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For the past few years, the security of practical quantum key distribution systems has

attracted a lot of attention. Device-independent quantum key distribution was proposed
to design a real-life secure quantum key distribution system with imperfect and untrusted
quantum devices. In this paper, we analyzed the security of BB84 protocol in a device-
independent scenario based on the entanglement distillation method. Since most of the

reported loopholes are in receivers of quantum key distribution systems, we focus on
condition that the transmitter of the system is perfectly coincident with the requirement
of the BB84 protocol, while the receiver can be controlled by eavesdropper. Finally, the
lower bound of the final secret-key rate was proposed and we explained why the secure-

key rate is similar to the well-known result for the original entanglement distillation
protocol.
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1 Introduction

With the help of quantum key distribution (QKD) [1, 2, 3], two distant peers (Alice and Bob)

can share secret random string of bits to fulfill unconditional secure communication. The

most commonly used QKD protocol is BB84 [1]. In this protocol, Alice randomly encodes the

classical bits 0 and 1 as two orthogonal quantum states |0〉 and |1〉 or |+〉 = (|0〉 + |1〉)/
√
2

and |−〉 = (|0〉 − |1〉)/
√
2, transmits these photons to Bob through a quantum channel which

is accessed by an eavesdropper Eve. Then Bob projects these photons with measurements

M0 = {|0〉〈0|, |1〉〈1|} or M1 = {|+〉〈+|, |−〉〈−|}. Finally, secret key bits may be generated

after some classical communications. Many successful experiments of QKD [4, 5, 6, 7, 8, 9, 10]

have been reported.

Although the security of BB84 protocol has been proven [11], implementations using real-

life devices are still facing severe challenges. The eavesdroppers (Eve) can utilize the imper-

fections of the devices to get extra information about the key, even totally hack the system.

Several comprehensive and successful attacks to experimental or commercial QKD systems

have been demonstrated, such as the time-shift attack [12], bright illumination attack [13]

and wavelength-dependent attack [14]. To enhance the security of practical QKD systems,
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device-independent (DI) QKD [15, 16] protocols were proposed. In DIQKD protocols, entan-

gled photon pairs are used as light source. Alice and Bob are both receivers with arbitrary

measurement devices, which will output classical bits according to their own random classical

input bits and the incoming photon. The security of DIQKD is based on true random number

sources, well-shielded security zones, and some quantum correlations of Alice and Bob’s in-

puts and outputs. DIQKD systems have higher security level than traditional ones since the

quantum devices can be untrusted or even controlled by Eve in these systems. However, the

applications of DIQKD protocols are limited due to the low key generation rate, very limited

secure distance, and the low efficiency of entanglement light sources.

In this paper, we analyzed the security of a DIQKD protocol in a BB84-like scenario, in

which Alice uses a perfect quantum states encoder to fulfill BB84 protocol, and the devices

in Bob are treated as a black box. The only assumption to Bob’s black box is there is no

unexpected information leakage outside his secure zone. This scenario is selected since the

imperfections of the QKD receives are essential in most of the reported attacking experiments

[12, 13, 14]. The security analyses for this scenario have been given in Refs. [17, 18] with the

uncertainty relation of entropies, while the methods used in this paper are mainly based on

the entanglement distillation protocol (EDP). As a powerful technique to analyze the security

of QKD, EDP has played an essential role in the security proof of BB84 and some other QKD

protocols [11, 19, 20, 21, 22]. As far as we know, the work in this paper is the first attempt to

analyze the security of DIQKD protocol using EDP method, which indicates the relationship

between DIQKD and EDP.

2 Module

Now, we first module our protocol. For simplicity, we concern the entanglement version of

BB84. Alice prepares N pairs of entanglement states of particles A, A1 and B, and each of

them is:

|Ψini〉AA1B =
1√
2
[
1√
2
(|0〉A|0〉B + |1〉A|1〉B)|0〉A1

+
1√
2
(|0〉A|+〉B + |1〉A|−〉B)|1〉A1

], (1)

in which, the particle A represents the Alice’s classical bit, B represents the information carrier

photon transmitted to Bob via quantum channel, and A1 corresponds to Alice’s choice of her

basis. Then, Eve may apply any possible unitary transformation U1 to the the particle B and

her ancilla E. In the most general situation, the dimension of Eve’s ancilla and the information

carrier photon B can be arbitrary. When particle B enters into Bob’s device, quantum

measurement B0 or B1 corresponding to Bob’s input 0 or 1 respectively is performed to

particle B, and then Bob learns output 0 or 1. We can assume that particle B’s Hilbert space

is spanned by a set of orthogonal basis {|0n〉B , |1n〉B , |n = 0, 1, 2...}. Note that 〈0n|0m〉 =

〈1n|1m〉 = δnm, 〈0n|1m〉 = 0 are always satisfied while the relations between |0〉, |1〉 and

|0n〉, |1n〉 may be arbitrary. According to Lemma 1 in Ref. [16], the measurements B0 and

B1 can be viewed as two Hermite operators with eigenvalues 0 and 1 since the dimension of

information carrier B after Eve’s attack is arbitrary. Next, Lemma 2 in Ref. [16] also proves

that the receiver’s operation can be considered as that Bob first projects the particle B into

a two-dimensional subspace spanned by the orthogonal basis |0n〉B and |1n〉B , consequently
B0 and B1 can be viewed as two Hermite measurements in the (x − z) plane of the Bloch
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sphere. In the following discussion, we will concern the density matrix of particle B when B

is projected into subspace spanned by |0n〉B and |1n〉B .
Without loss of generality, we assume the state of Eve’s ancilla can be spanned by a set

of orthogonal and normalized basis |Γm〉E , then we can define Eve’s operation U1 to B and

E in the quantum channel,

U1|0〉B |0〉E =
∑

n,m

γ00nm|Γm〉E |0n〉B + γ01nm|Γm〉E |1n〉B

U1|1〉B |0〉E =
∑

n,m

γ10nm|Γm〉E |0n〉B + γ11nm|Γm〉E |1n〉B ,
(2)

where,
∑

n,m |γ00nm|2 + |γ01nm|2 =
∑

n,m |γ11nm|2 + |γ10nm|2 = 1. If particle B collapses into

subspace spanned by |0n〉B and |1n〉B , the density matrix of particle B is given by

ρ′(n) =

∑

m P{γ00nm|0〉A|0n〉B + γ11nm|1〉A|1n〉B + γ01nm|0〉A|1n〉B + γ10nm|1〉A|0n〉B}
∑

m

∣

∣γ00nm
∣

∣

2
+
∣

∣γ11nm
∣

∣

2
+

∣

∣γ01nm
∣

∣

2
+
∣

∣γ10nm
∣

∣

2 ,

(3)

in which, P{|x〉} = |x〉〈x|. Next, following the Lemma 3 in Ref. [16], we can assume that

with the probability of 1/2, Eve flips the |0〉B and |1〉B with the quantum operation −iσy,
then applies U1 to particle B, Bob’s measurement device will flip the |0n〉B , |1n〉B with −iσ(n)

y

correspondingly. Since B0 and B1 are both in the (x− z) plane, this operation can make sure

that the probabilities of the 0 and 1 bits in the sifted key bits are same, and Eve does not lose

anything in this assumption. Note that −iσy|0〉 = |1〉, −iσy|1〉 = −|0〉, −iσ(n)
y |0n〉 = |1n〉,

and −iσ(n)
y |1n〉 = −|0n〉. The corresponding density matrix if Eve performs this operation is

given by

ρ′′(n) =

∑

m P{γ11nm|0〉A|0n〉B + γ00nm|1〉A|1n〉B − γ10nm|0〉A|1n〉B − γ01nm|1〉A|0n〉B}
∑

m

∣

∣γ00nm
∣

∣

2
+

∣

∣γ11nm
∣

∣

2
+
∣

∣γ01nm
∣

∣

2
+
∣

∣γ10nm
∣

∣

2 .

(4)

Therefore, the final density matrix under 0 basis can be given by

ρ(n) =
ρ′(n)

2
+
ρ′′(n)

2
. (5)

Consider Alice and Bob aim to get the maximally entangled state |φ+〉 = (|0〉A|0n〉B +

|1〉A|1n〉B)/
√
2, the phase error rate in this subspace is given by

e(n)p = 〈φ−|ρ(n)|φ−〉+ 〈ψ−|ρ(n)|ψ−〉

=
1

2
− Re(

∑

m γ00nmγ
∗

11nm + γ01nmγ
∗

10nm)
∑

m

∣

∣γ00nm
∣

∣

2
+

∣

∣γ11nm
∣

∣

2
+
∣

∣γ01nm
∣

∣

2
+
∣

∣γ10nm
∣

∣

2 ,
(6)

in which |φ−〉 = (|0〉A|0n〉B − |1〉A|1n〉B)/
√
2, |ψ−〉 = (|0〉A|1n〉B − |1〉A|0n〉B)/

√
2 and Re(x)

represents the real part of a complex number x. However, Alice and Bob’s goal may be |φ−〉,
then we can obtain
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e(n)p = 〈φ+|ρ(n)|φ+〉+ 〈ψ+|ρ(n)|ψ+〉

=
1

2
+

Re(
∑

m γ00nmγ
∗

11nm + γ01nmγ
∗

10nm)
∑

m

∣

∣γ00nm
∣

∣

2
+

∣

∣γ11nm
∣

∣

2
+
∣

∣γ01nm
∣

∣

2
+
∣

∣γ10nm
∣

∣

2 ,
(7)

similarly, in which |ψ+〉 = (|0〉A|1n〉B + |1〉A|0n〉B)/
√
2. Therefore, we define the effective

phase error rate as

e(n)p =
1

2
−

∣

∣Re(
∑

m γ00nmγ
∗

11nm + γ01nmγ
∗

10nm)
∣

∣

∑

m

∣

∣γ00nm
∣

∣

2
+

∣

∣γ11nm
∣

∣

2
+
∣

∣γ01nm
∣

∣

2
+
∣

∣γ10nm
∣

∣

2 . (8)

In the following, we will set v =
Re(

∑
m

γ00nmγ∗

11nm
+γ01nmγ∗

10nm
)

∑
m

∣

∣γ00nm

∣

∣

2

+
∣

∣γ11nm

∣

∣

2

+
∣

∣γ01nm

∣

∣

2

+
∣

∣γ10nm

∣

∣

2 for simplicity. To

derive the upper-bound of e
(n)
p , we must rely on the error rate under 1 basis. Don’t forget

the −iσy and −iσ(n)
y operations above mentioned, the density matrices when Alice emits

|+〉B = (|0〉B + |1〉B)/
√
2 and |−〉B = (|0〉B − |1〉B)/

√
2 are given by:

ρ
(n)
+ =

1

2(
∑

m

∣

∣γ00nm
∣

∣

2
+
∣

∣γ11nm
∣

∣

2
+

∣

∣γ01nm
∣

∣

2
+
∣

∣γ10nm
∣

∣

2
)
×

[
∑

m

P{(γ00nm + γ10nm)|0n〉B + (γ01nm + γ11nm)|1n〉B}

+ P{(γ01nm − γ11nm)|0n〉B − (γ00nm − γ10nm)|1n〉B}]

ρ
(n)
−

=
1

2(
∑

m

∣

∣γ00nm
∣

∣

2
+
∣

∣γ11nm
∣

∣

2
+

∣

∣γ01nm
∣

∣

2
+
∣

∣γ10nm
∣

∣

2
)
×

[
∑

m

P{(γ00nm − γ10nm)|0n〉B + (γ01nm − γ11nm)|1n〉B}

+ P{(γ01nm + γ11nm)|0n〉B − (γ00nm + γ10nm)|1n〉B}]

(9)

respectively. Note that ρ(n) and its conjugate ρ∗(n) will be with same information for Eve and

produce key bits with same statistical result by the measurements B0 and B1 in the x − z

plane. We can assume that ρ
(n)
+ → ρ

(n)
+ /2+ ρ

∗(n)
+ /2 and ρ

(n)
−

→ ρ
(n)
−
/2+ ρ

∗(n)
−

/2, by which we

have

ρ
(n)
+ =

(

1
2 + u v
c.c 1

2 − u

)

ρ
(n)
−

=

(

1
2 − u −v
c.c 1

2 + u

)

, (10)

where u =
Re(

∑
m

γ00nmγ∗

10nm
−γ01nmγ∗

11nm
)

∑
m

∣

∣γ00nm

∣

∣

2

+
∣

∣γ11nm

∣

∣

2

+
∣

∣γ01nm

∣

∣

2

+
∣

∣γ10nm

∣

∣

2 .

Actually, we can simplify above matrices by choosing some proper two orthogonal states

|0′n〉B and |1′n〉B in the (x − z) plane as z axis instead of |0n〉B and |1n〉B . Indeed, we can

introduce a rotation along y axis, which will lead to relabel |0n〉B → a|0′n〉B + b|1′n〉B , |1n〉 →
b|0′n〉B − a|1′n〉B where a2 + b2 = 1, a and b are both real numbers. Note that the coefficients

γ should be replaced by γ′ in this rotated representation, satisfying γ′00nm = aγ00nm+ bγ01nm
and etc.. We verify that
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Re(
∑

m γ′00nmγ
′∗

10nm − γ′01nmγ
′∗

11nm)
∑

m

∣

∣γ′00nm
∣

∣

2
+
∣

∣γ′11nm
∣

∣

2
+

∣

∣γ′01nm
∣

∣

2
+

∣

∣γ′10nm
∣

∣

2 →

(a2 − b2)
Re(

∑

m γ00nmγ
∗

10nm − γ01nmγ
∗

11nm)
∑

m

∣

∣γ00nm
∣

∣

2
+
∣

∣γ11nm
∣

∣

2
+
∣

∣γ01nm
∣

∣

2
+
∣

∣γ10nm
∣

∣

2

+ 2ab
Re(

∑

m γ00nmγ
∗

11nm + γ01nmγ
∗

10nm)
∑

m

∣

∣γ00nm
∣

∣

2
+
∣

∣γ11nm
∣

∣

2
+
∣

∣γ01nm
∣

∣

2
+
∣

∣γ10nm
∣

∣

2 ,

(11)

which can be 0 by choosing proper a and b. Thus, we conclude that by choosing relevant

rotation along y axis, the density matrices when Alice emits |+〉B and |−〉B are simplified as

ρ
(n)
+ =

(

1
2 v
c.c 1

2

)

and ρ
(n)
−

=

(

1
2 −v
c.c 1

2

)

(12)

respectively. In above density matrices and the remaining part of this paper, we only consider

this relevant rotated representation, and omit all ′ notations in γ′, |0′n〉B and |1′n〉B for sim-

plicity. If the bit error rate in this subspace under 1 basis is e
(n)
b1 , according to Holevo bound

we have

S(ρ
(n)
+ /2 + ρ

(n)
−
/2)− S(ρ

(n)
+ )/2− S(ρ

(n)
−

)/2

= 1−H2(
1

2
−

∣

∣v
∣

∣) > 1−H2(e
(n)
b1 ),

(13)

in which S is the von Neumann entropy, H2 is the Shannon’s binary entropy function. Hence,

we obtain that
∣

∣v
∣

∣ >
1

2
− e

(n)
b1 . (14)

Note that in this rotated representation, the phase error rate under 0 basis is still written as

the form like (8). It reads

e(n)p =
1

2
−
∣

∣v
∣

∣ 6 e
(n)
b1 . (15)

Hence we have obtained that for any two-dimensional subspace, the upper bound of the phase

error under 0 basis is given by the corresponding bit error rate e
(n)
b1 under 1 basis.

Under 0 basis, Bob’s measurement B0 on ρ(n) will output sifted key bits 0 or 1. Recall

that the phase error rate e
(n)
p decides the Eve’s information on Alice’s key bits, while the

information leakage in the post precessing step relies on the bit error rate e
(n)
b0 . For any

orthogonal and distinguishable subspace of particle B’s Hilbert space, we can conclude that

the secure-key rate under 0 basis is given by R(n) > 1−H2(e
(n)
p )−H2(e

(n)
b0 ) = 1−H2(e

(n)
b1 )−

H2(e
(n)
b0 ), according to Ref.[11]. Since these subspaces are distinguishable and assuming the

probability for successful projection into subspace spanned by |0n〉B and |1n〉B is pn, the

overall secure-key rate R =
∑

n pnR
(n) = 1 −∑

n pnH2(e
(n)
b1 ) − pnH2(e

(n)
b0 ) > 1 −H2(eb1) −

H2(eb0), in which eb1 =
∑

n pne
(n)
b1 and eb0 =

∑

n pne
(n)
b0 are the mean bit error rates under 1

basis and 0 basis respectively.
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3 Conclusion

Quite interestingly, we have given that the secure-key rate of BB84 protocol with a device-

independent receiver, which is the same as the result given in Ref. [17]. However, the

uncertainty relation plays the essential role in Ref. [17] while our methods are mainly based

on EDP and some lemmas introduced in Ref. [16]. Our discussions elucidate the relation

between the DIQKD and the EDP, explain why the secure-key rate in DI context is quite

similar to the one in ordinary BB84 protocol and may shed lights on the understanding and

future research on quantum key distribution.
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