figure 1 presents violations of Eq. (43) for various q ≥ 1. For comparison, we include the

standard case q = 1, when the maximum is equal to 0.2369 [22] and reached for γ = 0.9141.

With increase of q, the curve maximum goes to larger values of γ. One shows some extension

of the domain, for which Rq > 0. The inequality (43) is actually violated for one values of q

and is not violated for other, including q = 1. Here, we can recall symmetries of Eqs. (29) and

(44) with respect to permutations of the four measurable pairs. In the considered example,

however, such permutations do not give new detectable cases for fixed q. Due to invariance of

the state (48), we have relations of the form Hq(A|B) = Hq(B|A), which depend only on the

angle between two unit vectors. Thus, the q-entropic inequalities can detect the nonlocality

of some probability distributions that cannot be detected by Eq. (28).

In general, entropic inequalities give only necessary criteria for the locality or noncon-

textualuity. In this sense, the q-entropic inequalities provide more powerful criteria. In the

dichotomic CHSH scenario, the author of Ref. [49] has recently shown the following. Adding

a shared randomness in the experimental setup, the Braunstein–Caves inequalities turn to

be sufficient. Extending the depolarization protocol of Ref. [50], the sufficiency can be

stated for any n-cycle with dichotomic outcomes. There exists also an argument without the

depolarization procedure [49]. Using the entire family of q-entropic inequalities provides a

complementary way, which can be essential with more than two outcomes.

It is easy to write the q-entropic inequalities for the n-cycle scenario. Here, each pair

{Xj , Xj+1} is jointly measurable. We suppose that there exist a joint probability distribution

p(x1, x2, . . . , xn), which marginalizes to two-observable distributions of the form

p(x1, x2) =
∑

xj : j 6=1,2

p(x1, x2, . . . , xn) . (51)

Assuming this, we extend Eq. (43) in the following way. For q ≥ 1, one has

Hq(X1|Xn) ≤
∑n−1

j=1
Hq(Xj |Xj+1) . (52)

This formula can be derived by means of obvious extension of the reasons from Eqs. (40)–

(43). We refrain from presenting the details here. Using Eqs. (14) and (16), we could rewrite

the inequality (52) with use of the joint q-entropies or the mutual q-informations. The former

is essential in studying models of detection inefficiencies. We consider this issue in the next
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Fig. 1. The relative quantity Rq versus γ in the case of Eq. (49) for q = 1.0; 1.15; 1.3; 1.7; 2.3. For
each q, only positive values of Rq are shown.

section. To compare Eq. (52) with predictions of quantum theory, we will use an immediate

extension of Eq. (47). For q = 1, such a quantity for the KCBS scenario was considered

in Ref. [30]. The inequality (52) is then rewritten as Cq ≤ 0. If predictions of quantum

mechanics do sometimes lead to strictly positive Cq, then the noncontextuality hypothesis

fails. In such a case, the quantity Cq characterizes an amount of violation of the inequality

(52). As was argued in Ref. [30], violation of the inequality (52) implies violation of the

corresponding pentagram inequality of Ref. [28], but the converse is not true. Such findings

could be verified in appropriate experiments.

5. Entropic inequalities for the KCBS scenario

In this section, we examine q-entropic inequalities of the Bell type for the KCBS scenario. In

the case n = 5 and q ≥ 1, the entropic inequality (52) reads

Hq(X1|X5) ≤ Hq(X1|X2) +Hq(X2|X3) +Hq(X3|X4) +Hq(X4|X5) . (53)

We also recall symmetries of such inequalities with respect to acceptable permutations. Fol-

lowing Refs. [29, 30], we consider projectors of the form |Xk〉〈Xk| with the eigenvectors

|X1〉 =
1√

2 cosα





√
cos 2α
sinα
cosα



 , |X2〉 =





0
cosα
− sinα



 , |X3〉 =





1
0
0



 , (54)

|X4〉 =





0
cosα
sinα



 , |X5〉 =
1√

2 cosα





√
cos 2α
sinα

− cosα



 , (55)

where α ∈ (0;π/4). The five vectors satisfy orthogonality conditions

〈X1|X2〉 = 〈X2|X3〉 = 〈X3|X4〉 = 〈X4|X5〉 = 〈X5|X1〉 = 0 . (56)
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The two projectors |Xk〉〈Xk| and |Xk+1〉〈Xk+1| are jointly measurable for all k = 1, 2, 3, 4, 5.

Eigenvalues 1 and 0 of the projector |Xk〉〈Xk| respectively correspond to outcomes “yes” and

“no”, when measured quantum state passes the test of being the state |Xk〉. The vectors

(54)–(55) also obey 〈X1|X4〉 = 〈X5|X2〉 and 〈X1|X3〉 = 〈X5|X3〉. Further, we write the

pre-measurement state as

|ψ〉 =





sin θ
cos θ
0



 , (57)

for which 〈X1|ψ〉 = 〈X5|ψ〉 and 〈X2|ψ〉 = 〈X4|ψ〉. Some intuitive reasons for such a configu-

ration are briefly discussed in Ref. [30].

Table 1. The maximal values of Cq and Rq for several q.

q 1.0 1.1 1.2 1.4 1.6 1.8
max Cq 0.0631 0.0779 0.0898 0.1049 0.1111 0.1113
maxRq 0.0911 0.1164 0.1387 0.1733 0.1960 0.2093
αmax 0.1698 0.1802 0.1880 0.1987 0.2051 0.2085
θmax 0.2366 0.2684 0.2943 0.3327 0.3585 0.3761
q 2.0 2.5 3.0 5.0 8.0 11.0

max Cq 0.1079 0.0924 0.0759 0.0383 0.0212 0.0146
maxRq 0.2157 0.2143 0.2024 0.1632 0.1494 0.1462
αmax 0.2099 0.2067 0.1982 0.1557 0.1205 0.1017
θmax 0.3880 0.4014 0.3996 0.3345 0.2639 0.2247

With the pre-measurement state |ψ〉, the observation of Xk leads to the outcomes xk = 1

and xk = 0 with probabilities |〈Xk|ψ〉|2 and 1 − |〈Xk|ψ〉|2, respectively. According to the

projection postulate, the normalized post-measurement state is |Xk〉 for xk = 1 and

(

1− |〈Xk|ψ〉|2
)−1/2

{

|ψ〉 − |Xk〉〈Xk|ψ〉
}

(58)

for xk = 0. Hence, the context for next observations is determined. If the next observa-

tion is Xj , we calculate the conditional probabilities and, further, the corresponding entropy

Hq(Xj |Xk). In this quantum-mechanical way, one evaluates the characteristic quantity

Cq = Hq(X1|X5)−Hq(X1|X2)−Hq(X2|X3)−Hq(X3|X4)−Hq(X4|X5) . (59)

The inequality (53) implies Cq ≤ 0. The main result is its violations for certain values

of the parameters α and θ. We do not solve analytically the problem of finding a joint

parametric domain, in which Cq > 0. For given parameters, however, the quantity Cq is easy

to numerical estimation. Some numerical results are summarized below. Here, we will again

use the quantity rescaled according to Eq. (50). In Table 1, the maximal values of Cq and Rq

are shown for several values of the parameter q. The values αmax and θmax, which correspond

to the maximal violation, are given as well. In relative entropic size, the maximal violation

of Eq. (53) is sufficiently large for all the presented values of q. The standard case q = 1 was

previously reported in Ref. [30]. For convenience of comparing with values q > 1, we insert

this case in the table. As we see in Table 1, the values αmax and θmax depend on q. In given

experimental setting, some fixed value of α and few values of θ would be rather available. On

Fig. 2, a dependence of Rq on θ is given for α = 0.1885 and five values of the parameter q.

We see that violation of Eq. (53) is significant for many values q ≥ 1. Curves of Fig. 2 show
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Fig. 2. The relative quantity Rq versus θ in the case of Eq. (59) for α = 0.1885 and q =
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the following important facts. First, the domain of θ, in which Rq > 0, essentially increases

with q > 1. Hence, validity of Eq. (53) with some probabilistic model is not sufficient for its

noncontextuality. Second, measurement statistics of the experiment with some fixed choice of

θ does violate Eq. (53) for one values of q and does not for other ones, including the standard

case q = 1. For instance, with θ = 0.4765 the inequality (53) is actually violated for 1.13 < q

and is not violated with 1 ≤ q ≤ 1.13. In other words, the q-inequalities with properly chosen

values of q right detect the contextuality of some probability distributions that cannot be

detected by Eq. (31) with the standard entropies. Thus, the family of q-entropic inequalities

provides much more sensitive criteria for the contextuality. In the same experimental setup,

therefore, we could test violation of the entire family of q-entropic inequalities of the Bell

type. The obtained results can be regarded as an extension and development of theoretical

findings of Refs. [29, 30].

We now consider q-entropic inequalities in the more realistic cases with detector ineffi-

ciencies. The writers of Ref. [29] considered these cases for inequalities with the Shannon

entropies. It is convenient to rewrite Eq. (53) without conditional entropies. Using Eq. (14),

we have Hq(Xj |Xj+1) = Hq(Xj , Xj+1)−Hq(Xj+1). Then the formula (53) gives

0 ≤
4
∑

j=1

Hq(Xj , Xj+1)−Hq(X1, X5)−Hq(X2)−Hq(X3)−Hq(X4) = −Cq . (60)

Due to detector inefficiencies, we obtain somewhat altered probability distributions. Hence,

calculated entropies will somehow differ from the entropies involved in Eq. (60). The inequal-

ity (60) itself pertains to the inefficiency-free case, when η = 1. In the single-detector model,

probabilities are given by Eqs. (32) and (33) for the two-observable distribution and by Eq.

(34) for the single-observable distribution. By H
(η)
q (Xj , Xj+1) and H

(η)
q (Xj), we denote the

actual q-entropies calculated with such distributions. If the inequality (60) is valid, then the
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actual entropies satisfy the same formula, namely

0 ≤
4
∑

j=1

H(η)
q (Xj , Xj+1)−H(η)

q (X1, X5)−H(η)
q (X2)−H(η)

q (X3)−H(η)
q (X4) . (61)

Indeed, from Eq. (7) we immediately write

H(η)
q (Xj , Xj+1) = ηqHq(Xj , Xj+1) + hq(η) , (62)

H(η)
q (Xj) = ηqHq(Xj) + hq(η) . (63)

Substituting these expressions, the inequality (61) is recast as Eq. (60) multiplied by factor

ηq. In the single-detector model, therefore, the noncontextuality hypothesis leads to the

family of q-entropic inequalities of the form (61) with q ≥ 1. The following points should

be emphasized. First, in the considered model violations of Eq. (61) are irrelevant to the

detection efficiency η > 0. Second, for fixed q the maximal violation takes place in the same

cases, for which the inefficiency-free inequality is maximally violated. For the observables

(54)–(55) and the state (57), some cases of the maximal violation were given above in Table

1. In this regard, q-entropic inequalities of the Bell type succeed properties of more usual

inequalities in terms of the Shannon entropies.

In the second model of detector inefficiencies, probabilities of the two-observable distri-

bution are expressed by Eqs. (35), (36), and (37). These two-observable distributions also

marginalize to the single-observable distributions of the form (34). By H
(ηη)
q (Xj , Xj+1) and

H
(ηη)
q (Xj), we denote the actual q-entropies in the considered model of inefficiencies. Using

Eq. (8), we obtain

H(ηη)
q (Xj , Xj+1) = η2qHq(Xj , Xj+1) + ηq(1− η)q

(

Hq(Xj) +Hq(Xj+1)
)

+
(

ηq + (1− η)q + 1
)

hq(η) . (64)

On the other hand, the entropy H
(ηη)
q (Xj) is equal to the right-hand side of Eq. (63). For

brevity, we introduce the quantity

C(ηη)
q := −

4
∑

j=1

H(ηη)
q (Xj , Xj+1)+H

(ηη)
q (X1, X5)+H

(ηη)
q (X2)+H

(ηη)
q (X3)+H

(ηη)
q (X4) . (65)

In the inefficiency-free case, when η = 1, this term coincides with the characteristic quantity

(59). Using Eqs. (63) and (64), we represent the right-hand side of Eq. (65) as

C(ηη)
q = η2q Cq −∆q(η) , (66)

∆q(η) = ηq
(

ηq + 2(1− η)q − 1
)(

Hq(X2) +Hq(X3) +Hq(X4)
)

+ 3
(

ηq + (1− η)q
)

hq(η) . (67)

The second summand in the right-hand side of Eq. (67) is positive. For q > 1, the factor

ηq + 2(1− η)q − 1 is negative for some values of η near 1 from below. So, the first summand

in the right-hand side of Eq. (67) can take positive or negative values. The noncontextuality

inequality (60) implies Cq ≤ 0. Using measurement statistics, however, we actually deal
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with the quantity (65). Suppose that measurement data have lead to the result C(ηη)
q > 0.

Generally, one cannot conclude Cq > 0 without the following. We must confide that the

violating term η2q Cq is sufficiently large in comparison with the additional term (67). To

compare these terms, we introduce their ratio

rq(η) := η−2q C−1
q

∣

∣∆q(η)
∣

∣ , (68)

which is related to the case Cq > 0. To obtain concrete estimates of η, we have found

numerically the ratio (68) in the cases of maximal violation, which are shown in Table 1.

In these cases, the additional term (67) turns to be nonnegative for all η ∈ [0; 1]. Then

the experimental result C(ηη)
q > 0 would witness Cq > 0, i.e. quantum violations of the

noncontextuality hypothesis. However, large values of ∆q(η) can prevent this, even if the

theoretical violation is maximal. Therefore, used detection schemes should provide the ratio

(68) to be sufficiently small.

Table 2. The values of the ratio (68) for η = 0.99 and several q in some cases of maximal violation.

q 1.0 1.1 1.2 1.4 1.6 1.8
rq(0.99) 2.0400 1.8593 1.3065 0.7764 0.5461 0.4294

q 2.0 2.5 3.0 5.0 8.0 11.0
rq(0.99) 0.3641 0.2944 0.2793 0.3845 0.6227 0.8656

We have calculated rq(η) versus η for all the cases listed in Table 1. With respect to η, we

especially focus an attention on values, which are very close to 1 from below. As calculations

show, for fixed q the ratio rq(η) decreases with such η almost linearly, up to the inefficiency-

free value rq(1) = 0. Due to almost linear dependence, we can describe each case by the value

of Eq. (68) for some suitably chosen η, say, for η = 0.99. For estimation purposes, one then

writes approximate formula

rq(η) ≈ 102 rq(0.99) (1− η) , (69)

which is appropriate within a range of linear behavior. In Table 2, the value rq(0.99) is

presented for the cases of maximal violation, which are given above in Table 1. Initially,

this value significantly decreases with q > 1. Further, it becomes increasing for sufficiently

large q. In general, the required detection efficiency is very high. This conclusion concurs

with the efficiency η ≈ 0.995, which was claimed in Ref. [29] for relations with the Shannon

entropies. A novel point is that, for given η, the ratio (68) essentially depends also on q.

Among q-entropic inequalities for the KCBS scenario with observables (54)–(55), the choice

q = 2 can be recognized as very appropriate. First, the value of max Cq for q = 2 is almost

maximal in comparison with other (see Table 1). Second, the ratio (68) in the second model

of detection inefficiencies is sufficiently small for η > 0.99 (see Table 2). Third, properties of

the q-entropies are mathematically simpler just in the case q = 2. Some of these properties

were considered in Ref. [44]. With the family of q-entropic inequalities, therefore, we can

obtain new possibilities for analyzing measurement data with detection insufficiencies.

6. Conclusions

In the paper, we have expressed Bell’s theorem in terms of the conditional q-entropies of

order q ≥ 1. Formally, the presented inequalities are based on several useful properties of the
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conditional q-entropy. One of them is the well-known chain rule. Other required properties

are proved as Lemmas 1 and 2. The latter result is combined with the chain rule in deriving

new q-entropic inequalities of Bell’s type. The statement of Lemma 1 is used to study the

more realistic cases with detection inefficiencies. The result of Lemma 2 holds for q ≥ 1

and generalizes analogous property of the standard conditional entropy. From the physical

viewpoint, the noncontextuality hypothesis is a key ingredient of the derivation. Assuming

the existence of a joint probability distribution for the outcomes of all observations, we have

arrived at a principal conclusion. Namely, the corresponding conditional q-entropies of order

q ≥ 1 should satisfy inequalities of the form (52). This claim generalizes the previous entropic

formulations of Bell’s theorem. In particular, the inequality (43) is a q-parametric extension

of the Braunstein–Caves inequality [22]. Thus, we have shown that the noncontextuality

hypothesis leads to the entire family of q-entropic inequalities of Bell’s type. It turns out

that these inequalities are incompatible with the predictions of quantum mechanics for many

values of the parameters.

With the standard conditional entropy, violations of entropic Bell inequalities were exam-

ined for the CHSH scenario in Refs. [22, 29] and for the KCBS scenario in Refs. [29, 30].

We have explicitly considered violations of the q-entropic inequalities in both the scenarios.

The following principal conclusions can be made. First, the derived q-entropic inequalities

allow to expand significantly a class of probability distributions, for which the nonlocality or

contextuality are testable in this way. Using the q-entropic inequalities is an alternative to

the approach with adding some shared randomness [49]. Second, the q-entropic inequalities

are expedient in analyzing cases with detection inefficiencies. In the single-detector model,

features of the q-entropic inequalities are quite similar to features of usual inequalities in terms

of the Shannon entropies. In the two-detector model, the use of the q-entropic inequalities

can allow to reduce an amount of required detection efficiency. The obtained conclusions for

various values q ≥ 1 could be tested in the experiment. For the conventional CHSH inequality

in terms of average values, quantum violation is limited by the Tsirel’son bound. It would be

interesting to obtain upper bounds on possible violations of q-entropic inequalities of Bell’s

type. Due to the role of entangled states in quantum information processing, theoretical

results of such a kind may also have a practical significance.
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