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We consider a monogamy inequality of quantum discord in a pure tripartite state and
show that it is equivalent to an inequality between quantum mutual information and

entanglement of formation of two parties. Since this inequality does not hold for arbitrary
bipartite states, quantum discord can generally be both monogamous and polygamous.
We also carry out numerical calculations for some special states. The upper bounds
of quantum discord and classical correlation are also discussed and we give physical

analysis on the invalidness of a previous conjectured upper bound of quantum correlation.
Our results provide new insights for further understanding of distributions of quantum
correlations.
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1 Introduction

Quantum states possess quantum correlations which are classically unobtainable and act as

an invaluable resource for quantum information processing. For a long time, interests on

quantum correlations focused on quantum entanglement which is a special kind of quantum

correlation enabling fascinating tasks such as quantum key distribution, quantum telepor-

tation and superdense coding, etc [1]. Quantum entanglement does not exist in separable

states which are mixtures of separable direct product states [2]. However, recent researches

show that some separable quantum states can exhibit their quantumness in many interest-

ing circumstances. In [3], Knill and Laflamme introduced an interesting computation model,

deterministic quantum computation with one quantum bit (DQC1), for which unentangled

states can provide exponential speed up over the best known classical algorithms. Together

with some other interesting tasks, such as locking of large amount of classical correlations

with small classical communication in unentangled states, they ignite interests and studies on

more general nonclassical correlations or quantumness of quantum states [4, 5, 6, 7, 8, 9, 10].
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470 Non-monogamy of quantum discord and upper bounds for quantum correlation

Viewed from an extensive background, the nonclassical correlations or quantumness of quan-

tum states are always of fundamental importance for both quantum information theory and

quantum mechanics.

Among the nonclassical correlation measures proposed with different motivations, quan-

tum discord is an important one for capturing all the nonclassical correlations in a bipartite

quantum state [5, 4]. Researches on quantum discord develop quickly in recent years. Direct

calculations were carried out for some interesting quantum states [11, 12]. Operational mean-

ings of quantum discord were given in terms of some other important concepts like quantum

state merging [9, 14, 15]. The dynamics of quantum discord were discussed in [16, 17]. Espe-

cially, experiments for quantum discord were also carried out [16, 18]. In this paper, we are

mainly concerned with the monogamy property of quantum discord.

Unlike the arbitrary shareability of classical correlations among multipartite systems, the

shareability of quantum correlations is always constrained by some monogamy relation as

in case of entanglement measure [19]. It says that for a multipartite state ρA0A1...An
and

a quantum correlation measure E, the quantum correlation between A0 and A1, A2,...,An

as a whole should be larger than the sum of correlations between A0 and A1, A2,...,An

separately, i. e. EA0|A1...An
≥

∑

i EA0Ai
. The underlying intuition is that their difference

should be genuine multipartite quantum correlations which may exist only among three or

more parties. In [19, 20], the authors constructed the monogamy relation for qubit systems

and concurrence which is a entanglement measure first introduced by Hill and Wootters [21].

The monogamy relation in continuous systems was provided in [22]. More discussions on

monogamy of different quantum correlation measures can be found in, for example, [23, 24,

25, 26]. Since quantum discord is a quantum correlation measure for bipartite states, it is

interesting to study whether it also respects monogamy relation. Recently, Prabhu et al. [27]

and Giorgi [28] have studied the following monogamy relation for quantum discord,

D←(ρAB) +D←(ρAC) ≤ D←(ρA|BC). (1)

They showed that such a monogamy relation does not generally hold. In this paper, we will

study a different kind of monogamy relation for quantum discord,

D→(ρAB) +D→(ρAC) ≤ D→(ρA|BC), (2)

for a pure tripartite state |ΨABC〉. Because of the asymmetry of quantum discord, the above

two monogamy relations are quite different. Physically, inequality (1) means that the mea-

surement are taken on two parties, B and C, coherently in right hand side of the inequality

and individually in left hand side of the inequality. However, inequality (2) means that only

one local measurement on party A is performed.

The outline of this paper is as follows. In the following section, after reviewing the def-

inition of quantum discord, we derive an equivalent relation to the monogamy inequality

(2). Then through concrete examples we numerically show that the monogamy relation (2)

does not generally hold. With squashed entanglement we also provide a special case when

monogamy relation (2) does hold. In the third section, we discuss another interesting is-

sue on quantum discord, the upper bounds of quantum and classical correlations. Here, we

give physical explanations on the invalidity of previous conjectured upper bound of quantum

correlations. Finally we give our conclusions.
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2 Monogamy relations of quantum discord in a pure tripartite state

In this section we will point out that the monogamy inequality (2) can be reduced to a re-

lation between entanglement of formation (EoF) [29], a well-accepted entanglement measure,

and quantum mutual information. Before expanding our discussions, we first review the

definition of quantum discord. The definition is based on the difference between the total

correlation and the classical correlation in a bipartite state, quantified by quantum mutual

information and quantum conditional entropy by a local measurement, respectively. For a

general bipartite state ρAB , quantum mutual information I(ρAB) = S(ρA)+S(ρB)−S(ρAB),

is generally taken to be the measure of total correlations, both classical and quantum. In

order to quantify the classical correlation, a positive operator valued measurement (POVM)

{Πi} is made on party A, the resulting state is given by the shared ensemble {pi, ρB|i},
where pi = TrA,B(ΠiρAB), ρB|i = TrA(ΠiρAB)/pi. Similar to the classical conditional en-

tropy, quantum conditional entropy is defined as S{Πi}(B|A) =
∑

i piS(ρB|i), then an al-

ternative version of quantum mutual information with respect to POVM {Πi} is defined as

J→{Πi}(ρAB) = S(ρB)− S{Πi}(B|A). Maximizing J→{Πi}(ρAB) over all POVMs {Πi}, we arrive

at a measurement independent quantity J→(ρAB) = max{Πi}[S(ρB) − S{Πi}(B|A)] which
captures all the classical correlation present in ρAB . Taking the difference between total

correlations and classical correlation, we obtain the following one way quantum discord,

D→(ρAB) = I(ρAB)− J→(ρAB) = S(ρA)− S(ρAB) + min
{Πi}

∑

i

piS(ρB|i). (3)

Symbol→ shows that such defined correlation measure is asymmetric, i.e. generallyD→(ρAB) 6=
D←(ρAB), where D←(ρAB) is based on POVM on party B.

Now, let us consider a pure tripartite state |ΨABC〉. The quantum discord between A and

BC as a whole is the von Neumann entropy of A,

D→(ρA|BC) = S(ρA). (4)

This means that by a von Neumann measurement with basis in agreement with the Schmidt

decomposition of bipartite partition
∣

∣ΨA|BC

〉

, the result is the quantum discord. On the other

hand, for pure state |ΨABC〉, we have the following relations between quantum discord and

EoF [30],

D→(ρAB) = S(ρA)− S(ρAB) + EF (ρBC), (5)

D→(ρAC) = S(ρA)− S(ρAC) + EF (ρBC). (6)

From these relations, we have

D→(ρA|BC)−D→(ρAB)−D→(ρAC)

= S(ρAB) + S(ρAC)− S(ρA)− 2EF (ρBC)

= S(ρB) + S(ρC)− S(ρBC)− 2EF (ρBC)

= I(ρBC)− 2EF (ρBC).

Therefore the monogamy relation (2) is reduced to

EF (ρBC) ≤
I(ρBC)

2
. (7)
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Inequality (7) shows that an inequality between quantum mutual information and EoF of

a bipartite state implies the monogamy inequality of quantum discord in a tripartite state,

which is the purification of the bipartite state. In [31], I(ρBC) − 2EF (ρBC) was also found

to be equal to the difference of classical correlation J→(ρAB) and quantum discord D→(ρAB)

between AB which was named discrepancy. We know that quantum mutual information is

commonly considered to quantify the total correlations [32] and entanglement of formation

is a measure of entanglement. Interestingly, for any pure bipartite state |ΨAB〉, we have

that quantum mutual information, I(ΨAB) = 2S(ρA), is two times of the entanglement of

formation of state |ΨAB〉. This inequality seems reasonable. Actually inequality (7) has

already been analyzed as a postulate for measures of quantum correlation in [33], where Li

and Luo show that there are states for which inequality (7) does not hold and they also argue

that EoF may not be a proper quantum correlation measure consistent with quantum mutual

information. Here, the existence of states violating Eq. (7) shows that monogamy relation

(2) does not generally hold. In the following we will discuss monogamy relation (2) through

numerical calculations with some tripartite and bipartite states.

2.1 Generalized pure three-qubit GHZ and W states

In [27], a necessary and sufficient condition for quantum discord being monogamous with

inequality (1) is given and applied to generalized GHZ and W states. Based on numerical

calculations of generalized W state, it was conjectured that quantum discord in these states

is polygamous which is confirmed in [28] with the conservation law for distributed EoF and

quantum discord [30]. Here, concerning with our proposed monogamy inequality (2), it can be

easily seen that for generalized GHZ states
∣

∣ΨGHZ
ABC

〉

= α |000〉ABC + β |111〉ABC , relation (7)

holds since EoF is simply zero and hence monogamy Eq. (2) holds. However, generalized W

states are different and direct calculations show that quantum discord in generalized W states

can be both monogamous and polygamous with inequality (2). Explicitly, the generalized W

states take the following form,
∣

∣ΨW
ABC

〉

= α |011〉ABC + β |101〉ABC + γ |110〉ABC . (8)

Without lose of generality, we assume that α, β, γ are all real, and the normalization condition

α2 + β2 + γ2 = 1. We calculate I(ρBC) − 2EF (ρBC) for this state and the results are given

in Fig.1.

It can be easily seen that though in most cases quantum discord is polygamous (DA→BC−
DA→B −DA→C < 0), when β2, γ2 are small we have DA→BC −DA→B −DA→C ≥ 0, which

means that quantum discord is monogamous between A and B,C. In the reduced bipartite

state ρBC , α
2 is the proportion of direct product state |11〉, β2 + γ2 quantifies the proportion

of entangled state β |01〉BC + γ |10〉BC . Fig.1 implies that monogamy relation (2) is roughly

related to the entangled proportion β2+γ2 shared between B and C. Monogamy holds when

this entangled proportion is small and polygamy holds when it is large. Similar analysis

can be made on generalized GHZ class states which contain the above generalized GHZ states
∣

∣ΨGHZ
ABC

〉

as a subset. One simple example is, |ΨABC〉 = α |000〉ABC+β |100〉ABC+γ |111〉ABC ,

one can find that these states can also be both monogamous and polygamous.

2.2 Isotropic states and Werner states

Since monogamy inequality (2) is equivalent to inequality (7) which concerns only about
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Fig. 1. Difference between mutual information and two times EoF for a bipartite state of parties

B and C from a generalized W state in Eq.(8). It directly shows that quantum discord can be
both monogamous and polygamous.

a bipartite state ρBC , while party A can be regarded as an extension of this bipartite state

for purification, we only need to analyze bipartite state ρBC . In the following we will consider

bipartite isotropic states [34] and Werner states [41] which have analytical expressions for

EoF [34]. The isotropic states take the following form,

ρBC =
1− F

d2 − 1
(I −

∣

∣Ψ+
〉 〈

Ψ+
∣

∣) + F
∣

∣Ψ+
〉 〈

Ψ+
∣

∣ (9)

where, 0 ≤ F ≤ 1 and |Ψ+〉 = 1√
d

∑d

i=1 |ii〉, d is the dimension of Hilbert space B and C.

First, since both reduced density matrices of B,C are I/d, we have S(ρB) = S(ρC) = log2 d.

Second, S(ρBC) can be directly calculated as,

S(ρBC) = −F log2 F − (1− F ) log2(1− F ) + (1− F ) log2(d
2 − 1). (10)

From [34], we know that the FoF of ρBC is,

EF (ρBC) =















0, F ∈ I
H2(γ(F )) + (1− γ(F )) log(d− 1),

F ∈ II
d log(d−1)

d−2 (F − 1) + log d, F ∈ III

(11)

where cases I,II,III are [0, 1
d
], [ 1

d
, 4(d−1)

d2 ], [ 4(d−1)
d2 , 1], respectively, γ(F ) = 1

d

(√
F +

√

(d− 1)(1− F )
)2

,

H2(x) = −x log2 x− (1− x) log2(1− x).

In Fig.2, we plot I(ρBC) − 2EF (ρBC) for d = 4, 5, 10, 15, 115, whose lines are arranged

from right to left. It can be seen that quantum discord is monogamous when F is small which

means ρBC has less singlet fractions. With the increasing of dimension d, singlet |Ψ+〉 has

higher proportion and the quantum discord has larger polygamous region. These results are

consistent with the results obtained for generalized pure three-qubit GHZ and W states.
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Fig. 2. Difference between mutual information and two times EoF for isotropic state in Eq.(9).
When dimension d increases, the region of negative becomes larger corresponding to polygamy for
a pure tripartite state.

Completely similar analysis can be made on the following Werner states,

wBC(x) =
d− x

d3 − d
I +

dx− 1

d3 − d
P, x ∈ [−1, 1] (12)

where P =
∑d

i,j=1 |ij〉 〈ji| is the flip operator. We note that these analysis has been carried

out in [33] and the results are quite similar with isotropic states given above.

2.3 An observation based on squashed entanglement

For a pure tripartite state |ΨABC〉, if its reduced bipartite state ρBC satisfies ED(ρBC) =

EF (ρBC), then the monogamy relations (2,7) hold, where ED(ρBC) is the entanglement of

distillation. This observation can be proved with squashed entanglement which is defined in

terms of conditional mutual information [35],

Esq(ρBC) := inf{1
2
I(B,C|E) : ρBCEextensionofρBC}. (13)

In [35], it has been proved that ED ≤ Esq(ρBC). Meanwhile we have Esq(ρBC) ≤ 1
2I(ρBC)

since I(B,C|E) is the “squashed” correlation from I(ρBC) where the classical correlations

are squashed out as much as possible. Obviously, when ED = EF , inequality (7) is satisfied

and quantum discord monogamy relation (2) between A and B,C in |ΨABC〉 holds.

3 Upper bounds on quantum discord and classical correlations

In [36], it was conjectured that, given a bipartite sate ρAB defined in the Hilbert space

HA ⊗ HB , the following upper bounds for quantum discord and classical correlations could

exist:

J→(ρAB) ≤ min[S(ρA), S(ρB)], (14)

D→(ρAB) ≤ min[S(ρA), S(ρB)], (15)
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In [37], the upper bound of classical correlation (14) is proved to be true and the upper bound

of quantum correlation (15) is proved to be true only under some conditions. In [28], based on

known results of three qubits [19], Giorgi showed that the above two upper bounds hold for

rank-2 states of two qubits. Now, with the features of quantum discord, we provide some more

concise discussions on these upper bounds. First, we assume the mixed ρAB to be reduced

from a pure tripartite state |φABC〉 such that TrC |φABC〉 〈φABC | = ρAB .

3.1 Upper bound on classical correlation

According to its definition, the classical correlation is J→(ρAB) = S(ρB)−minS(B|{EA
j }) =

S(ρB)−EF (ρBC) ≤ S(ρB), the last inequality comes from the fact EF (BC) ≥ 0. In order to

show that we simultaneously have J→ ≤ S(ρA), we need to prove the following inequality,

EF (ρBC) ≥ S(ρB)− S(ρBC). (16)

This obviously holds since S(ρB) − S(ρBC) is the coherent information [38, 39] which is a

lower bound for distillable entanglement smaller than EoF. Therefore we know that the upper

bound for classical correlation in (14) holds.

3.2 Upper bound on quantum correlation

Here the quantum correlation measure is just quantum discord and we can make the following

deductions, D→(ρAB) = S(ρA) − S(ρAB) + minS(B|{EA
j }) = S(ρA) − S(ρC) + EF (ρBC) =

S(ρA)−S(ρC)+minS(C|{EA
j }) = S(ρA)−J→(ρAC) ≤ S(ρA), the last inequality coming from

the fact that J→(ρAC) ≥ 0 or the concavity of entropy if we consider that S(ρC)−EF (ρBC) ≥
0. With one half of inequality (15) proved, can we simultaneously prove another half of the

inequality, D→(ρAB) ≤ S(ρB) ? We only need to consider the case S(ρA) > S(ρB), then we

should have,

EF (ρBC) ≤ S(ρB) + S(ρAB)− S(ρA), (17)

Since |φABC〉 is a pure state, it is equivalent to

EF (ρBC) ≤ I(ρBC). (18)

In general we consider that mutual information quantifies the total correlations, it naturally

seems to be larger than EoF which only quantifies quantum correlation. However this is

not true! Hayden, Leung and Winter [40] found that EoF in a bipartite state can be larger

than its mutual information. In [33], Li and Luo consolidated their findings and showed that

Werner state [41] has this property. From a Werner state ρBC (12) which violates (18), a

purified tripartite state |φABC〉 can be constructed with S(ρA) > S(ρB). Then its reduced

bipartite state ρAB violates the upper bound in (15). On the other hand, the violation

of this upper bound can be understood from the viewpoint of coherent information. Since

EF (ρBC) + J→(ρAB) = S(ρB) [23], inequality (17) is equivalent to

S(ρA)− S(ρAB) ≤ J→(ρAB), (19)

where S(ρA)−S(ρAB) is one-way coherent information with classical communication from B

to A and J→(ρAB) is one-way distillable common randomness with classical communication

from A to B , see [23]. We know that coherent information is a lower bound for distillable
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entanglement which is a lower bound for secret key, while the secret key rate between A and

B is obviously smaller than their distillable common randomness. Therefore the violation of

(19) means that there are states from which the distillable secret key with classical communi-

cation from B to A can even be larger than the distillable common randomness with classical

communication from A to B .

Thus in general the conjectured upper bound of quantum discord in relation (15) does not

hold, however, a released upper bound of quantum discord can be obtained,

D→(ρAB) ≤ S(ρA). (20)

4 Conclusion

Quantum discord is an important quantum correlation measure. In this paper, we discuss a

monogamy relation for this measure which is different from the monogamy relation proposed

in [27, 28]. For a tripartite pure state, monogamy relation (2) is reduced to a relation (7)

between mutual information and entanglement of formation in a reduced bipartite state.

Since relation (7) does not generally hold, monogamy relation (2) can be both monogamous

and polygamous for arbitrary pure tripartite states. Through numerical calculations with

several explicit classes of states, we show that monogamy relation (2) is roughly related to

the entangled proportion shared in the reduced bipartite state. It holds when the entangled

proportion is small and turns into a polygamy relation when the entangled proportion is large.

In this article, we also provide a concise discussion on a conjecture of upper bounds for

classical and quantum correlations in a bipartite state [10]. We show that the upper bounds on

quantum correlation may be violated with a pure tripartite state constructed from a Werner

state. The physical meaning behind the violation is discussed with operational quantum

information concepts. At the same time, a released upper bound (20) still holds. Our results

should be useful for further understanding of quantum discord and distribution of classical

and quantum correlations in multipartite states.
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