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We investigate entanglement reciprocation between atomic qubits and cavity fields ini-
tially in a thermal state. We show that the entanglement between the atomic qubits
can be fully transferred to the mixed fields through displacement operation and res-

onant atom-cavity interaction. This is a rare example, in which quantum systems in
mixed states can be used as the memory for entanglement. The entanglement can be
retrieved by another atomic pair. Apart from fundamental interest, the results are useful
for implementation of quantum networking with atom-field interface in the microwave

regime.
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1 Introduction

Quantum entanglement is not only an essential ingredient for test of quantum nonlocality,

but also a key element for implementation of quantum information networks. Entanglement

between two-level systems, referred to as qubits, has been extensively researched and used for

many quantum information protocols, such as quantum cryptography [1] and teleportation

[2]. Multiparticle entangled states are also important for Heisenberg-limit interferometry [3].

On the other hand, entanglement of continuous variable systems is also useful for quantum

communication [4] and nonlocality test [5]. The Jaynes-Cummings model, the simplest system

in quantum optics describing the interaction between a two-level atom and a single-mode

quantized field, is toolbox for exploring many purely quantum-mechanical properties [6,7].

When the cavity mode is initially in the vacuum state, the Rabi oscillation results in atom-

field entanglement [8] and the cavity can act as a memory for storing atomic states [9].

Entanglement between two atoms can be produced by real [10] or virtual [11] photon exchange

in a high Q cavity. When the cavity contains a mesoscopic field with a few tens of photons, the

atom-field interaction leads to the phase entanglement between the field and atomic dipole

[12]. On the other hand, it has been shown that the coherence of an atomic qubit can

be transferred to thermal fields through dispersive or resonant interactions and subsequent

measurement of the atomic state [13,14]. The entanglement of two atomic qubits can be fully

transferred to two cavity modes each of which is initially in the vacuum state and resonantly
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532 Entanglement transfer between atomic qubits and thermal fields

interacts with the respective atom. In this case the cavity modes behave like qubits since only

0 and 1 photon states are involved during the interaction.

Recently, much attention have been paid to the interface between qubits and continuous

variable systems, which is useful for construction of quantum networks. Schemes have been

proposed for entangling two atomic qubits using entangled Gaussian states of light [15,16].

Lee et al. have investigated the entanglement transfer between qubits and continuous variable

systems [17]. It is shown that entanglement between two atomic qubits can be fully trans-

ferred to two cavity modes initially prepared in coherent states of high amplitudes through

resonant interaction of the atoms with the respective cavities. Perfect entanglement between

the cavities is achieved by the atom’s depositing an extra photon to the cavities and thus the

full entanglement transfer is conditioned on the atoms being detected in their ground states

after leaving the cavities with the postselection probability being 25%. It has been shown that

it is possible to transfer entanglement from qubits to cavity fields initially in coherent states

without post selection [18]. All of the previous studies concentrate on the case that the cavity

fields are initially in pure states. However, at finite temperature the cavity fields are actually

in a mixed thermal state before interaction with the atoms. In particular, in the microwave

regime thermal photons cannot be neglected. Therefore, entanglement reciprocation between

atomic qubits and thermal fields is essential for implementation of quantum network in this

regime.

In this paper, we show that the cavities, acting as the entanglement memory, do not need

to be initially prepared in a pure state. Entanglement between two two-level atoms can be

transferred to two cavities initially in displaced thermal states. The physics underlying the

process is that the atomic dipole phase correlation is transferred to the displaced cavity fields

through resonant atom-cavity interaction. The entanglement can be retrieved to another pair

of qubits from the mixed field state, and then be measured using atomic state detectors plus

classical pulses [10,11]. Numerical results demonstrate that the entanglement reciprocation

can be achieved with a high efficiency for a moderate displacement amount. The present work

offers the possibility to implement quantum information tasks using mixed states.

2 Theoretical model

We consider two two-level atoms initially in the maximally entangled states

|ψa(0)〉 =
1√
2
(|e〉1 |g〉2 − |g〉1 |e〉2), (1)

where |e〉 and |g〉 are the excited and ground states of the atoms, and the subscripts label the

atoms. These two atoms are placed in different cavities and resonantly interact with respective

field modes. In the rotating-wave approximation, the Hamiltonian for the interaction between

the jth atom and the respective cavity is (assuming ~ = 1)

Hj = λ(a†jS
−
j + ajS

+
j ), (2)

where S+
j = |e〉j 〈g|, S−

j = |g〉j 〈e|, a
†
j and aj are the creation and annihilation operators for

the jth cavity mode, and λ is the atom-cavity coupling strength. Each cavity initially contains

a thermal field, whose state is described by the density operator

ρj(0) =
1

π
−
nth

∫

e−|α|2/−
nth |αj〉j 〈αj | d2αj , (3)
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where
−
nth= 1/(e~ω/kBT −1) is the mean photon-number of the thermal field. We first displace

the each cavity field by an amount β, leading to displaced thermal state

ρ
′

j(0) = Dj(β)ρj(0)D
+
j (β) (4)

=
1

(π
−
nth)2

∫

e−|α|2/−
nth |β + αj〉j 〈αj + β| d2αj ,

with Dj(β) being the displacement operator Dj(β) = eβa
†
j−β∗aj . We here assume that β is a

positive real number. The coherent state component |αj + β〉j can be expressed in terms of

Fock states as

|αj + β〉j =
∞
∑

n=0

cαj ,n |n〉j , (5)

where cαj ,n = e−|αj+β|2/2 (αj+β)n√
n!

. Then the evolution of the whole system is given by

ρ(t) =
1

(π
−
nth)2

∫

e−(|α1|2+|α2|2)/
−
nth |ψα1,α2

(t)〉 〈ψα1,α2
(t)| d2α1d

2α2, (6)

where

|ψα1,α2
(t)〉 =

1√
2
(|ψα1,e(t)〉1 |ψα2,g(t)〉2 − |ψα1,g(t)〉1 |ψα2,e(t)〉2),

∣

∣ψαj ,e(t)
〉

j
=

∞
∑

n=0

[cαj ,n cos(
√
n+ 1λt) |e〉j − icαj ,n−1 sin(

√
nλt) |g〉j ] |n〉j ,

∣

∣ψαj ,g(t)
〉

j
=

∞
∑

n=0

[cαj ,n cos(
√
nλt) |g〉j − icαj ,n+1 sin(

√
n+ 1λt) |e〉j ] |n〉j . (7)

Due to the Jaynes-Cummings interaction, each atoms is correlated to the respective cavity

mode. In general, the whole system would evolve to a complex mixed entangled state.

3 Entanglement transfer from qubits to cavity modes

The contribution of coherent state components with |α|2 ≫−
nth to the expansion of the thermal

state is negligible. When β2 ≫−
nth the coherent states that contribute significantly to the

expansion of ρ
′

j are those with |αj | ≪ |β|. We further assume that β is large enough so that

|αj + β| ≫ 1 for these components. The width ∆nαj
of the photon number distributions of

the strong coherent state |αj + β〉j obey the inequality 1≪ ∆nαj
≪−
nαj

, with
−
nαj

= |αj + β|2
being the mean photon number. In this case the coefficients of the components that dominate

in the Fock state expansion (5) satisfy [19]

cαj ,n+1 = e−|αj+β|2/2 (αj + β)n |αj + β| eiθαj

√
n+ 1

√
n!

≃ eiθαj cαj ,n, (8)

where eiθαj = (αj + β)/ |αj + β| . We can express
√
n+ 1 in Eq. (7) as

√
n(1 + 1

n )
1/2 and

expand the terms in the bracket to the second order in 1/n, leading to
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√
n+ 1 ≃ n1/2(1 +

1

2n
− 1

8n2
) (9)

= n1/2 +
1

2n1/2
− 1

8n3/2
.

We can further expand the second and third terms right-hand of Eq. (9) in power of n− −
nαj

and discard the terms containing a factors
−
n
−l

αj
with l> 3/2, obtaining

√
n+ 1λt ≃ [n1/2 +

1

2
−
n
1/2

αj

− n− −
nαj

+1/2

4
−
n
3/2

αj

]λt. (10)

At the time T = βπ/λ, we have

√
n+ 1λT ≃ n1/2λT +

π

2

β

−
n
1/2

αj

−
n− −

n
1/2

αj
+1/2

4
−
nαj

β

−
n
1/2

αj

π. (11)

In the Jaynes-Cummings model, if the cavity mode is initially in the coherent state |β〉 with
β ≫ 1, the time T corresponds to the middle of the collapse regime of the atomic inversion,

where the atom is disentangled with the cavity [19].

For the state components that contribute significantly to the sum (5), the last term in

(11) is on the order of 1/
−
n
1/2

αj
. The deviation of β/

−
n
1/2

αj
from 1 is on the order of |αj | /

−
n
1/2

αj
.

Neglecting terms on the order of 1/
−
n
1/2

αj
and |αj | /

−
n
1/2

αj
,
√
n+ 1λT approximates n1/2λT+ π

2 .

Then we have

∣

∣ψαj ,e(T )
〉

j
= −

∞
∑

n=0

[cαj ,n sin(
√
nλT ) |e〉j + icαj ,n−1 sin(

√
nλT ) |g〉j ] |n〉j

= −
∣

∣ψαj ,e(T )
〉

f,j

∣

∣φαj
(T )

〉

a,j
,

∣

∣ψαj ,g(T )
〉

j
=

∞
∑

n=0

[cαj ,n cos(
√
nλT ) |g〉j − icαj ,n+1 cos(

√
nλT ) |e〉j ] |n〉j

= −ieiθαj

∣

∣ψαj ,g

〉

f,j

∣

∣φαj
(T )

〉

a,j
. (12)

where

∣

∣ψαj ,e(T )
〉

f,j
=
√
2

∞
∑

n=0

cαj ,n sin(
√
nλT ) |n〉j ,

∣

∣ψαj ,g(T )
〉

f,j
=
√
2

∞
∑

n=0

cαj ,n cos(
√
nλT ) |n〉j ,

∣

∣φαj
(T )

〉

a,j
= (|e〉j + ie−iθαj |g〉j)/

√
2. (13)

Thus we have

|ψα1,α2
(T )〉 = |ψα1,α2

(T )〉f |φα1
(T )〉a,1 |φα2

(T )〉a,2 , (14)
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where

|ψα1,α2
(T )〉f =

i√
2
[eiθα2 |ψα1,e(T )〉f,1 |ψα2,g(T )〉f,2 − eiθα1 |ψα1,g(T )〉f,1 |ψα2,e(T )〉f,2]. (15)

The total density operator is

ρ(T ) =
1

(π
−
nth)2

∫

e−(|α1|2+|α2|2)/
−
nth |ψα1,α2

(T )〉f 〈ψα1,α2
(T )|

⊗ |φα1
(T )〉a,1 〈φα1

(T )| ⊗ |φα2
(T )〉a,2 〈φα2

(T )| d2α1d
2α2, (16)

As has been pointed out, for the state components that contribute significantly to the coherent

state expansion of the thermal state, |αj | ≪ β and thus eiθαj ≃ 1. This indicates that each

atom is almost in the pure state (|e〉j + i |g〉j)/
√
2 at the time T . The atoms are not only

disentangled to each other but also to the cavity fields at this time. The entanglement initially

carried by the atoms is fully transferred to the cavity modes. As opposed to the study of

Ref. [17], the average excitation number of the atoms in the final state is the same as that in

the initial state, indicating the entanglement transfer does not arise from excitation exchange

between the atoms and the fields.

To verify the validity of our approximations, we present numerical simulations. The effi-

ciency of entanglement transfer is characterized by the purity of the atomic system. If each

atom evolves to a pure state, the entanglement is fully transferred to the cavity system. The

purity of atom j can be measured by the quantity Trρ2aj , where ρaj is the reduced density

operator for atom j. When Trρ2aj = 1/2, this atom is in a maximally mixed state. On the

other hand, Trρ2aj = 1 corresponds to a pure atomic state. During the evolution, the two

atoms have the same purity. In Fig. 1 we plot the quantity Trρ2a1 against the value of the

displacement parameter β at the time T = βπ/λ. The average thermal photon number in

each cavity is
−
nth= 2. It shows that this quantity increases with the value of β, and it can be

above 90% for β ∼ 6, implying that the approximation is quite good even for a moderate β.

In Fig. 2, we plot Trρ2a1 against the interaction time. The amplitude of the displacement is

β = 8 and the average thermal photon number is
−
nth= 2. As shown in this figure each atom

is almost in a pure state around the time T = βπ/λ, indicating the entanglement initially

deposited in the atoms has been transferred to the cavities.

To gain deeper insight into the underlying physics, we rewrite the initial atomic state as

the dipole entangled state

|ψ(0)〉a =
1√
2
(
∣

∣φ+(0)
〉

a,1

∣

∣φ−(0)
〉

a,2
−
∣

∣φ−(0)
〉

a,1

∣

∣φ+(0)
〉

a,2
), (17)

where
∣

∣φ±(0)
〉

a,j
= (|e〉j ± |g〉j)/

√
2. (18)

To see how each dipole state component evolves due to interaction with the respective cavity

we rewrite |ψα1,α2
(t)〉 as

|ψα1,α2
(t)〉 = 1√

2
(
∣

∣ψ+
α1
(t)

〉

1

∣

∣ψ−
α2
(t)

〉

2
−

∣

∣ψ−
α1
(t)

〉

1

∣

∣ψ+
α2
(t)

〉

2
), (19)
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Fig. 1. The purity of atom 1 as a function of the displacement amplitude β at the time T = βπ/λ.

The average thermal photon number in each cavity is
−

nth= 2.

where

∣

∣

∣
ψ±
αj
(t)

〉

j
=

1√
2

∞
∑

n=0

[cαj ,n cos(
√
n+ 1λt) |e〉j − icαj ,n−1 sin(

√
nλt) |g〉j ] |n〉j

± 1√
2

∞
∑

n=0

[cαj ,n cos(
√
nλt) |g〉j − icαj ,n+1 sin(

√
n+ 1λt) |e〉j ] |n〉j

≃ 1√
2
{

∞
∑

n=0

cαj ,ne
∓i

√
n+1λt |e〉j ±

∞
∑

n=0

cαj ,ne
∓i

√
nλt |g〉j} |n〉j . (20)

For t ≤ βπ/λ we can neglect the third term of Eq. (10) and use the approximation

n1/2 ≃−
n
1/2

αj
+
n− −

nαj

2
−
n
1/2

αj

− (n− −
nαj

)2

8
−
n
3/2

αj

. (21)

This leads to

∣

∣

∣
ψ±
αj
(t)

〉

j
≃ 1√

2
{

∞
∑

n=0

cαj ,ne
∓i[

−
n

1/2

αj
/2+(n+1)/2

−
n

1/2

αj
−(n−−

nαj
)2/8

−
n

3/2

αj
]λt |e〉j

±
∞
∑

n=0

cαj ,ne
∓i[

−
n

1/2

αj
/2+n/2

−
n

1/2

αj
−(n−−

nαj
)2/8

−
n

3/2

αj
]λt |g〉j} |n〉j

= e
∓i

−
n

1/2

αj
λt/2

∞
∑

n=0

cαj ,ne
∓i[n/2

−
n

1/2

αj
−(n−−

nαj
)2/8

−
n

3/2

αj
]λt |n〉j

∣

∣

∣
φ±αj

(t)
〉

a,j
, (22)

where
∣

∣

∣
φ±αj

(t)
〉

a,j
= (e

∓iλt/2
−
n

1/2

αj |e〉j ± |g〉j)/
√
2. (23)

Due to the resonant interaction, the phase of the two initial atomic dipole states |φ+(0)〉a,j
and |φ−(0)〉a,j rotate in opposite directions. Meanwhile, the field is split into two quasico-

herent components whose phases are correlated with the corresponding atomic dipole states
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Fig. 2. The purity of atom 1 as a function of the interaction time. The average thermal photon

number in each cavity is
−

nth= 2 and the displacement amplitude is β = 8.

and also rotate in opposite directions in phase space. As the phases of the dipole states

for the two atoms are initially correlated, the two fields and the two atoms are all phase

entangled due to the atom-cavity interaction. For β ≫ αj , we have
−
nαj
≃ β. During the

interval [0,βπ/λ], as time proceeds, the phase separation of the two atomic dipole states be-

comes smaller and smaller, while that of the quasicoherent field states becomes larger and

larger. When t = βπ/λ, the two atomic dipole states merge together so that each atom is

disentangled with other subsystems. On the other hand, the phase separation of the two

quasicoherent components for each field approaches the maximum at this time. As a result,

the phase correlation initially carried by the atomic dipoles is completely transferred to the

quasicoherent states of the two fields so that they are maximally phase entangled. It should

be noted that the fields are not in an entangled coherent states due to the presence of the

factor e
±i(n−−

nαj
)2λt/8

−
n

3/2

αj , which leads to phase spreading.

4 Retrival of entanglement from cavities

We note that the entanglement imprinted in the two mesoscopic fields can also be trans-

ferred to two atomic qubits using the echo technique proposed by Morigi et al. [20,21]. The

atom-cavity system evolves from time 0 to t under the Jaynes-Cummings evolution opera-

tor U1 = e−iH1te−iH2t. Then each atom undergoes a phase kick σj,z = |e〉j 〈e| − |g〉j 〈g|.
For a second Jaynes-Cummings interaction time t

′

the evolution operator of the system is

U2 = e−iH1t
′

e−iH2t
′

. The whole evolution operator is

U = U2σ1,zσ2,zU1 = σ1,zσ2,ze
−iH1(t−t

′
)e−iH2(t−t

′
). (24)

We here have used the relation σj,zHjσj,z = −Hj . Therefore, the phase kick leads to the

reversal of the unitary evolution of the system. After the duration 2t, the system evolves
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back to the initial state, i.e., the entanglement is retrieved from the mesoscopic fields back

to the two atoms. If these atoms leave the respective cavities at the time T = βπ/λ, the

entanglement of the mesoscopic fields can be transferred to a second pair of atoms, each of

which is initially in the state

∣

∣

∣
φ

′

(0)
〉

a,j
= (i |e〉j + |g〉j)/

√
2. (25)

The initial state of the second atomic pair is equivalent to that of the first atomic pair after

interacting with the cavities for a time βπ/λ and then undergoing the phase kick. After an

interaction time T
′

= βπ/λ with the respective cavities, the second pair of atoms evolve to

the maximally entangled state in which the first atomic pair is initially.

To confirm that the entanglement can indeed be transferred to the second pair of atoms,

we numerically simulate the entanglement dynamics for these atoms in Fig.3. The degree of

entanglement for the second pair of atoms after an interaction time t
′

with the respective

cavities can be quantified by concurrence [22], which is defined as

C = max{0, λ1 − λ2 − λ3 − λ4}, (26)

where λ,is are the square roots in decreasing order of the eigenvalues of the operator ρ
′

a(σy ⊗
σy)ρ

′∗
a (σy ⊗ σy), with σy being the pauli operator and ρ

′

a the reduced density operator for

the second atomic pair after interaction with the cavities. In Fig. 3 we plot the concurrence

for second atomic pair against the interaction time t
′

. As one can see from this figure, the

second pair of atoms are in a highly entangled state at the time t
′

= βπ/λ, demonstrating

the retrieval of entanglement from the cavities back to the qubits. This further verifies that

the two cavity modes carry about one ebit of entanglement before interaction with the second

atomic pair.

5 Discussion and conclusion

To estimate the effect of decoherence, we take parameters from microwave cavity QED ex-

periments with circular Rydberg atoms and a superconducting millimeter-wave cavity, which

has a remarkably long damping time Tc = 0.13 s [23]. The states |f〉, |g〉, and |e〉 are the

circular states with principal quantum numbers 49, 50, and 51, respectively. The correspond-

ing atomic radiative time is about Tr = 3 × 10−2s. The transition |g〉 ←→ |e〉 is strongly

coupled to the cavity mode with the coupling strength λ = 2π × 25 kHz. For β = 8, the

required interaction time is T = 8π/λ = 1.6× 10−4 s, much shorter than the atomic radiative

time. The effective lifetime for the cavity coherence is Tc,eff ∼ Tc/ |β|2 = 2.03 × 10−3 s,

much longer than the interaction time. This implies that the entanglement transfer can be

completed before decoherence seriously affects the state evolution.

In conclusion, we show that it is possible to transfer the entanglement from two atomic

qubits to two cavity fields initially in thermal states and retrieve it to the next pair of atomic

qubits, indicating that continuous-variable systems in mixed states can be used as memory for

entanglement. The entanglement reciprocation is not restricted to bipartite entangled states.

When n entangled two-level atoms are sent through n respective cavities initially prepared

in strongly displaced thermal states, after an interaction time T = βπ/λ each atom is in a

pure state and the multipartite entanglement is transferred to the mixed cavity fields. The
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Fig. 3. The concurrence of the second atomic pair as a function of the interaction time. The
parameters are the same as those in Fig. 2.

entanglement can be retrieved to the next set of atoms. This process may also be realized with

circuit QED, in which controlled coupling between qubits and resonators have been reported

[24,25]. The result offers the possibility of realizing interface between qubits and mixed

continuous-variable systems. It may have important application in quantum networking in

the microwave regime where the thermal photons are not negligible.
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