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Evaluating the quantum capacity of quantum channels is an important but difficult

problem, even for channels of low input and output dimension. Smith and Smolin showed

that the quantum capacity of the Clifford-twirl of a qubit amplitude damping channel
(a qubit depolarizing channel) has a quantum capacity that is at most the coherent

information of the qubit amplitude damping channel evaluated on the maximally mixed

input state. We restrict our attention to obtaining upper bounds on the quantum
capacity using a generalization of Smith and Smolin’s degradable extension technique.

Given a degradable channel N and a finite projective group of unitaries V, we show
that the V-twirl of N has a quantum capacity at most the coherent information of N
maximized over a V-contracted space of input states. As a consequence, degradable

channels that are covariant with respect to diagonal Pauli matrices have quantum
capacities that are their coherent information maximized over just the diagonal input

states. As an application of our main result, we supply new upper bounds on the quantum

capacity of some unital and non-unital channels – d-dimensional depolarizing channels,
two-qubit locally symmetric Pauli channels, and shifted qubit depolarizing channels.
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1 Introduction

The quantum capacity of a quantum channel is the maximum rate at which quantum infor-

mation can be transmitted reliably across it, given arbitrarily many uses of it [1]. However,

evaluating the best known regularized expressions for the quantum capacity of a general quan-

tum channel is in general an infinite-dimensional optimization problem, and hence difficult,

even for quantum channels with low dimensional input and output states. The quantum
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capacity of even the simply described family of qubit depolarizing channels is undetermined,

in spite of much effort [2, 3, 4, 5, 6, 7, 8, 9]. Thus, obtaining upper bounds on the quantum

capacity of quantum channels is a non-trivial and important problem.

Our main result generalizes the technical results of Smith and Smolin [6] pertaining to the

use of degradable extensions to obtain upper bounds on the quantum capacity of channels in

terms of the coherent information of other channels. In our extension of Smith and Smolin’s

recipe, we prove that the quantum capacity of a degradable channel twirled with respect to

a projective unitary group is at most the coherent information of the degradable channel

maximized over a contracted input state space (Theorem 4.1). Smith and Smolin’s recipe is

produced as a special case of our extension when the projective unitary group is chosen to

be the full qubit Clifford group. As a consequence, a degradable channel that is covariant

with respect to diagonal Pauli matrices has a quantum capacity that is equal to its coherent

information maximized over just the diagonal input states.

As an application of our main result, we supply new upper bounds on the quantum capacity

of some unital and non-unital channels – d-dimensional depolarizing channels, two-qubit lo-

cally symmetric Pauli channels, and shifted qubit depolarizing channels. The main ingredients

that we introduce to obtain these new upper bounds are our higher dimensional amplitude

damping channels that are degradable. These higher dimensional amplitude damping channels

generalize qubit amplitude damping channels.

The rest of the paper is organized in the following way. In Section 2, we introduce

notations and review concepts pertaining to the quantum capacity, degradable channels and

the degradable extensions of Smith and Smolin. In Section 3, we review the notion of channel

covariance, channel twirling, and channel contraction. In Section 4, we present the main

result of this paper, which is Theorem 4.1, placed in the context of channel twirlings and

channel covariance. In Section 5, we apply our main result to obtain explicit upper bounds on

the quantum capacity of d-dimensional depolarizing channels, locally symmetric and SWAP-

invariant two-qubit Pauli channels, and shifted depolarizing channels. Our appendixcontains

the more technical ancillary results of this paper.

2 Preliminaries

2.1 General Notation

Given a function f : Ω → R and a subset X ⊆ Ω, define the X-restricted convex hull of the

function f evaluated on the argument x to be

conv(f ;x,X) := inf
y,z∈X
λ∈[0,1]

{
λf(y) + (1− λ)f(z) : x = λy + (1− λ)z

}
.

Given a sequence of functions f1, ..., fn : Ω → R, define min{f1, ..., fn} to be a function that

is the pointwise minimum of the sequence f1, ...fn, that is,(
min{f1, ..., fn}

)
(x) := min{f1(x), ..., fn(x)}.
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Now define the X-restricted convex hull of the sequence of functions f1, ..., fn evaluated on

the argument x to be

conv(f1, ..., fn;x,X) := conv(min{f1, ..., fn};x,X).

We introduce this notion of the X-restricted convex hull because it is a tool that we later use

to establish upper bounds on the quantum capacity of various quantum channels.

Define η(z) := −z log2 z where z ∈ [0, 1] and η(0) := 0. Let H2(q) := η(q) + η(1 − q) be

the binary entropy function. Define the Pauli matrices to be

1 :=

(
1 0
0 1

)
,X :=

(
0 1
1 0

)
,Z :=

(
1 0
0 −1

)
,Y := iXZ.

Define the Pauli group on m qubits modulo phases, to be Pm := {1,X,Y,Z}⊗m. For all

P ∈ Pm, define the weight of P to be the number of qubits on which the operator P acts

non-trivially.

2.2 Quantum Channels and the Quantum Capacity

For a complex separable Hilbert space H, let B(H) be the set of bounded linear operators

mapping H to H. In this paper, we only deal with finite-dimensional Hilbert spaces. A

quantum channel N : B(HA)→ B(HB) is a completely positive and trace-preserving (CPT)

linear map, and can be written in terms of a Kraus representation [10]

N (ρ) =
∑
k

AkρA
†
k,

where the completeness relation
∑
kA
†
kAk = 1dA is satisfied, dA = dim(HA) and 1dA is a

dimension dA identity matrix. We can also write down the action of a quantum channel N in

terms of an isometry on the input state. Now define an isometry W : B(HA)→ B(HE⊗HB)

W =
∑
k

|k〉 ⊗Ak.

Here {|k〉} is an orthonormal set, and spans a Hilbert space HE that we interpret to be the

environment. Then

WρW† =
∑
j,k

|j〉〈k| ⊗AjρA
†
k

and

TrHE (WρW†) = N (ρ).

Then we can define the complementary channel NC : B(HA)→ B(HE) [11] as

NC(ρ) = TrHB (WρW†).

Since we are free to choose the orthonormal basis of the environment HE , NC is only unique

up to a unitary transformation. We use the above definition as our canonical one. Let
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NC(ρ) =
∑
µRµρRµ

†. The j-th row of Rµ is the µ-th row of Aj , where Rµ =
∑
j |j〉〈µ|Aj

[12]. To see this, observe that

NC(ρ) = TrHB (WρW†)

= TrHB

(∑
j,k

|j〉〈k| ⊗AjρA
†
k

)
=
∑
j,k

|j〉〈k|Tr
(
AjρA

†
k

)
=
∑
j,k

|j〉
∑
µ

〈µ|
(
AjρA

†
k

)
|µ〉〈k|

=
∑
µ

(∑
j

|j〉〈µ|Aj

)
ρ
(∑

k

A†k|µ〉〈k|
)

=
∑
µ

RµρR
†
µ.

For a quantum channel N : B(HA)→ B(HB), Schumacher and Nielsen defined its coherent

information [13] with respect to an input state as a difference of von Neumann entropies

Icoh(N , ρ) := S(N (ρ))− S(NC(ρ))

where the von Neumann entropy of a state ρ is

S(ρ) := −Tr(ρ log2 ρ).

We denote the channel’s optimized coherent information as

Icoh(N ) := max
ρ

Icoh(N , ρ).

Here, the maximization of ρ is performed over all quantum states in B(HA). Lloyd [14], Shor

[15] and Devetak [16] showed that the quantum capacity of N is

Q(N ) = lim
n→∞

1

n
Icoh(N⊗n), (1)

and the limit on the right hand side of (1) exists [17]. Schumacher and Westmoreland also

demonstrated that a channel’s coherent information is also a lower bound on the amount of

its private information [18].

2.3 Degradable Channels and Degradable Extensions

A channel N is degradable [11] if it can be composed with another quantum channel Ψ to

become equivalent to its complementary channel NC , that is NC = Ψ ◦ N . Physically,

this means that the environment associated with the channel N can be simulated using the

output quantum state of channel the N . Conversely, N is antidegradable if its complementary

channel NC is degradable. A channel Next is a degradable extension [6] of channel N if Next

is degradable and there exists a quantum operation Ψ such that Ψ ◦ Next = N .
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A degradable channelN has a simple expression for its quantum capacity, which isQ(N ) =

Icoh(N ) [11]. If the degradable channel N also extends a channel M that is not necessarily

degradable, we have Q(M) ≤ Icoh(N ). Moreover if N =
∑
i λiNi is a convex combination of

degradable channels Ni, then we have the crucial convexity property [6] given by

Q(M) ≤
∑
i

λiIcoh(Ni).

Thus, degradable extensions can be used to construct upper bounds on the quantum capacity

of quantum channels [6].

3 Channel Covariance, Twirling and Contraction

In this section, we introduce the concepts of covariance, twirling and contraction which are

essential to state our main result in Theorem 4.1.

Let V be a set of unitary operators c. A channel N is said to be V-covariant if for all

input quantum states ρ and elements V of V, we have N (VρV†) = VN (ρ)V†. Properties of

quantum channels covariant with respect to locally compact groups were studied by Holevo

[19].

Define VB(ρ) :=
1

|V|
∑
V∈V

VρV† to be a V-contraction channel. We also denote the V-twirl

of N as the channel NnVo where NnVo(ρ) :=
1

|V|
∑
V∈V

V†N (VρV†)V. When the set V is the

m-qubit Pauli set Pm, the V-twirl of a channel N has the Kraus operators

P

2m

√ ∑
K∈KN

∣∣∣Tr(PK)
∣∣∣2,

where P ∈ Pm and KN is the Kraus set of N [20].

We say that a finite set of unitary matrices V is a finite projective group if (i) no two

distinct elements of V are equivalent up to a constant, and (ii) for all V and W in the set

V, there exists a unique complex number of unit magnitude zV,W† such that zV,W†VW† is

also an element of V. A channel that is V-covariant need not be invariant under V-twirling.

However this is the case when V is a multiplicative (or projective) group V.

4 Main Result

The main result of this paper is a generalization of Smith and Smolin’s technique of degradable

extensions (see Lemma 8 of [6]). Our main result states that the quantum capacity of a

V-twirled degradable channel is at most its coherent information maximized over the set of

correspondingly V-contracted input states. Here V is a finite projective group of d-dimensional

unitary operators. Our result is a generalization of Smith and Smolin’s technique in the sense

that the set V need not be restricted to just the set of single-qubit Clifford operators.

cThe only instance where V is not a group in this paper is in the proof of Theorem 5.9.
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To state our main result formally, first define Ñ to be an extension of the V-twirl NnVo,

where

Ñ (ρ) :=
∑
V∈V

1

|V|
V†N (VρV†)V ⊗ |V〉〈V|. (2)

Theorem 4.1 (Twirling and Contraction). Let V be a projective group of d-dimensional

unitary matrices, N be a degradable channel with d-dimensional input and output states, and

Ñ be as defined in (2). Then Q(NnVo) ≤ Q(Ñ ) ≤ maxρ Icoh(N ,VB(ρ)).

We supply the proof of Theorem 4.1 in Section 4.2. The main idea of the proof is a

straightforward extension of the methods used by Smith and Smolin (Lemma 8 in [6]). A

technical result needed in the proof is the following proposition.

Proposition 4.2. Let N be a quantum channel with d-dimensional input and output states,

V be a set of d-dimensional unitary matrices, and Ñ be as defined in (2). Then

ÑC(ρ) =
∑
V∈V

1

|V|
NC(VρV†)⊗ |V〉〈V|. (3)

The proof of Proposition 4.2 uses only techniques from [6], and we defer its proof to Section

B.

Corollary 4.3 (Degradable and Covariant Channels). Let V be a finite projective unitary

group. If a degradable channel N is also V-covariant, then Q(N ) = maxρ Icoh(N ,VB(ρ)).

Proof of Corollary 4.3. Since the channel N is degradable,

Q(N ) = Icoh(N ) ≥ max
ρ

Icoh(N ,VB(ρ)).

Since NnVo = N , Theorem 4.1 implies that Q(N ) ≤ maxρ Icoh(N ,VB(ρ)).

The set of diagonal m-qubit Pauli matrices Zm := {1,Z}⊗m is an example of a finite

projective group of unitary matrices. Our result shows that a degradable channel N which is

Zm-covariant has quantum capacity equal to Icoh(N , ρ) maximized over all diagonal m-qubit

quantum states ρ.

4.1 Examples of Degradable Channels that are Covariant

Here, we show that examples of degradable channels that are Zm-covariant include special

m-qubit Hadamard channels that admit a Pauli decomposition with diagonal Kraus opera-

tors, all m-qubit almost-Pauli channels, all single-qubit degradable channels, and the higher

dimensional amplitude damping channels that we introduce in Section 5.1. We prove these

facts in this section.

We say that a quantum channel is almost-Pauli if it admits a Kraus decomposition with

all of its Kraus operators having the form Kj = DjPj where Dj is a size 2m diagonal matrix

and Pj ∈ Pm. Almost-Pauli channels are covariant with respect to the m-qubit diagonal

Pauli matrices because

(DjPj)(ΛWΛ)(PjD
†
j) = Λ(DjPj)W(PjD

†
j)Λ
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for all Paulis W and diagonal Paulis Λ ∈ {1,Z}⊗m. The above equality holds because we

can ‘propagate’ the Λ’s ‘outwards’. This is because Pauli matrices either commute or anti-

commute under multiplication, and diagonal matrices commute under multiplication. Hence

a degradable almost-Pauli channel is Zm-covariant.

Proposition 4.4. Qubit degradable channels are Z1-covariant.

Proof. All qubit degradable channels necessarily have Kraus operators of the following form

[21, 22] (
cosα 0

0 cosβ

)
,

(
0 sinβ

sinα 0

)
=

(
sinβ 0

0 sinα

)
X.

Hence these channels are almost-Pauli and the result follows.

Any Hadamard channel maps a quantum state to some Hadamard product of it, and

is the complementary channel of an entanglement breaking channel (which admits a Kraus

decomposition with Kraus operators of rank one) (see [12, 23] and the references therein).

Consider a special almost-Pauli m-qubit channel A with only diagonal Kraus operators

Ai =
∑
j∈Z2m

ci,j |j〉〈j| for i ∈ Z2m . This channel A is Hadamard because its complemen-

tary channel AC has Kraus operators Rµ =
∑
i∈Z2m

|i〉〈µ|ci,µ of column rank at most one.

Hence almost-Pauli channels with purely diagonal Kraus operators are examples of Hadamard

channels that are also Zm-covariant.

4.2 Proof of Theorem 4.1

Since V is a finite projective unitary group, for all V,W ∈ V, there exists a unique phase

constant zV,W ∈ R such that zV,W ∈ V. Define the ? product to be the binary operation

given by

V ?W := zV,WVW.

Hence for all V,W ∈ V, we also have V ?W ∈ V. Since every element of V is a unitary

matrix and V is also a group, V ∈ V also implies that V† ∈ V. Hence if R = V ?W, we also

have V = R ?W†.

Ñ (WρW†) =
∑
V∈V

1

|V|
(WW†)V†N (VWρW†V†)V(WW†)⊗ |V〉〈V|

=
∑
V∈V

1

|V|
W(zV,WVW)†N ((zV,WVW)ρ(zV,WVW)†)(zV,WVW)W† ⊗ |V〉〈V|.

Making the substitution R = V ?W = zV,WVW we get

Ñ (WρW†) =
∑

R?W†∈V

1

|V|
WR†N (RρR†)RW† ⊗ |R ?W†〉〈R ?W†|.

Let UW :=
∑

R∈V |R ?W†〉〈R| be a unitary matrix that depends on W ∈ V. Since V is a

group under the binary operation ?, V ?W = V, and we can replace the summation index of

the right hand side of the above equation to get

Ñ (WρW†) =(W ⊗UW)Ñ (ρ)(W† ⊗U†W). (4)
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Now we can use the isometric extensions of the channels N and Ñ to show that (see

Proposition 4.2)

ÑC(ρ) =
∑
V∈V

1

|V|
NC(VρV†)⊗ |V〉〈V|.

By a similar argument as in (4),

ÑC(VρV†) = (1dE ⊗UV)ÑC(ρ)(1dE ⊗U†V), (5)

where dE is the dimension of the output states of the complementary channel NC . Note

that the von Neumann entropy is additive with respect to each block in a block diagonal

matrix, and is also invariant under unitary conjugation of its argument. Hence the coherent

information of the degradable extension Ñ evaluated on the input state ρ is

S(Ñ (ρ))− S(ÑC(ρ)) =

(∑
V∈V

1

|V|
S
(
N (VρV†)

))
−

(∑
V∈V

1

|V|
S
(
NC(VρV†)

))

=
∑
V∈V

1

|V|
Icoh

(
N ,VρV†

)
≤ Icoh

(
N ,

∑
V∈V

1

|V|
VρV†

)
,

where the inequality above results from the concavity of the coherent information of degrad-

able channels with respect to the input state [24]. Hence the coherent information of the

degradable channel N maximized over all output states of the V-contraction channel upper

bounds the coherent information and the quantum capacity of the degradable extension Ñ .

5 Application to obtain Upper Bounds

5.1 Degradable Amplitude Damping Channels

Qubit amplitude damping channels model spontaneous decay in two-level quantum systems

[25], and also model the map induced by beamsplitter acting on a superposition of the vacuum

and a single photon with a trace taken over one output mode [26]. Hence knowledge of their

quantum capacity is a physically relevant problem. These channels (when degradable) are

essential ingredients of Smith and Smolin’s recipe [6] for upper bounding the quantum capacity

of the qubit depolarizing channel [6]. Analogously, higher dimensional generalizations of the

qubit amplitude damping channel that are degradable are essential ingredients of Theorem

4.1 in upper bounding the quantum capacity of higher dimensional channels.

In this section, we introduce uniform amplitude damping channels and special two-qubit

amplitude damping channels which generalize the single-qubit amplitude damping channels.

We also introduce the beamsplitter-type amplitude damping channel that models multi-

photon input states passing through a beamsplitter. We give sufficient conditions for these

channels to be degradable.

Define a uniform amplitude damping channelAγ,d to be a channel with the Kraus operators

|0〉〈0|+
∑d−1
i=1

√
1− γ|i〉〈i| and

√
γ|0〉〈j|, where 1 ≤ j ≤ d− 1.



Y. Ouyang 925

Proposition 5.1. Let integer d ≥ 2, and 0 ≤ γ ≤ 1
2 . Then Aγ,d is a degradable channel.

Proof. Note that A 1−2γ
1−γ ,d

◦ Aγ,d = A1−γ,d = ACγ,d.

We assume that a beamsplitter of transmissivity η ∈ [0, 1] is a unitary operation UBS,η

that (1) maps an input bosonic mode (with annihilation operator a and Hilbert space A) and

an external bosonic mode (with annihilation operator b and Hilbert space B) to two output

bosonic modes [26, 27], (2) maps a tensor product of vacuum states to a tensor product

of vacuum states [27], and (3) maps the annihilation operators a and b to ηa +
√

1− ηb
and
√

1− ηa + ηb respectively. We also assume that the input state in the external bosonic

mode is the vacuum state (|0〉〈0|)B . If these assumptions are self-consistent, one can show

that TrB(UBS,1−γ((|i〉〈j|)A ⊗ (|0〉〈0|)B)) is equivalent to the expression on the right hand

side of (6) summed over all natural numbers n for all i, j ∈ N. This motives us to define a

beamsplitter-type amplitude damping channel ABS,γ to be a channel with Kraus operators

An,γ :=
∑
k≥0

|k〉〈k + n|

√(
n+ k

n

)
γn(1− γ)k

for all n ∈ N and γ ∈ [0, 1].

Proposition 5.2. Let 0 ≤ γ ≤ 1
2 . Then ABS,γ is a degradable channel.

Proof. Note that for all i, j, n ∈ N and 0 ≤ γ < 1,

An,γ |i〉〈j|A†n,γ = |i− n〉〈j − n|
(

γ

1− γ

)n√(
i

n

)(
j

n

)
(1− γ)i+j . (6)

Let γ1, γ2 ∈ [0, 12 ]. The identity

(
i

n1

)(
j

n1

)(
i− n1
n2

)(
j − n1
n2

)
=

(
n

n1

)2(
i

n

)(
j

n

)
and the

above equation implies that∑
n1+n2=n
n1,n2∈N

An2,γ2An1,γ1 |i〉〈j|A†n1,γ1A
†
n2,γ2

=

n∑
n1=0

(
n

n1

)(
γ1

1− γ1

)n1
(

γ2
1− γ2

)n−n1

√(
i

n

)(
j

n

)
(1− γ1)i+j(1− γ2)i+j

=An,γ1+γ2−γ1γ2 |i〉〈j|A
†
n,γ1+γ2−γ1γ2 ,

from which it follows that ABS, 1−2γ
1−γ
◦ ABS,γ = ABS,1−γ = ACBS,γ .

Let s1 =
√

1− x and s2 =
√

1− 2y − z. For x, y, z ≥ 0 and 1 − 2y − z ≥ 0, we define

Ax,y,z to be a channel with the Kraus operators

A0 = |0〉〈0|+ s1(|1〉〈1|+ |2〉〈2|) + s2|3〉〈3|
A1 =

√
x|0〉〈1|+√y|2〉〈3|

A2 =
√
x|0〉〈2|+√y|1〉〈3|

A3 =
√
z|0〉〈3|. (7)



926 Channel covariance, twirling, contraction and some upper bounds on the quantum capacity

Observe that Az,0,z = Az,4, and hence the channels Ax,y,z generalize the uniform amplitude

damping channels of dimension four.

Define the set

Fx,y,z =
{

(x, y, z) ≥ 0 : 2y + z < 1, x <
1

2
, 2z ≤ 1− 2y

(
2− x

1− x

)}
. (8)

Lemma 5.3. Let (x, y, z) ∈ Fx,y,z. Then Ax,y,z is a degradable channel with degrading map

Ag,h,k, where

g =
1− 2x

1− x
, h =

gy

(1− 2y − z)

k = 1− 2h− z

1− 2y − z
. (9)

We supply the proof of Lemma 5.3 in Section C. Our special two-qubit channels are also

Z2-covariant, which simplifies the evaluation of their quantum capacities via use of Corollary

4.3 when they are also degradable.

Proposition 5.4. If the linear map Ax,y,z defined by (7) is a quantum channel, then it is

also Z2-covariant.

Proof. It suffices to show that Ax,y,z is almost-Pauli. This means that we have to show that

every Kraus operator of Ax,y,z can be written in the form Ki = DiPi where Di is diagonal

and Pi is a two-qubit Pauli. We define the vectors |0〉, |1〉, |2〉, |3〉 to be the two qubit states

|0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉 respectively. One can verify using equations (A.14), (A.15), (A.12),

(A.13), (A.11) that a suitable choice of the matrices Di and Pi is given by

D0 =

3∑
i=0

a0,i|i〉〈i|, P0 = 1⊗ 1

D1 = a1,1|0〉〈0| − a1,2|2〉〈2|, P1 = Z⊗X

D2 = a2,1|0〉〈0| − a2,2|1〉〈1|, P2 = X⊗ Z

D3 = |0〉〈0|, P3 = X⊗X.

5.2 d-dimensional Depolarizing Channels

The d-dimensional depolarizing channel of depolarizing probability p can be described as a

quantum channel that maps an d-dimensional input state to a convex combination of the

maximally mixed d-dimensional state and the input state, and is defined as

Dp,d(ρ) = ρ

(
1− pd

2 − 1

d2

)
+
1d

d

(
p
d2 − 1

d2

)
Tr(ρ).

Upper bounds [2, 3, 4, 5, 6] and lower bounds [28, 7, 8, 9] on the quantum capacity of qubit

depolarizing channels, the simplest type of depolarizing channels, have been studied. However
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these bounds are not tight when the depolarizing probability is in the interval (0, 14 ). Even

less is known about the quantum capacity of higher dimensional depolarizing channels. The

goal of this section is to tighten the upper bounds for the quantum capacity of d-dimensional

depolarizing channels.

The obvious upper bounds for the quantum capacity of depolarizing channels come from

combining Cerf’s no-cloning bounds [2] with Smith and Smolin’s technique [6]. By Cerf’s

result, a d-dimensional depolarizing channel of depolarizing probability p is both degradable

and anti-degradable when

p =
d

2d+ 2

d2 − 1

d2
=

d2 − 1

2d(d+ 1)
=
d− 1

2d
. (10)

Hence applying Smith and Smolin’s technique of degradable extensions [6] immediately gives

the upper bound of

Q(Dp,d) ≤ (log2 d)

(
1− p 2d

d− 1

)
(11)

for depolarizing probability 0 ≤ p ≤ 2d
d−1 . We call this upper bound the no-cloning upper

bound for the quantum capacity of the depolarizing channel.

Conversely, an obvious lower bound for the quantum capacity of the d-dimensional depo-

larizing channel of noise strength p is max(0, log2 d+ (1−p) log2(1−p) +p log2( p
d2−1 )), which

is the maximum of zero and its coherent information evaluated on the maximally mixed state.

The following theorem gives our upper bound on the quantum capacity of d-dimensional

depolarizing channels. We depict our upper bound for the two-qubit case in Figure 1.

Theorem 5.5. For integers d at least two and 0 ≤ p ≤ d−1
2d ,

Q(Dp,d) ≤ conv
(
f1, f2; p, [0,

d− 1

2d
]
)

where

f1(p) = Icoh

(
A 2d

(d−1)2
(
√
1−p−(1− pd2 )),d,

1

d

)
and

f2(p) =
(

1− p 2d

d− 1

)
log2 d.

Remark 5.6. To evaluate the upper bound of the theorem above, note that

Icoh

(
Aγ,d,

1

d

)
= η

(1 + (d− 1)γ

d

)
+ (d− 1)η

(1− γ
d

)
− η
(

1− (d− 1)γ

d

)
− (d− 1)η

(γ
d

)
.

Proof of Theorem 5.5. The channel Aγ,d has exactly one Kraus operator of non-zero trace

equal to 1 + (d− 1)
√

1− γ. Hence the complete Clifford-twirl of Aγ,d is Dp,d, where 1− p =(
1+(d−1)

√
1−γ

d

)2
. The non-negative solution for γ of the preceding equation for feasible values

of p and d gives γ = 2d
(d−1)2

(√
1− p−(1− pd

2 )
)

as required. Hence with Theorem 4.1, we have

the bound Q(Dp,d) ≤ Icoh(Aγ,d, 14 ). Cerf’s no-cloning bound also gives Q(Dp,d) ≤ f2(p). The

convexity of upper bounds obtained from degradable extensions then gives the result.
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Fig. 1. The upper and lower boundaries of the shaded region depict the upper and lower bounds
for Q(Dp,4). The dotted line and dashed lines are upper bounds that comes from Cerf’s no-cloning

bound and our uniform amplitude damping channel respectively (see Theorem 5.5).

5.3 Two-Qubit Pauli Channels

The tensor product of a pair of qubit Pauli channels is a two-qubit Pauli channel, but

conversely a two-qubit Pauli channel need not admit a tensor product decomposition into a

pair of qubit Pauli channels. The two-qubit Pauli channels that we study are invariant under

the SWAP operation, and local Clifford twirling. We call such channels (q1, q2)-channels;

these channels apply weight i Paulis from P2 with probabilities qi.

To obtain upper bounds on the quantum capacity of (q1, q2)-channels, we first consider

the equalities

q1 =
(1−

√
1− 2y − z)2

8
+

(
√
x+
√
y)2

4

q2 =
(1− 2

√
1− x+

√
1− 2y − z)2

16
+

(
√
x−√y)2

4
+
z

4
. (12)

Theorem 5.7. Let q1 ∈ [0, 0.2] and q2 ∈ [0, 0.3]. Then the quantum capacity of a (q1, q2)-

channel is at most conv
(
f ; (q1, q2), [0, 0.2] × [0, 0.3]

)
where f((q1, q2)) is the infimum of

Icoh(Ax,y,z, 14 ) over the vectors (x, y, z) in Fx,y,z that satisfy (12).

Remark 5.8. To evaluate the upper bound in the theorem above, note that

Icoh(Ax,y,z, 14 ) =η
(1 + 2x+ z

4

)
+ 2η

(1− x+ y

4

)
+ η
(1− 2y − z

4

)
− η
(

1− 2x+ 2y + z

4

)
− 2η

(x+ y

4

)
− η
(z

4

)
. (13)
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Proof of Theorem 5.7. Let (x, y, z) be a vector in Fx,y,z that satisfies (12). Then Ax,y,z is a

degradable channel (Lemma 5.3), and can be twirled to become a (q1, q2)-channel (Proposition

D.1). The use of Theorem 4.1 and the convexity of upper bounds obtained from degradable

extensions then gives the result.

Fig. 2. The concave roof of the depicted dimpled surface is our lower bound of (2−Q(N )) where

N is a (q1, q2)-channel (see Theorem 5.7).

5.4 Shifted Qubit Depolarizing Channels

Various non-unital and non-degradable channels have interesting information theoretic prop-

erties [29, 30, 31, 32], and it is natural to obtain upper bounds on their quantum capacities

as well. We demonstrate that it is possible to obtain non-trivial upper bounds on the

quantum capacity of a special non-unital and non-degradable qubit channel – the shifted

qubit depolarizing channel [30, 31].

The shifted depolarizing channel [30, 31] of dimension d is defined by

Dp,d,A(ρ) := Dp,d(ρ) + A (14)

where A is a d-dimensional Hermitian traceless matrix such that Dp,d,A is a completely

positive map and hence still a quantum channel. Here, the operator A quantifies the amount

by which the depolarizing channel Dp,d is shifted. In the following theorem, we provide

explicit upper bounds for the quantum capacity of the shifted qubit depolarizing channel (see

also Figure 3). To prove the theorem, we have to perform a specialized twirl on the qubit

amplitude damping channel; this twirl is not the Pauli-twirl.

Theorem 5.9. For 0 < p ≤ 1
4 , let

γ1 =
√

16− 9p+
9p− 16

4
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and

γ2 = 4
√

1− p(1−
√

1− p).

Also let

g1(p) = H2

(1− γ2
2

)
−H2

(γ2
2

)
,

g2(p) = 1−H2(p), and g3(p) = 1− 4p. Then for all ε in the interval [0, γ1], we have

Q(Dp,2,εZ) ≤ εγ−11 max
q∈[0,1]

{
Icoh

(
Aγ1,2,diag(1− q, q)

)}
+ (1− εγ−11 ) conv(g1, g2, g3; p, [0, 14 ]).

Proof. Let U be the set of unitaries {1, X+Z√
2
, Y+Z√

2
}. Then the U-twirl of Aγ1,2 is a shifted

depolarizing channel, in the sense that

(Aγ1,2)nUo(1) = 1+ γ1Z

(Aγ1,2)nUo(P) =
2
√

1− γ1 + (1− γ1)

3
P

for all non-trivial Paulis P ∈ {X,Y,Z}. Thus (Aγ1,2)nUo = Dp,2,γ1Z where

p =
4

3

(
1− 2

√
1− γ1 + (1− γ1)

3

)
.

Solving for non-negative γ1 in terms of p ∈ (0, 14 ], we get γ1 =
√

16− 9p + 9p−16
4 . Hence

Dp,2,εZ = εγ−11 (Aγ1,2)nUo + (1 − εγ−11 )Dp,2. Now Q((Aγ1,2)nUo) ≤ Icoh(Aγ1,2). By the

method of degradable extension, Q(Dp,2) ≤ conv(g1, g2, g3; p, [0, 14 ]) [6], and the result follows

from the convexity of the upper bounds.

Fig. 3. Upper bounds on Q(Dp,2,εZ) are depicted for different values of depolarizing probabilities

p. Here γ1 is a function of p as defined in Theorem 5.9.
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6 Concluding Remarks

In this paper, we have generalized Smith and Smolin’s result (Lemma 8 of [6]) to our Theorem

4.1, thereby upper bounding the quantum capacity of V-twirled degradable channels by

their coherent information maximized on V-contracted input states. In essence, our main

result elucidates a relationship between channel twirling, channel covariance and channel

contraction. Additionally, we used our result to provide new upper bounds for the quantum

capacity of several families of quantum channels using generalizations of the qubit amplitude

damping channels as our ingredients.
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Appendix

In the appendix, we explain some technical details in greater detail.

Appendix A Matrix Elements in the Pauli-basis

Observe that

4|0〉〈3| = X⊗X−Y ⊗Y + i(X⊗Y + Y ⊗X) (A.1)

4|1〉〈2| = X⊗X + Y ⊗Y + i(−X⊗Y + Y ⊗X) (A.2)

4|0〉〈2| = X⊗ 1+ X⊗ Z + i(Y ⊗ 1+ Y ⊗ Z) (A.3)

4|1〉〈3| = X⊗ 1−X⊗ Z + i(Y ⊗ 1−Y ⊗ Z) (A.4)

4|0〉〈1| = 1⊗X + Z⊗X + i(1⊗Y + Z⊗Y) (A.5)

4|2〉〈3| = 1⊗X− Z⊗X + i(1⊗Y − Z⊗Y). (A.6)
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Also

4|0〉〈0| = 1⊗ 1+ 1⊗ Z + Z⊗ 1+ Z⊗ Z (A.7)

4|1〉〈1| = 1⊗ 1− 1⊗ Z + Z⊗ 1− Z⊗ Z (A.8)

4|2〉〈2| = 1⊗ 1+ 1⊗ Z− Z⊗ 1− Z⊗ Z (A.9)

4|3〉〈3| = 1⊗ 1− 1⊗ Z− Z⊗ 1+ Z⊗ Z. (A.10)

We can also rewrite the above matrices in the following form.

|0〉〈3| = (|0〉〈0|)(X⊗X) (A.11)

|0〉〈2| = (|0〉〈0|)(X⊗ Z) (A.12)

|1〉〈3| = (−|1〉〈1|)(X⊗ Z) (A.13)

|0〉〈1| = (|0〉〈0|)(Z⊗X) (A.14)

|2〉〈3| = (−|2〉〈2|)(Z⊗X) (A.15)

Appendix B Proof of Proposition 4.2

Let KN denote the Kraus set of the channel N . Using the canonical definition of the

complementary channel of N from its canonical isometric extension, we have for all V ∈ V,

NC(VρV†) = TrHB

( ∑
A,A′∈KN

AVρV†A′†
)
HB
⊗ |A〉〈A′|

 . (B.1)

Similarly, the canonical complementary channel of Ñ is

ÑC(ρ) = TrHB⊗HC

 1

|V|
∑

V,V ′∈V
A,A′∈KN

(
V†AVρV†A′†V′

)
HB
⊗
(
|V〉〈V′|

)
HC
⊗ |A〉〈A′| ⊗ |V〉〈V′|


=

1

|V|
∑
V ∈V

TrHB

 ∑
A,A′∈KN

(
V†AVρV†A′†V

)
HB
⊗ |A〉〈A′|

⊗ |V〉〈V|
=

1

|V|
∑
V ∈V
NC(VρV†)⊗ |V〉〈V|

where we have used the unitary invariance of the partial trace.

Appendix C Proof of Lemma 5.3

When (x, y, z) ∈ Fx,y,z, the map Ax,y,z is a quantum channel and g, h, k ∈ [0, 1]. Hence

Ag,h,k is also a quantum channel. Also note that ACx,y,z = A1−x,y,1−2y−z.

We now proceed to show that Ag,h,k ◦ Ax,y,z = ACx,y,z which will imply that Ax,y,z is a

degradable channel. We denote the Kraus operators of Ax,y,z, ACx,y,z and Ag,h,k by Ai, Ri
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and Gi respectively, where Ai is given by (7),

R0 = |0〉〈0|+
√
x|1〉〈1|+

√
x|2〉〈2|+

√
z|3〉〈3|

R1 =
√

1− x|0〉〈1|+√y|2〉〈3|
R2 =

√
1− x|0〉〈2|+√y|1〉〈3|

R3 =
√

1− 2y − z|0〉〈3|,

and

G0 = |0〉〈0|+
√

1− g(|1〉〈1|+ |2〉〈2|) +
√

1− 2h− k|3〉〈3|

G1 =
√
g|0〉〈1|+

√
h|2〉〈3|

G2 =
√
g|0〉〈2|+

√
h|1〉〈3|

G3 =
√
k|0〉〈3|.

By the Kraus representation, Ag,h,k(Ax,y,z(ρ)) =
∑

k,`∈{0,1,2,3}

GkA`ρA
†
`G
†
k. In this represen-

tation, the composite quantum channel Ag,h,k ◦Ax,y,z has sixteen Kraus operators GkA` for

k, ` ∈ Z4. Now we evaluate GkA` explicitly.

G1A3 = G1A1 = 0,G1A2 =

√
1− 2x

1− x
y|0〉〈3|

G2A3 = G2A2 = 0,G2A1 =

√
1− 2x

1− x
y|0〉〈3|

G3A3 = G3A2 = G3A1 = 0.

Also we have

G1A0 =
√

1− 2x|0〉〈1|+
√

1− 2x

1− x
y|2〉〈3|

G2A0 =
√

1− 2x|0〉〈2|+
√

1− 2x

1− x
y|1〉〈3|

G3A0 =

√
1− x− 2y(2− 3x)

1− x
|0〉〈3|.

Moreover

G0A1 =
√
x|0〉〈1|+

√
xy

1− x
|2〉〈3|

G0A2 =
√
x|0〉〈2|+

√
xy

1− x
|1〉〈3|

G0A3 =
√
z|0〉〈3|.

Observe then that G0A1 =
√

x
1−2xG1A0 and G0A2 =

√
x

1−2xG2A0. Thus applying the

Kraus operators GiA0 and G0Ai is equivalent to applying the Kraus operator Ri for i ∈
{1, 2}. Similarly, applying the Kraus operators G1A2,G2A1 and G3A0 is equivalent to



Y. Ouyang 935

applying the Kraus operator R3. Moreover, since 1−g = x
1−x and (1−2h−k)(1−2y−z) = z,

we have that G0A0 = R0. Hence Ag,h,k ◦ Ax,y,z = ACx,y,z.

Appendix D Twirling of Channels

To obtain locally symmetric Pauli channels, we introduce the notion of localized Clifford

twirling. Instead of twirling our channel over the entire Clifford group over all the qubits [33],

we can twirl the channel with respect to the Clifford group for individual qubits independently.

The material below is an explicit discussion on the notion of localized Clifford twirling.

Now define the set of non-trivial Pauli matrices to be P∗1 := {X,Y,Z}. We study a set

of automorphisms on the non-trivial Pauli matrices. To define this set of automorphisms, we

first define a Hermitian and traceless qubit operator

Hτ1,τ2 :=
τ1 + τ2√

2

for all non-trivial Pauli matrices τ1 and τ2, which is just the Hadamard matrix in an arbitary

Pauli basis. For all non-trivial Pauli matrices W, conjugation of W with Hτ1,τ2 gives the

following.

Hτ1,τ2WHτ1,τ2 =

 τ1 , W = τ2
τ2 , W = τ1
−W , W /∈ {τ1, τ2}

Hence the automorphism associated with the generalized Hadamards Hτ1,τ2 on the set of

non-trivial Pauli matrices swaps τ1 and τ2. The size of the set of all automorphisms on the

set of non-trivial Pauli matrices is the size of the symmetric group of order 3, which is 6.

Hence we consider the set

B := {1,HX,Y,HX,Z,HY,Z,HX,ZHX,Y,HX,YHX,Z} (D.1)

with six qubit operators, each operator corresponding to a distinct automorphism of the set

of non-trivial Pauli matrices. For all P,V ∈ P1, observe that

1

6

∑
B∈B

(B†PB)V(B†PB) =

{ 1
3

∑
P′∈P∗1

P′VP′ , P ∈ P∗1
V , P = 1

. (D.2)

Proposition D.1. Let N be a two-qubit channel with Kraus set KN and

aP⊗P′ =
1

16

∑
K∈KN

∣∣∣Tr((P⊗P′)K)
∣∣∣2.

Then ((NnP2o)nB⊗1o)n1⊗Bo is a two-qubit Pauli channel with Kraus operators
√
a1⊗11⊗1,( ∑

R∈P∗1

1

3
aR⊗1

) 1
2

R⊗ 1,
( ∑
R∈P∗1

1

3
a1⊗R

) 1
2

1⊗R, and
( ∑
R,R′∈P∗1

1

9
aR⊗R′

) 1
2

R⊗R′ respectively

where R,R′ ∈ P1. Moreover if N = Ax,y,z, then ((NnP2o)nB⊗1o)n1⊗Bo is a (q1, q2)-channel

with q1 and q2 given by (12).
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Proof. Let V and W be single qubit Pauli matrices. Then using (D.2) we get

NoB⊗1o(V ⊗W) =
1

6

∑
B∈B

∑
P,P′∈P1

B†PBVB†PB⊗P′WP′aP⊗P′

=
1

6

∑
P,P′∈P1

(∑
B∈B

(B†PB)V(B†PB)
)
⊗P′WP′aP⊗P′

=
∑

P′∈P1

V ⊗P′WP′a1⊗P′ +
1

3

∑
P∈P∗1

( ∑
R∈P∗1

RVR
)
⊗
∑

P′∈P1

P′WP′aP⊗P′ .

By rearranging the terms above, we get

NoB⊗1o(V ⊗W) =V ⊗
∑

P′∈P1

P′WP′a1⊗P′ +
( ∑
R∈P∗1

RVR
)
⊗
∑

P′∈P1

P′WP′
∑

P∈P∗1

aP⊗P′

3
.

Similarly,

(NoB⊗1o)o1⊗Bo(V ⊗W) =V ⊗ 1

6

∑
B∈B

∑
P′∈P1

(B†P′B)W(B†P′B)a1⊗P′

+
( ∑
R∈P∗1

RVR
)
⊗ 1

6

∑
B∈B

∑
P′∈P1

(B†P′B)W(B†P′B)
( ∑
P∈P∗1

aP⊗P′

3

)
=a1⊗1V ⊗W + V ⊗

( ∑
R′∈P∗1

R′WR′
)( ∑

P′∈P∗1

a1⊗P′

3

)
+
( ∑
R∈P∗1

RVR
)
⊗W

( ∑
P∈P∗1

aP⊗1
3

)
+
( ∑
R∈P∗1

RVR
)
⊗
( ∑
R′∈P∗1

R′WR′
) ∑

P,P′∈P∗1

aP⊗P′

9
.

This completes the first part of the proof.

Now the Pauli-twirl of Ax,y,z has the Kraus operators(
1 + 2

√
1− x+

√
1− 2y

4

)
1⊗ 1,(

1−
√

1− 2y

4

)
P, P ∈ {1⊗ Z, Z⊗ 1}∣∣∣∣1− 2

√
1− x+

√
1− 2y

4

∣∣∣∣Z⊗ Z∣∣∣∣√x+
√
y

4

∣∣∣∣P, P ∈ {1⊗X, 1⊗Y, X⊗ 1, Y ⊗ 1}∣∣∣∣√x−√y4

∣∣∣∣P, P ∈ {Z⊗X, Z⊗Y, X⊗ Z, Y ⊗ Z}
√
z

2
P, P ∈ {X⊗X, X⊗Y, Y ⊗X, Y ⊗Y}

and hence combining this with the first result of our proposition, the second result of our

proposition follows.
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