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Localized Majorana fermions emerge in many topologically ordered systems and exhibit

exchange statistics of Ising anyons. This enables noise-resistant implementation of a lim-

ited set of operations by braiding and fusing Majorana fermions. Unfortunately, these
operations are incapable of implementing universal quantum computation. We show

that, regardless of these limitations, Majorana fermions could be used to demonstrate

non-locality (correlations incompatible with a local hidden variable theory) in exper-
iments using only topologically protected operations. We also demonstrate that our

proposal is optimal in terms of resources, with 10 Majorana fermions shown to be both

necessary and sufficient for demonstrating bipartite non-locality. Furthermore, we iden-
tify severe restrictions on the possibility of tripartite non-locality. We comment on the

potential of such entangled systems to be used in quantum information protocols.
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1 Introduction

Fermions that are their own anti-particle are known as Majorana, as opposed to Dirac,

fermions. While presently there is no evidence that any fundamental particles are Majo-

rana fermions, they frequently emerge as localised quasi-particles in models of condensed

matter systems [1, 2, 3, 4, 5]. Recent years have seen a race to experimentally confirm their

existence, with some evidence already found [6, 7, 8, 9, 10, 11]. Research into these systems is

driven, at least partially, by their potential applications in topological quantum computing.

For localised and well-separated Majorana fermions with zero energy, the system is protected

from noise effects that could otherwise prove devastating in quantum computers.

Suitable Majorana fermions emerge in many two-dimensional (2D) systems including the

Kitaev honeycomb lattice [12], fractional quantum hall systems [13, 14], topological insula-
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tors [2, 15], and a variety of other systems [16]. Adiabatically exchanging these fermions, and

so braiding their world-lines, gives rise to the non-abelian exchange statistics of Ising anyons.

Majorana fermions can also emerge as edge modes in one-dimensional (1D) systems [16],

such as the Kiteav wire [1]. While braiding is not a meaningful concept in strict 1D sys-

tems, networks of wires also enable braiding with Ising statistics [17]. The unitary evolution

from braiding is geometric in origin, and so robust against small experimental imperfections.

However, these topologically protected braiding operations are not computationally powerful

enough for universal quantum computing. Indeed, any free fermionic system can be effi-

ciently classically simulated [18, 19]. Access to some non-topological operations — which

may be noisy, but not too noisy [20, 21, 22, 23] — can be used to promote the system to full

universality [24, 25, 26, 27, 28]. However, here we are interested in understanding the purely

topological protected capabilities of Majorana fermions, and in particular their capacity for

demonstrating non-locality [29].

Non-locality is the inability for a local hidden variable (LHV) theory to reproduce the

correlations of space-like separated measurements. Until now, non-locality has only been in-

vestigated in more exotic topological systems by Brennen et al. [30] and Deng et al. [31]. Both

groups only considered systems capable of universal quantum computation, with Brennen et

al. concluding their work saying, “it is intriguing to ask whether one could find intermedi-

ate anyonic theories which have the power to generate Bell violating states by topologically

protected gates, but are not universal for topological quantum computation”. We resolve this

mystery by showing that Majorana fermions, and equivalently Ising anyons, could be used

in an experiment demonstrating the non-locality of quantum mechanics. It appears that the

standard and ubiquitous Clauser-Horne-Shimony-Holt (CHSH) inequality cannot be violated

with only topological operations, and the non-topological resources sufficient for a CHSH vi-

olation have been investigated [32]. We turn instead to a non-local experiment proposed by

Cabello [33, 34] where 2 parties each select from 3 possible measurements, with each mea-

surement producing 3 bits of classical information as outcomes. This non-locality proposal

was built on the idea of the Mermin-Peres “magic square”, which was originally used to

show the contextuality of quantum mechanics [35, 36]. We find that a variant of experiments

could be implemented with each of two parties holding 5 Majorana fermions, and present a

Bell inequality based on the magic square. We also present no-go results showing for two

parties holding 4 Majoranas each, all experimental statistics can be produced by a local hid-

den variable theory. If two parties share an unequal number of Majoranas, say n and m

with n < m, we find that the resource is locally equivalent to both parties holding just n

Majorana fermions. Hence, 10 Majorana fermions are both necessary and sufficient for the

phenomenon of bipartite non-locality to be topologically demonstrated. Furthermore, we find

that the correlations required to demonstrate the three-party Greenberger-Horne-Zeilinger

(GHZ) paradox [37, 38, 39] cannot be implemented with any number of Majoranas. This

indicates that our proposal is the simplest possible non-locality experiment with Majorana

fermions.

Bell experiments were intended, initially, to falsify alternative theories that claim the

world to be local in Nature. Now these Bell-type non-locality experiments are also known to

have practical applications. Such experiments can form the basis of quantum cryptography

when the devices used are faulty or even untrusted [40, 41]. Typically, such proposals are
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envisaged for photonic systems, since they provide an easier means of accomplishing space-like

separation of measurement events (a requirement for a non-local experiment). Polarisation-

entangled photons have, for many years, been used to test Bell’s proposal, proving successful

if one ignores the detector loophole [42]. Experiments with trapped ions have efficient enough

measurements to avoid the detector loophole, but do not satisfy space-like measurement

separation [43]. Designing better experiments, hopefully closing all loopholes, is an active

area of research [44, 45]. We shall not argue that our topological proposal is more promising

than the aforementioned approaches. Rather, we take the first step by showing theoretical

feasibility under ideal conditions. Implicit in our approach is the assumption that the physical

system can be shared between two parties over sufficient distances that measurements are

space-like separated; this is a similar technical difficulty faced by ion trap designs [43].

2 Majorana fermions and braiding

2.1 Majorana fermions

We begin with a review of Majorana fermions and their available dynamics, largely following

Refs. [25, 16]. Generally, Majorana fermions are described by a set of Hermitian operators

c1, . . . , c2n satisfying

{cj , ck} = 2δj,k (1)

and c†j = cj for all j, acting on the physical Hilbert space H = H0 ⊕H1 constituting a direct

sum between the even and odd parity sectors. The algebra of physical operators F = L(H)

is spanned by products of an even number of Majorana fermion operators. Taking two such

fermions and clockwise braiding their world lines results in a unitary U(j, k) that maps the

operators as

U(j, k)caU(j, k)† =

 ca if a 6= {j, k},
ck if a = j,
−cj if a = k,

(2)

for k > j. Composing these braid operations results in a permutation P ∈ S2n, with possible

phase change Q, so that cj 7→ (−1)QjcPj
. The phases are constrained so that the global parity

is preserved, leaving
∏2n
j=1 cj unchanged.

Such braidings are a special case of unitary transformations U acting on H that reflect

linear mode transformation

cj 7→ Uc′jU
† =

2n∑
k=1

Vj,kck (3)

for V ∈ SO(2n). Such unitary transformations are the ones commonly considered in the

context of fermionic linear optics. All states encountered in this work are Gaussian fermionic

states [18, 19, 46]. They are entirely described by their anti-symmetric covariance matrix

γ ∈ R2n×2n, γ = −γT , which has entries γj,k = itr(ρ[cj , ck])/2.

2.2 Stabiliser language

We primarily describe quantum states in the Heisenberg picture by specifying a sufficient

number of eigenvalue equations. We say an operator s ∈ F stabilises a state vector |ψ〉 if

s |ψ〉 = |ψ〉 . (4)
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We assume that initialisation of the system prepares a state vector |ψ0〉 stabilised by gj =

ic2j−1c2j for all j ∈ {1, . . . , n}. Therefore, any state prepared from the initialisation |ψ0〉 by

braiding will be stabilised by gj = ±icP2j−1
cP2j

for some permutation P ∈ S2n. Note that,

since permutations are one-to-one mappings, if j 6= k, then Pj 6= Pk. Products of stabilisers

are again stabilisers, and so gj generate a group S associated with the state. Similarly,

topologically protected measurements, also called charge measurements, are those of the form

icjck. Throughout, we say a state is accessible if and only if it can be prepared with the above

described topological operations. Again, states obtained by performing such measurements

on Gaussian states are Gaussian.

Collective charge measurements, such as of c1c2c3c4, cannot be measured non-destructively

and in a topological manner. The collective charge observable can, however, be inferred

by measuring ic1c2 and ic3c4 and multiplying the outcomes. However, such a process is

destructive in that it will always disentangle these Majoranas from all other systems. We

labour this point because the capacity to make non-destructive charge measurements increases

the computational power of the system [25] beyond that assumed in our later no-go theorems.

2.3 Anyonic formalism

We shall restate some of the above in the anyonic formalism, which may be of benefit to some

readers. Using, σ to denote an Ising anyon, ψ for another fermion, and 1 for the vacuum,

we have the fusion channel σ × σ → 1 + Ψ. Fusing Ising anyons j and k is equivalent to

measuring icjck, where producing a Ψ particle is equivalent to the −1 measurement outcome

(eigenvalue) and producing the vacuum 1 outcome denotes the +1 eigenvalue. Conversely, if

we begin with a vacuum and create n pairs of Ising anyons, we have the initialisation state

described above if anyons from the jth pair are labeled as 2j − 1 and 2j.

2.4 Entanglement properties

We proceed by identifying the equivalence classes of entangled states that are accessible under

the operations described above. Consider two parties, Alice and Bob, holding respective sets

of Majorana fermions A = {1, 2, . . . , n} and B = {n + 1, . . . , n + m}. Clearly, any state

stabilised by ±icjck can be locally prepared by Alice for j, k ∈ A labeling a pair of Majorana

fermions. A similar statement holds for Bob, and so the interesting stabilisers have j ∈ A and

k ∈ B with each party holding one half of a pair of Majorana fermions (henceforth referred to

as Majorana pairs). Assuming they hold N such pairs, they can always locally braid such that

the state is stabilised by icjcj+N for all 1 ≤ j ≤ N . We see that the entanglement is entirely

captured by the number of such Majorana pairs shared by Alice and Bob, and throughout we

assume this canonical form for the stabilisers. For notational simplicity, it is beneficial to use

aj = cj and bj = cj+n, so Majorana pairs are stabilised by iajbj .

Crucially, the number of Majorana pairs is distinct from the number of Bell pairs that give

rise to useful entanglement. To investigate the useful correlations between Alice and Bob, we

must consider how such pairs respond to measurements. Consider a pair of stabilisers iajbj
and iakbk for j 6= k, the state is also an eigenstate of their product (iajbj)(iakbk) which using

anti-commutation of fermions equals −(iajak)(ibjbk). The factors iajak and ibjbk are locally

measurable, and so their outcomes must be anti-correlated. Hence, the state has the flavor of

a singlet state.

To make measurements Alice and Bob must share at least two Majorana pairs, but two
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alone is trivial since there is only one possible local measurement and with only one mea-

surement we cannot construct a test of non-locality. With three Majorana pairs, Alice has

three possible measurement observables that mutually anti-commute and are isomorphic to

the Pauli operators. An encoding is a collection of maps F → B(H), identifying the set

of fermionic modes with qubit or spin systems. The identification of products of Majorana

fermions with Pauli operators of an associated qubit system can be taken as

X = ia1a2, Y = ia1a3, Z = ia2a3. (5)

From the anti-commutation relations of the Majorana fermions, one can readily verify that

these operators generate the Pauli group of a single qubit. Bob similarly has measurement

options isomorphic to the Pauli operators. The correlations between Alice and Bob resulting

from the above measurements on three Majorana pairs match those of Pauli measurements

on the two-qubit singlet state (for Alice and Bob each having a single qubit). Hence, three

Majorana pairs can be said to reproduce the entanglement of a Bell pair. However, it is well-

known that the measurement statistics under the operations allowed here can be reproduced

by a local hidden variable (LHV) theory. Later we present a strengthened proof that even

four Majorana pairs are incapable of demonstrating non-locality.

3 Non-locality

Before proceeding we refine the concepts of non-locality. Assume Alice and Bob hold some

quantum state ρ and are able to freely choose from a set of measurements {Aj : j ∈ I} and

{Bk : k ∈ I} respectively, where I denotes the set of different kinds of measurement settings.

The measurements will have possible outcomes that we denote α, β ∈ R for a suitable r that

occur with probability

P (α, β|j, k) = tr[(Πj,α ⊗Πk,β)ρ] (6)

where Πj,α ≥ 0 (Πk,β ≥ 0) is the positive-operator valued measure for setting j (k) and

outcome α (β). There are many different experiments that can achieve the same probability

distributions, and each of these is a realisation of P . Conversely, we say a probability dis-

tribution P is quantum if there exists a choice of measurements and a quantum state ρ that

realises P .

When are these observations a proof of non-locality? Imagine that Alice and Bob are

space-like separated and are allowed to make their choice of measurement freely, they now

want to know whether any classical model can produce these observations. Since they cannot

communicate, this classical model has some pre-determined instructions that, given Alice and

Bob’s choice of measurements, will output some value. Such an instruction set is called a

LHV theory. An arbitrary hidden variable λ takes values in some space Λ equipped with a

probability measure, and which determines local probability functions

λ 7→ pA(α|j, λ), λ 7→ pB(β|k, λ). (7)

The probability of obtaining the outcome pair (α, β), given that j, k have been chosen by

Alice and Bob, is then

P (α, β|j, k) =

∫
dM(λ)pA(α|j, λ)pB(β|k, λ). (8)
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A probability distribution is local (also called a LHV) if and only if there exists a decomposi-

tion of the above form, and we denote this as P ∈ PL. If no such local model exists, P /∈ PL,

we say the probability distribution is non-local. Furthermore, any experiment realizing a

non-local probability distribution is a non-locality experiment.

Typically, we confirm non-locality by checking whether a probability distribution violates

a Bell inequality. Let us fix the number of measurement settings and outcomes, and denote

the entire set of possible probability distributions by P. The Bell inequalities follow by first

defining a real-valued linear function, G : P → R, which is sometimes called a non-local

game [47, 48, 33], the respective parties are referred to as players and the action taken are

strategies. The non-local game, as the term is used here, is described by a real-valued function,

V : R×R× I × I → R such that

G(P ) =
∑
α,β,j,k

V (α, β, j, k)P (α, β|j, k). (9)

For any such non-local game, there exists a Bell inequality that holds for all local P

G(P ) ≤ Ωc(G) := sup{G(P ) : P ∈ PL}. (10)

The above is true simply by definition. However, for any P and G where G(P ) > Ωc(G) we

can conclude P is non-local.

Let us consider a particular non-local game G, and its classical limit Ωc(G). Since non-

local games are linear functions and PL is a convex set, the classical limit can always be

achieved by an extremal point in PL. That is, the value of Ωc(G) can always be achieved by

a probability distribution of the form

P (α, β|j, k) = cA(α|j)cB(β|k), (11)

where Alice and Bob deterministically assign measurement outcomes. There are only finitely

many such distributions, so this greatly simplifies the evaluation of Ωc(G).

4 Magic squares with Majoranas

To demonstrate that these Majorana fermions exhibit non-locality we adapt a specific proof of

“non-locality without inequalities” first devised by Cabello [33, 34]. There exist other proofs

of non-locality for qubits without the use of a Bell inequality, such as those by Hardy [49]

and the GHZ paradox [37, 38, 39]. Crucially, Hardy’s argument does not work for maximally

entangled states and so it cannot be applied. Furthermore we show later that the GHZ

argument does not apply here either. Cabello’s proof works for two Bell states, a four-qubit

state, shared by Alice and Bob each of which can make a measurement on two qubits of this

state. The analysis shares much of its character with the proof that quantum mechanics is

non-contextual derived by Peres and Mermin, often referred to as the “Magic Square Game”.

We will follow the simplification of Cabello’s approach as presented by Aravind [50] so that

the result may be of more general appeal, but optimally tailored to systems of Majorana

fermions.

4.1 The set-up

We now describe the set-up. We assume that Alice and Bob share five Majorana pairs,

prepared in the canonical form outlined earlier. Each party then makes a choice of three
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Table 1. Squares describing measurements made by Alice and Bob on their respective parts of

their quantum state (made up of two Bell pairs with one half of each pair held by each party).
Measuring these operators on five Majorana pairs, Alice and Bob yield identical measurement

outcomes for the entry they have in common in their respective squares. Notice that, up to a

phase accounting for correlation vs. anti-correlation, the tables are equivalent under interchanging
aj with bj . Furthermore, for each column the product of the three entries yields +1, whereas for

each row the product of all entries gives −1.

Alice
A1 A2 A3

−a1a3a4a5 ia1a4 ia3a5
ia3a4 −a1a2a3a4 −ia1a2
ia1a5 ia2a3 a1a2a3a5

Bob
B1 −b1b3b4b5 −ib1b4 −ib3b5
B2 −ib3b4 −b1b2b3b4 ib1b2
B3 −ib1b5 −ib2b3 b1b2b3b5

different measurement settings. Each measurement setting relates to three measurements

involving a subset of the Majorana modes held by the respective party. Hence, for each

measurement setting, a string of three values of ±1 is obtained, so R = {±1}×3. For Alice

we label the choice of measurement as Aj = (A1,j ,A2,j ,A3,j) for j ∈ {1, 2, 3} = I and for

Bob the choice of measurement is written as Bk = (Bk,1,Bk,2,B3,k) for k ∈ I. Alice and Bob

then obtain the output strings α = (α1, α2, α3), β = (β1, β2, β3) ∈ {±1}×3, respectively, with

j, k ∈ I labeling the choice of measurements Aj and Bk. The measurements are fixed by the

columns (for Alice) and rows (for Bob), of square tables (so-called “magic squares”), as shown

in Table 1. In these magic squares, Alice and Bob’s respective square tables contain, up-to a

phase, the same measurements performed by the respective parties. It can easily be verified

that an element of Alice’s table multiplied with the same element of Bob’s table (i.e. the

same jth row and kth column in each table) gives a stabiliser of their shared quantum state.

Formally, this enforces that αk = βj for all j, k ∈ I. Furthermore, the product of observables in

any column of both tables gives +1, and so for any measurement setting α1α2α3 = 1. Whereas

the product of observables in any row of both tables gives −1, and so β1β2β3 = −1. Notice

that any triple of observables, for either Alice or Bob, always contains a single measurement

observable acting on 4 Majorana modes. As remarked earlier, such measurements cannot be

directly measured but can be inferred from other measurement outcomes. Here this poses no

problem as the required information is provided by the remaining pair of observables. For

instance, the first column for Alice corresponds to measuring {−a1a3a4a5, ia3a4, ia1a5}, and

while −a1a3a4a5 cannot be directly measured, we see that (ia3a4)(ia1a5) = −a1a3a4a5 and

so we can simply infer the outcome from α1 = α2α3. In any actual experiment, Alice and

Bob only measure a pair of observables, but for clarity of exposition it is convenient to speak

of each party measuring a whole triple of observables.

Aside from these constraints, the measurement outcomes are entirely random and so the

experiment realises

P ∗(α, β|j, k) =

{
1
8 if (αk = βj) ∧ (α1α2 = α3) ∧ (β1β2 = −β3),
0 otherwise.

(12)
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and in the next section we confirm this to be non-local and robust against some experimental

noise.

4.2 The magic square game without inequalities

Earlier, we saw that for any non-local game the best local strategy can be achieved by Alice

and Bob deterministically assigning measurement outcomes. In the problem at hand, it is

convenient to describe these local probability distributions by a 3 × 3 table with entries in

{±1}. We use TA to denote Alice’s table, which has entries such that

cA(α|j) =

{
1 if (TA1,j , T

A
2,j , T

A
3,j) = α,

0 otherwise.
(13)

Whereas for Bob, we take

cB(β|k) =

{
1 if (TBk,1, T

B
k,2, T

B
k,2) = β,

0 otherwise.
(14)

Clearly, there is a one-to-one correspondence between these tables and deterministic proba-

bility distributions. Note also the slight difference in definitions for Alice and Bob. For Alice,

a single measurement setting will output a column of her table, whereas for Bob, a single

measurement setting will output a row of his table. This convention is justified because the

quantum correlations satisfy αk = βj for all j, k ∈ I, and so if the LHV theory replicates this

correlation we have that

TAk,j = TBk,j . (15)

Therefore, Alice and Bob must share identical tables to reproduce this feature of the quantum

correlations. However, the quantum correlations have an additional feature, they satisfy parity

constraints. Alice’s parity constraint entails that for all j, we have
∏
l∈I T

A
l,j = 1, and hence

the parity of the entire table is
∏
l,j∈I T

A
l,j = 1. In contrast, Bob’s parity constraint entails

that for all k, we have
∏
l∈I T

B
k,l = −1, and so

∏
l,k∈I T

B
k,l = −1. We conclude that Alice and

Bob cannot hold identical classical tables and also satisfy all the parity constraints, and so

they can never perfectly reproduce the quantum correlations. Since quantum observables do

not commute, finding the parity of the table of operators can change depending on the order

we multiply the entries.

4.3 The magic square game with Bell inequalities

We have seen that classical experiments can never reproduce the quantum correlations demon-

strated in the previous section. However, we are interested in what level of imperfection can

be tolerated by any quantum experiment while still violating locality. To quantify this we

must specify a particular non-local game, see Eq. (9), by specifying a function V . The goal

is to have a larger value when the correlations match those of the quantum predications, and

smaller when they fail. The simplest choice is a function that takes two values, and it is

conventional to take these as ±1, and so we have

V (α, β, j, k) =

{
1 if (αk = βj) ∧ (α1α2 = α3) ∧ (β1β2 = −β3),
−1 otherwise.

(16)

This non-local game we call the magic square game. It is easy to verify that using Majorana

fermions, which realise the probability distribution P ∗ (see Eq. 12), we find G(P ∗) = 9.
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Table 2. An attempted classical strategy for the magic square game, where Alice and Bob satisfy

all of their row/column constraints. To achieve this they must differ in at least 1 entry, which
here is the bottom right entry. When the referee specifies the bottom row for Bob and right-most

column for Alice, this strategy will fail. However, it will win in the other 8 choices of row and

columns.

Alice Bob
+1 +1 -1
+1 -1 +1
+1 -1 -1

+1 +1 -1
+1 -1 +1
+1 -1 +1

We are now in a position to identify Ωc(G), the maximum classical value. Alice and Bob

could use identical tables, but they then contravene many parity constraints, and we find

this results in at most G(P ) = 3. However, the maximum is achieved if Alice and Bob use

classical tables that differ only in a single entry and satisfy all the parity constraints, such as

in Table 2. This yields G(P ) = 7 = Ωc(G) since for 8 of the measurement settings we acquire

a contribution of 1, but for one setting we have −1. Hence, any imperfect experiment with

Majorana fermions that attains G(P ) > 7 is sufficient to demonstrate non-locality.

We also comment on how the imperfect quantum setting can, sometimes, economically be

described. For perfect operations of the type considered here, the covariance matrix γ will

only contain entries contained in {0,−1, 1} and satisfies γ2 = −1. If errors and imperfections

are present, the entries of γ will also attain values different from those, while it is still true

that

−γ2 ≤ 1. (17)

Under braiding transformations of the form (3), covariance matrices transform as congruences

γ 7→ V γV T with orthogonal matrices V , which can easily be kept track of. The statistics of

measurements can still be determined based on the covariance matrix only, even if errors are

taken into account in the preparation step.

5 Too few Majorana pairs

5.1 Setting

Earlier we saw that if Alice and Bob share three Majorana pairs, the available measurements

are isomorphic to Pauli measurements on a single Bell pair. It is well-known folklore that

such a system can be modeled by a local-hidden variable theory. Here we present a stronger

argument covering up to 4 Majorana pairs. This shows that five or more Majorana pairs are

necessary, as well as sufficient, to demonstrate non-locality. We begin by characterizing the

full set of possible measurements. For Alice, there are three pairs of commuting measurements

she can perform

A1 = (ia1a2, ia3a4), (18)

A2 = (ia1a3, ia4a2), (19)

A3 = (ia1a4, ia2a3). (20)

If Alice measures a pair of observables Aj , she get two random bits, which we denote α1, α2 ∈
{+1,−1}. Similar measurement sets, labeled Bk, are available to Bob, with bj replacing aj . If

Bob measures the analogous set, so k = j, he gets perfectly anticorrelated outcomes, such that
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β1 = −α1 and β′2 = −α′2. Next we consider when Bob measures a different set of operators,

so k 6= j. We need to determine which products of measurements correspond to stabilisers

of the 4 Majorana pairs. We observe that for Alice and any measurement set, the product

of the observables is −a1a2a3a4, and similarly for Bob the product is −b1b2b3b4. Since the

observables are matching and contain an even number of fermionic operators, these observables

will have correlated outcomes. Formally, these correlations entail that α1α2 = β1β2 for all

measurement settings j and k. However, when j 6= k, this is the only correlation and otherwise

the measurement outcomes are entirely random. From these observations we can deduce that

the outcome probabilities, as a function of measurement settings j and k, are

P (α, β|j, k) =


1
4 if (j = k) ∧ (α1 = −β1) ∧ (α2 = −β2),
0 if (j = k) ∧ (α1 6= −β1 or α2 6= −β2),
1
8 if (j 6= k) ∧ (α1α2 = β1β2),
0 if (j 6= k) ∧ (α1α2 6= β1β2).

(21)

The structure is richer than for Pauli measurements on a Bell pair. However, it can still be

explained by an LHV theory, which we now turn to.

5.2 Local hidden variable model

For our LHV theory we use a set of four hidden variables, which we label as λ = {ν1, ν2, ν3, µ},
each of which takes values {+1,−1}. Hence, we can write∫

M(dλ) =
∑
λ

p(λ). (22)

We distinguish µ from the other variables as it plays a unique role. Next we fix Alice’s

probabilities to depend deterministically on the hidden variables as follows

pA(α|j, λ) =

{
1 if α1 = νj , α2 = µνj ,
0 otherwise,

(23)

and for Bob we take

pB(β|k, λ) =

{
1 if β1 = −νk, β2 = −µνk,
0 otherwise.

(24)

Notice that, for all measurement settings, the measurement outcomes obey

α1α2 = µ, β1β2 = µ. (25)

Hence, for all choices of the hidden variables λ, the measurements outcomes satisfy α1α2 =

β1β2. Furthermore, when j = k we have the added constraint that measurements satisfy

α1 = −β1 and α2 = −β2. This tells us that for all choices of hidden variables, the distributions

satisfy the second and fourth lines of Eqs. (21). To achieve the correct weighting of the non-

zero probabilities we simply take a uniform distribution over the hidden variables so that

p(λ) = 1/16 for all µ and νj . This completes our account of a LHV theory for all possible

measurements on 4 Majorana pairs.
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6 Impossibility of GHZ state preparation

Here we show that the correlations of 3-party GHZ states cannot be prepared using topologi-

cally protected operations and Majorana fermions, blocking attempts to violate locality using

the Mermin-GHZ paradox. The proof technique can be easily extended to larger GHZ states,

and the associated generalizations of the GHZ paradox [39]. We begin with some definitions

and general observations. We consider products of fermionic operators, of the form

S = iq
∏

c
wj

j , (26)

where wj ∈ {0, 1} and q ∈ {0, 1, 2, 3}. For two such operators, S and S′, denote with S?S′ the

overlap in fermionic operators they hold in common, so that S ?S′ =
∑
j wjw

′
j . Furthermore,

let S?S′?S′′ denote the overlap shared by all three operators, which is S?S′?S′′ =
∑
j wjw

′
jw
′′
j .

We will show that, for any accessible state with stabiliser S, both the following hold

(i) for all S, S′ ∈ S, we have that S ? S′ is even;

(ii) for all S, S′, S′′ ∈ S, we have that S ? S′ ? S′′ is even.

Accessible states possess a stabiliser S generated by gj = ±icP2j−1cP2j , where P ∈ S2n. The

structure of the generators imposes a structure on the whole group, which we use to prove the

above. First, note that distinct generators gj share no fermionic operators in common, and

so gj ? gk = 2δj,k. Expressing the stabilisers of an accessible state in terms of the generators,

we have

S =
∏
k

guk

k , (27)

for some uk ∈ {0, 1}. For two such operators, each generator they share contributes a pair of

fermionic operators in common, and so

S ? S′ = 2
∑
k

uku
′
k. (28)

Clearly, this is always even. Furthermore,

S ? S′ ? S′′ = 2
∑
k

uku
′
ku
′′
k , (29)

which is again even. More generally, overlaps between larger collections of operators must, for

accessible states, again be even. Note also that, property (i) also follows from the necessary

commutativity of the group S, and is true for all quantum states. Whereas property (ii) is a

genuine constraint on the whole set of quantum states.

The correlations required for the Mermin paradox can be achieved by measuring Pauli

operators on a GHZ state stabilised by

S = X1Z2Z3, (30)

S′ = Z1X2Z3, (31)

S′′ = Z1Z2X3, (32)

S′′′ = −X1X2X3, (33)
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using some encoding F → B(H). From the anti-commutation of the Pauli operators, that is

XjZj = −ZjXj , we see that the last stabiliser follows from the first three, such that S′′′ =

S′′S′S. We consider all possibilities where the Pauli operators are replaced by appropriate

products of Majorana operators. To be measurable, every Xj and Zj must consist of a

product of an even number of Majorana operators. As remarked earlier, it is essential Xj

anti-commutes with Zj and so Xj ? Zj = γj where γj is odd. Finally, they must be local

operators, so operators associated with different parties must be supported on distinct subsets

of Majorana modes. From locality we deduce that

S ? S′ ? S′′ = (X1 ? Z1) + (X2 ? Z2) + (X3 ? Z3)

= γ1 + γ2 + γ3. (34)

From anti-commutivity, all of the γj are odd, and the sum of 3 odd numbers is again odd.

We conclude that such a set of stabilisers contradicts property (ii) of accessible states. Under

very general assumptions we have shown that no accessible states are isomorphic to the 3-

qubit GHZ state. In particular, the most natural encoding would be to take Zj = ic3jc3j+1

and Xj = ic3jc3j+2, for which γj = 1 and S′ ? S′′ ? S′′′ = 3. However, more exotic encoding

beyond this more canonical choice are also covered by the above argument. Alternative proofs

based on the fermionic Gaussian nature of the states generated by topological operations are

conceivable, and could potentially make use of Wick’s theorem.

7 Quantum information protocols with Majorana fermions

We finally comment on the perspective of using Majorana fermions in basic protocols of quan-

tum information processing involving entanglement. Surely, all of the consequences of braiding

operations can be classically efficiently simulated, by virtue of the observation of them con-

stituting a subset of those operations in fermionic linear optics. Still, a number of interesting

quantum information protocols involving entanglement can readily be conceived which are

sketched here. This analysis complements the findings of Ref. [51], in which measurement-

only topological quantum computation has been considered.

7.1 Teleportation

Notably, instances of teleportation [52] are possible. Meaningful variants of teleportation

involving Majorana fermions should share the features that (i) an unknown state is considered

the input, taken from a set of at least two non-orthogonal quantum states, and (ii) the output

should be statistically indistinguishable from the input to the protocol.

Here, Alice and Bob not only share n Majorana pairs, so as usual, the initial state is

stabilised by iajbj for j = 1, . . . , n. But furthermore, Alice holds further n Majorana modes

that are not entangled with Bob. These local ancilla are stabilised by

iajaj+1, j = n+ 1, n+ 3, . . . , 2n− 1. (35)

and represent the modes that will be teleported, herein called the input modes. Such a scheme

can indeed be devised by making use of 4 Majorana pairs, so n = 4. The input register consists

of 4 Majorana modes, initially stabilised by ia5a6 and ia7a8. Many different inputs could be

prepared by braiding the input modes. For instance, the input can be set to one of two
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non-orthogonal inputs by either (I) braiding a6 and a7 or (II) not. It is not difficult to see

that these two situations (I) and (II) cannot be perfectly distinguished with unit probability.

The remainder of the protocol does not depend on this input, and neither is knowledge of

it required. In the next step, ia5a1, ia6a2, ia7a3, ia8a4 are measured and the results, elements

of {±1}×4, classically communicated to Bob. One can then show that the output statistics of

measurements performed by Bob, ib1b2 and ib3b4, appropriately interpreted using the received

classical bits, is indistinguishable from the respective measurements on ia5a6 and ia7a8. For

example, in scenario (II), if the outcomes (−1,−1,−1,−1) are communicated, the outcomes

of measurements ib1b2 and ib3b4— are completely determined to be +1.

7.2 Dense coding

In a similar fashion, dense coding [53] can be performed with Majorana fermions and the

above specified operations. Again, let us be specific what a fair analogue of such a scheme

would be. A valid dense coding scheme is one in which the entanglement-assisted single shot

classical capacity of a quantum channel is higher compared to the corresponding capacity

in the absence of entanglement. We hence would like to introduce a protocol where starting

from entangled shared resources, with local braiding operations and a subsequent transmission

of some modes, one can encode more bits of classical information than is possible without

having shared entangled resources available, but transmitting the same number of modes. For

qudits, it is known that the entanglement-assisted capacity is exactly double the one reachable

without assistance [54]. For Majorana fermions, it turns out, the same holds true.

This is readily possible with 3 Majorana pairs, again partially shared by Alice and Bob

and partially held by Alice. Both parties share 2 Majorana pairs, stabilised by ia1b1, ia2b2.

In addition, Alice holds 2 Majorana modes in a state stabilised by ia3a4. By local braiding,

Alice can achieve a state stabilised by{
i(−1)γ1a1b1, i(−1)γ2a2b2, i(−1)γ1+γ2a3a4 : γ1, γ2 ∈ {0, 1}

}
, (36)

in a scheme that maps

aj 7→ (−1)γjaj , (37)

γj ∈ {0, 1} for j = 1, . . . , 4, and fixing γ3 = γ1 + γ2 and γ4 = 1. It is easy to see that

with a suitable choice of γ1, γ2 ∈ {0, 1}, 2 bits of information can be encoded. Furthermore,

after Alice transmits Majorana modes a1 and a2 to Bob, he can reliably retrieve γ1 and γ2 by

locally measuring ia1b1 and ia2b2. At the same time, with two Majorana modes and no shared

entanglement, a single bit of information can be encoded only. This constitutes a valid dense

coding scheme based on Majorana fermions. It also resembles the situation of transmitting

two bits of classical information with a single transmitted qubit, if entangled resources are

initially available.

8 Closing remarks

We have seen that locality can be violated using only the topologically protected operations

of Majorana fermions or Ising anyons. These operations are a subclass of fermionic linear

optics [18], and so we conclude that these systems can also violate locality. The model of

fermionic linear optics was proposed as an analog of bosonic linear optics, where a well-known
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LHV theory prevents any non-locality experiment [55]. Seen in this light, our result is quite

surprising. Furthermore, we remark that that fractionalized analogs of Majorana fermions,

known as parafermions [56], may face similar obstacles from the existence of certain hidden

variable theories [57, 58, 59]. It is natural to ask more generally what other anyonic systems

are non-local, again without the requirement of universal quantum computing capabilities.

We know of only one related study [60], where a six-level classical spin model was used to

simulate the charge submodel of D(S3) (the quantum double model based on the symmetric

group of 3 objects). Although non-locality was not explicitly discussed, it is clear that the

classical spin model amounts to a LHV theory. Finally, we speculate that these experiments

could prove useful as a probe to certify the presence of Majorana fermions and potentially

help dispel some of the present ambiguity surrounding experiments.

In the final stages of completing this research we became aware of Ref. [61], which ad-

dresses to some extent similar questions and concerns the non-locality of Majorana fermions

when nondestructive collective-charge measurements are available. This represents an addi-

tional experimental capability, posing additional challenges, beyond braiding and standard

measurements. However, without this capability, the GHZ correlations required by Ref. [61]

cannot be implemented by virtue of our no-go result of Sec. 6. GHZ correlations may also

be produced by measuring Pauli operators on certain stabiliser states — naturally onto the

GHZ state but also onto the Toric code ground state [62] — although such measurements do

not necessarily correspond to an anyonic fusion processes.
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