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Non-additivity is one of the distinctive traits of Quantum Information Theory: the com-
bined use of quantum objects may be more advantageous than the sum of their individual
uses. Non-additivity effects have been proven, for example, for quantum channel capac-

ities, entanglement distillation or state estimation. In this work, we consider whether
non-additivity effects can be found in Classical Information Theory. We work in the
secret-key agreement scenario in which two honest parties, having access to correlated

classical data that are also correlated to an eavesdropper, aim at distilling a secret key.
Exploiting the analogies between the entanglement and the secret-key agreement sce-
nario, we provide some evidence that the secret-key rate may be a non-additive quantity.
In particular, we show that correlations with conjectured bound information become

secret-key distillable when combined. Our results constitute a new instance of the subtle
relation between the entanglement and secret-key agreement scenario.
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1 Introduction

Classical communication systems are governed by classical information theory, a vast discipline

whose birth coincides with a seminal paper of Claude Shannon [1]. Among his contributions,

Shannon introduced the concept of channel capacity, which quantifies the maximum commu-

nication rate that can be achieved over a classical channel. One key feature of the channel

capacity is its additivity: the total capacity of several channels used in parallel is simply given

by the sum of their individual capacities. This fact implies thus that the channel capacity

completely specifies channel’s ability to convey classical information.

Moving to the quantum domain, the quantum channel capacity captures the ability of a

quantum channel to transmit quantum information. Smith and Yard [2] proved recently that

the quantum capacity is not additive. In particular, they provide examples of two channels
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with zero quantum capacity that define a channel with strictly positive quantum capacity

when combined. This intriguing quantum effect is known as activation and can generally

be understood as follows: the combined use of quantum objects can be more advantageous

than the sum of their individual uses. In the last years, an intense effort has been devoted

to the study of non-additivity effects in Quantum Information Theory. Classical and private

communication capacity of quantum channels were later shown not to be additive in Refs [3,

4]. Nowadays, non-additivity is considered to be one of the distinctive traits of Quantum

Information Theory.

Before the results by Smith and Yard, however, non-additivity effects had also been ob-

served in Entanglement Theory in the context of entanglement distillation. There, one is

interested in the problem of whether pure-state entanglement –pure entanglement in what

follows– can be extracted from a given state shared by several observers using local operations

and classical communication (LOCC). In Ref. [5], the authors provide examples of multipar-

tite states that (i) are non-distillable (bound) when considered separately but (ii) define a

distillable state when taken together. Moving to the case of two parties, and leaving aside

activation-like results as those of [6], it remains unproven whether entangled states can be

activated. There is however some evidence of the existence of pairs of bound (non-distillable)

entangled states that give a distillable state when combined [7, 8].

In this work we are interested in the question of whether non-additivity effects can be ob-

served in Classical Information Theory. As mentioned, classical channel capacities are known

to be additive. Therefore, we move our considerations to distillation scenarios. In particular,

we focus on the classical secret-key agreement scenario in which two honest parties, having

access to correlated random variables, also correlated with an adversary, aim at establishing

a secret key by local operations and public communication (LOPC). While the activation of

classical resources has been shown in a multipartite key-agreement scenario in [9, 10], here we

consider the more natural case of two honest parties. In our study, we exploit the analogies

between the secret-key agreement and entanglement scenario noted in [11]. Based on the

results of [8], we provide evidence that activation effects may be possible in the completely

classical bipartite key-agrement scenario. Our findings, therefore, suggest that the classical

secret-key rate is non-additive.

This article is structured as follows: Section 2 contains a brief introduction to the entan-

glement and the secret-key agreement scenario. After pointing out the analogies between the

two scenarios, our main results are derived in section 3. Section 4 concludes with a discussion

of how our findings are related to other results and conjectures in the field.

2 Entanglement vs secret correlations

The aim of this section is to introduce the entanglement and secret-key agreement scenario.

As first noted in [12], there are several analogies between these two scenarios despite the fact

that they involve objects of different nature, namely entangled quantum states vs classical

joint probability distributions. These analogies play a key role in the derivation of our results

in the next section.
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2.1 Entanglement scenario

A maximally entangled state of two qubits represents the most representative example of

a bipartite entangled state and is an essential ingredient in many applications of quantum

information theory [13]. It is defined as:

|φ〉 = 1√
2

(∣

∣00
〉

+
∣

∣11
〉)

AB
(1)

The relevance of this state for communication purposes is due essentially to two main facts:

first, for each projective measurement by one of the observers, there exists another measure-

ment by the other observer giving perfectly correlated results. Second, being a pure state,

no third party can be correlated with it. State (1) represents the basic unit of entanglement

and is also known as ebit, for entangled bit. This is because an asymptotically large number

of copies of an arbitrary pure entangled state can be converted into another asymptotically

large number of ebits in a reversible way [14].

In any realistic situation, quantum states are affected by noise. In the case of a composite

system shared by two observers, Alice and Bob (also A and B), the ideal pure entangled

states is mapped into a mixed state ρAB . Any noise can be modeled as interaction with an

environment, E, as any state can be seen as the trace of a pure state on a sufficiently large

environment. In the bipartite case considered here one has ρAB = trE |ψABE〉〈ψABE |. Of

course, the interaction with the environment deteriorates the entanglement present in the

state.

Thus, given a generic quantum state ρAB , or equivalently the whole tripartite state |ψABE〉,
quantifying the entanglement between A and B is a fundamental question. Two quantifiers

play a crucial role because of their operational meaning: the entanglement cost and the

entanglement of distillation. Both quantities are defined in the asymptotic scenario consisting

of an asymptotically large number of identical copies of the state. The entanglement cost [15],

denoted by Ec, quantifies the number of ebits per copy needed for the formation of the given

quantum state by LOCC. The entanglement of distillation [16], denoted by ED, indicates the

amount of ebits per copy that can be obtained from it by LOCC. For a state ρAB , Ec(ρAB) > 0

implies that the state is entangled, while ED(ρAB) > 0 indicates that some pure entanglement

can be extracted from it. Clearly, it holds that Ec ≥ ED, as one cannot extract from a state

more entanglement than needed for its preparation. Interestingly, there are states that display

an intriguing form of irreversibility: despite having a positive entanglement cost (Ec > 0),

they are non-distillable (ED = 0). These states are called bound entangled [17]. Consequently,

the whole set of entangled states is composed of distillable, or free entangled states, and bound

entangled states.

Detecting whether a given state is non-distillable is in principle a very hard question, as

one has to prove that no LOCC protocol acting on an arbitrary number of copies of the

state is able to extract any pure entanglement. However, a very useful result derived in [17]

shows that a quantum state that remains Positive under Partial Transposition [18] (PPT)

is non-distillable. Whether Non-Positivity of the Partial Transposition, or Negative Partial

Transposition (NPT), is sufficient for entanglement distillability is probably the main open

question at the moment in Entanglement Theory. Evidence [19, 20] has been given for the

existence of NPT states that are bound entangled (see however [21]). Note that the existence
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of these states would imply that the set of non-distillable states is not convex and that

entanglement of distillation is non-additive [7]. A necessary and sufficient condition for the

distillability of a quantum state is provided by the following

Theorem 1 A state ρ acting on H = HA ⊗HB is distillable if and only if there exist a finite

integer number n ≥ 1 and two dimensional projectors P : H⊗n
A → C2 and Q : H⊗n

B → C2 such

that the state

ρ′ = (P ⊗Q)ρ⊗n(P ⊗Q)† (2)

is entangled.

Actually, since the resulting state acts on C2 ⊗ C2, this is equivalent to demand that ρ′ is

NPT, as this condition is necessary and sufficient for entanglement in the two-qubit case [22].

Furthermore, it is worth mentioning here that, if such a projector exists for some number k

of copies, the state is said to be k − distillable.

2.2 Secret-key agreement scenario

The main scope of this section is to introduce the secret-key agreement scenario. This scenario

consists of two honest parties, again Alice and Bob, who have access to correlated information,

described by two random variables X and Y . These variables are also correlated to a third

random variable Z that belongs to an adversarial party, the eavesdropper Eve, denoted by

E. All the correlations among the three parties are described by the probability distribution

P (XY Z). The honest parties aim at mapping the initial correlations into a secret key by

LOPC, which is the natural set of operations between the honest parties.

Similar questions as above can be addressed in this completely classical scenario. The

classical equivalent of a maximally entangled state is a secret bit. A and B share perfect secret

bits whenever P (XY Z) is such that the eavesdropper is factored out, P (XY )×P (Z), and their

variables can take two possible values, X,Y = 0, 1, that are perfectly correlated and random,

P (X = Y = 0) = P (X = Y = 1) = 1/2. Similarly as above, given some initial correlations,

the goal is to quantify its secrecy content. The classical analog of Ec is the information of

formation, denoted by If [23]. It is said that the probability distribution P (XY Z) contains

secret correlations (or secret bits) whenever If (P (XY Z)) > 0. For distillation, the natural

classical analog is the secret-key rate [24], denoted by S(X : Y ‖Z), which quantifies the

number of secret bits that can be distilled from given correlations by LOPC. Due to the

difficulty of computing the previous quantities, it is useful to establish bounds on them.

The intrinsic information [24], I(X;Y ↓ Z), provides a lower bound to the information of

formation [23] and an upper bound to the secret-key rate [24]:

S(X;Y ‖Z) ≤ I(X;Y ↓ Z) ≤ If (X;Y |Z) (3)

It is defined as the minimal mutual information between A and B conditioned on E over all

possible maps Z → Z̄ the eavesdropper can perform, that is,

I(X;Y ↓ Z) := min
P

Z|Z

[

I(X;Y |Z) : PXY Z =
∑

z

PXY Z · PZ|Z

]

(4)

In Ref [25] it was shown that it is sufficient to consider the output alphabet Z̄ of the same

size as the input alphabet Z.
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A main open question in this scenario is whether there exist non-distillable secret corre-

lations with strictly positive information of formation. These correlations are named bound

information, as they would constitute a classical cryptographic analog of bound entangle-

ment [12]. Compared to the entanglement scenario, identifying a single example of non-

distillable correlations is much harder, due to the lack of a simple mathematical criterion,

as Partial Transposition, to detect it. In a multipartite scenario, say of three honest parties

plus an eavesdropper, the possibility of splitting the honest parties into different bipartitions

hugely simplifies the problem and, indeed, there are examples of correlations that require se-

cret bits for the preparation and from which no secret bits can be extracted [9]. The problem

remains open for two honest parties, although evidence has been provided for the existence

of bound information [12].

When studying the distillation properties of some given correlations, one usually employs

Advantage Distillation (AD) protocols. These protocols were first introduced by Maurer [26]

to show how two honest parties may be able to extract a secret key even in cases in which

Bob has less information than Eve about Alice’s symbols. Crucial to achieve this task is

feedback, that is, two way communication between the honest parties. The general structure

of an AD protocol is as follows [27] (without loss of generality we assume that Alice’s and

Bob’s variables have the same size d): Alice first generates randomly a value ζ. She chooses

a vector of N symbols from her string of data, a = (a1, . . . , aN ), and publicly announces

their positions to Bob. Later she sends him the N -dimensional vector ā whose components

āk are such that ak ⊕ āk = ζ holds ∀k. Here, ⊕ is the sum modulo d. Bob sums ā to his

corresponding symbols. If he obtains always the same value χ, then he accepts (this means

that with very high probability χ = ζ) otherwise both discard the N symbols. Although its

yield is very low with increasing N , AD protocols allow the honest parties to distill a key even

in a priori disadvantageous situations in which Eve has more information than Bob on Alice’s

symbols. Such protocols are used in what follows to estimate the distillability properties of

correlations. Obviously, the fact that we are unable to map some correlations into a secret

key by AD protocols does not mean that these correlations are non-distillable. At best, it can

be interpreted as some evidence of bound information.

Finally, another concept used in the sequel is that of binaryzation, which can be understood

as the classical analog of the quantum projection onto 2-qubit subspaces used in Theorem 1.

As in the quantum case, Alice and Bob agree on two possible values, not necessarily the same,

and discard all instances in which their random variables take different values. Then, they

project their initial distribution onto a smaller (and usually simpler) two-bit distribution.

2.3 From Quantum States to Classsical Probabilities

It is clear from the previous discussion that the entanglement and secret-key agreement sce-

narios have a similar formulation. One can go further and establish connections between the

entanglement of bipartite quantum states and the tripartite probability distributions that can

be derived from them [12]. Not surprisingly, the transition from quantum states to classical

probabilities is through measurements (on the quantum states). Note also that, while in the

quantum case the state between Alice and Bob also specifies the correlations with the envi-

ronment, possibly under control of the eavesdropper, in the classical cryptographic scenario it

is essential to define the correlations with the eavesdropper for the problem to be meaningful.
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As mentioned, if Alice and Bob share a state ρAB , the natural way of including Eve is to

assume that she owns a purification of it. In this way the global state of the three parties

is a pure tripartite
∣

∣ψABE

〉

such that ρAB = trE
(∣

∣ψABE

〉〈

ψABE

∣

∣

)

. After this purification,

measurements by the three parties, MX , MY and MZ , respectively, map the state into a

tripartite probability distribution:

P (XY Z) = tr
(

MX ⊗MY ⊗MZ

∣

∣ψABE

〉〈

ψABE

∣

∣

)

(5)

It has been shown that (i) if the initial quantum state is separable, there exists a measurement

by the eavesdropper such that the probability distribution (5) has zero intrinsic information

for all measurements by Alice and Bob [12, 28] and also zero information of formation [29] and

(ii) if the initial state is entangled, there exist measurements by Alice and Bob such that the

probability distributions (5) has strictly positive intrinsic information for all measurements

by Eve [29].

Concerning the cryptographic classical analog of bound entanglement, bound information

was first conjectured in Ref. [11]. There, local measurements were applied to known examples

of bound entangled states. It was then shown that the resulting tripartite probability distri-

butions have positive intrinsic information but no known protocol allows the honest parties

to distill a secret key. Of course, this does not mean that the distribution is non-distillable.

Note however that the existence, and activation, of bound information was proven in a mul-

tipartite scenario consisting of three honest parties, plus the eavesdropper, in Ref. [9] (see

also [10]). The examples of multipartite bound information given in these works were derived

from existing multi-qubit bound entangled states.

3 Is the secret-key rate a non-additive quantity?

This section presents our main results. Exploiting the analogies between the entanglement

and secret-key agreement scenarios, we study whether it is possible to derive a cryptographic

classical analog of the activation of distillable entanglement between bipartite quantum states

given in Ref. [8]. This result is reviewed in the following section. We then map the involved

quantum states onto probability distributions and study their secrecy properties. After ap-

plying classical distillation protocols, we show how the honest parties are able to distill a

secret key from each of the distributions for the same range of parameters as in the quantum

regime (ED > 0). Finally, we introduce a distillation protocol analogue to the one used for

the quantum activation. We prove that this protocol activates probability distributions con-

taining conjectured bound information, although we cannot completely recover the quantum

region.

3.1 Quantum Activation

As mentioned, we start by presenting the example of activation of distillable entanglement

given in Ref. [8]. After introducing the states involved in this example, we review their

distillability properties and the quantum protocol that attains the activation.

3.1.1 Quantum States

States that are invariant under a group of symmetries play a relevant role in the study of

entanglement. The two classes of symmetric states considered here are Werner states [30]
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and the symmetric states of Ref. [31, 8], named in what follows symmetric states for the sake

of brevity.

Werner States. Acting on an Hilbert space H = HA⊗HB with dimensions dim(HA) =

dim(HB) = d, and commuting with all unitaries U ⊗ U , Werner states can be expressed as:

ρW (p) = p
Ad

tr(Ad)
+ (1− p)

Sd

tr(Sd)
(6)

where Ad = (1−Πd)/2, Sd = (1+Πd)/2 are the projector operators onto the antisymmetric

and symmetric subspaces, Πd is the flip operator and tr(Ad) = d(d−1)/2, tr(Sd) = d(d+1)/2.

It is known that states (6) are entangled and NPT iff p > ps = 1/2. Moreover they are distil-

lable, actually 1− distillable, if p > p1d = 3τ/(1 + 3τ), where τ = tr(Ad)/tr(Sd). The states

are conjectured to be bound entangled for ps < p ≤ p1d.

Symmetric States. Acting on an Hilbert space H = HA1 ⊗ HA2 ⊗ HB1 ⊗ HB2, the

symmetric states under consideration commute with all unitaries of the form W = (U ⊗
V )A⊗ (U ⊗V ∗)B (where V ∗ is the complex conjugate of V ). These states can be represented

in a compact form as [32]:

σ =

4
∑

i=1

λiPi/tr[Pi] (7)

where P1 = A
(1)
d ⊗P (2)

d , P2 = S
(1)
d ⊗P (2)

d , P3 = A
(1)
d ⊗ (1− Pd)

(2)
, P4 = S

(1)
d ⊗ (1− Pd)

(2)
. Pd

and 1−Pd represent the projector onto the maximally entangled state |ψ+
d 〉 = 1/

√
d
∑d

i=1 |ii〉,
and its orthogonal complement, respectively. In Ref. [8] the authors identify a region in the

space of parameters λi so that the state σ (i) is bound entangled but (ii) gives a distillable

state when combined with a Werner state in the conjectured region of bound entanglement.

Among all the states with these properties, we focus here on:

σ(q) = q
Ad

tr(Ad)
⊗ Pd + (1− q)

Sd

tr(Sd)
⊗ (1− Pd)

tr(1− Pd)
(8)

where q = 1/(d+2). This state is a universal activator, in the sense that it defines a distillable

state when combined with any entangled Werner state. It is also relevant for what follows to

study the distillability properties of states (8) for any value of q and d = 3. These states are

NPT and 1-distillable for q > 1/5. The latter follows from the fact that in this region, there

exist local projections on two-qubit subspaces mapping states (8) onto an entangled two-qubit

state. The qubit subspaces are spanned by |00〉, |01〉 on Alice’s side and |10〉, |11〉 on Bob’s.

Figure 1 summarizes the main entanglement properties of these states.

3.1.2 Protocol for Quantum Activation

As already announced, any entangled Werner state, and in particular any conjectured bound

entangled Werner state, gives a distillable state when combined with the universal activator

σ(q) with q = 1/(d + 2), simply denoted as σ. If initially the two parties are sharing a

Werner state ρ acting on H0 = HA0
⊗ HB0

and a symmetric state σ acting on H1,2 =

HA1
⊗HA2

⊗HB1
⊗HB2

, each party applies a projection onto a maximally entangled states

on HA0
⊗HA1

and HB0
⊗HB1

respectively. The resulting state is an isotropic state ρiso acting
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Fig. 1. Entanglement properties of Werner, ρW , and symmetric state, σ(q), for the qutrit case
(d = 3). In the region between separability and 1-distillability, ρW is NPPT and conjectured

bound. The point q = 0.2 represents the extremal value for which states σ(q) are PPT, thus not
distillable. For larger values of q the states are distillable (in particular, 1-distillable).

on HA2
⊗ HB2

. Recall that isotropic state are U ⊗ U∗ invariant and defined by the convex

combination of a maximally entangled state and white noise, 1/d2. One can see that the

resulting isotropic state has an overlap with a maximally entangled state, tr(ρisoPd), larger

than 1/d for any entangled Werner state. As shown in [33], this condition is sufficient for

distillability.

3.2 Classical Activation

This section contains the main results of our work. Our goal is to construct a classical

cryptographic analog of the quantum activation example discussed above.

We first associate probability distributions to all the previous quantum states. In order

to do so, we purify the initial bipartite noisy quantum states ρAB by including an environ-

ment, and then map the tripartite quantum states |ψABE〉 onto probability distributions by

performing some local measurements, see (5). The procedure to choose these measurements

is always the same: computational bases for the honest parties, and general measurements

for Eve. More precisely, denoting by X and Y the result obtained by Alice and Bob, this

effectively projects Eve’s system onto the pure state |eXY 〉 = 〈XY |ψABE〉 with probability

P (XY ) = 〈XY |ρAB |XY 〉. Given that, the measurement that Eve applies is the one that min-

imizes her error probability when distinguishing the states in the ensemble {|eXY 〉, P (XY )}.
Note that this choice of measurement may not necessarily be optimal from Eve’s point of view

in terms of the secret correlations between Alice and Bob, but it seems a natural choice. This

procedure is applied to the two family of states, namely Werner and symmetric. Because of

the symmetries of these states, the measurements minimizing Eve’s error probability can be

analytically determined using the results of Refs [34, 35].

In order to characterize the secrecy properties of the obtained probability distributions,

we compute the intrinsic information when numerically possible and use AD protocols for

distillability. We stress that the considered protocols distill a secret key in the same region

of parameters in which entanglement distillation was possible for the initial quantum states.

Finally, we introduce a quantum-like activation protocol that maps the two probability dis-

tributions into a new distribution in which Alice and Bob each have a bit. We then prove

that an AD protocol allows distilling a secret key for some value of the parameters in which
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the initial quantum states were non-distillable. However, we are unable to close all the gap

between entanglement and 1-distillability for the Werner state.

3.2.1 Probability Distributions

Werner states distribution. We start by mapping the Werner states of two qutrits onto

a probability distribution PXY Z following the recipe explained in the previous section. In

this way, we get a one-parameter family of probability distributions PXY Z , (see Table 1 for

details), which depends just on the same parameter p defining the initial Werner state (6).

The resulting distributions are given in Table 1. The indices for Eve’s symbols specify her

guess on Alice’s and Bob’s symbols or, in other words, if Eve outcome is Z = zij , the most

probable outcomes for Alice and Bob are X = i and Y = j.

0 1 2

0 λ1 (z00)
λ1+λ2

2

{

δZ (z10)

1− δZ (z01)

λ1+λ2

2

{

δZ (z20)

1− δZ (z02)

1 λ1+λ2

2

{

δZ (z01)

1− δZ (z10)
λ1 (z11)

λ1+λ2

2

{

δZ (z21)

1− δZ (z12)

2 λ1+λ2

2

{

δZ (z02)

1− δZ (z20)

λ1+λ2

2

{

δZ (z12)

1− δZ (z21)
λ1 (z22)

Table 1. Tripartite probability distributions derived from Werner states (6). The parameters
in the table are as follows: λ1 = (1 − p)/6, λ2 = p/3 and δZ = (

√
λ1 −

√
λ2)2/(2(λ1 + λ2)).

Rows (columns) represent Alice’s (Bob’s) symbols. Eve’s symbols are shown in parenthesis. For
example, the cell (X = 0, Y = 1) shows that whenever Alice and Bob get (0,1) (which happen
with probability (λ1 + λ2)/2), Eve correctly guesses the symbol z01 with probability 1− δZ , and
makes an error (symbol z10) with probability δZ .

As done for entanglement, we now characterize these distributions in terms of their secret

correlations. Recall that for the quantum case and qutrits, the state was entangled for p >

ps = 1/2 and conjectured non-distillable for p ≤ p1d = 3/5. As we show next, the same

values appear for the analogous classical distributions. Concerning the point ps, we compute

the intrinsic information of the distributions in Table 1 by numerical optimization over all

possible channels by Eve. Of course, one can never exclude the existence of local minima and,

therefore, that the intrinsic information is strictly smaller than what numerically obtained.

One may wonder why this computation is necessary. For instance, at the point p = ps the

quantum state is separable and, then, it is known that there exists a measurement by Eve

such that the intrinsic information between Alice and Bob is zero for all measurements. Note

however that in terms of intrinsic information, the optimal measurement by Eve is the one that

prepares on Alice and Bob the ensemble of product states compatible with the separable state

Alice and Bob share. This measurement is not necessarily the same as the one minimizing

Eve’s error probability when Alice and Bob measure in the computational bases. The same
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applies to the entanglement region. While there are measurements such that Alice and Bob

share secret correlations no matter which measurement Eve performs, these measurements

are not on the computational bases.

Using the numerical insight, we find a conjectured optimal channel that reproduces the

numerical results. The optimal channel gives zero intrinsic information exactly at the point

p = ps. It maps Eve’s symbols zii onto zij with i 6= j with equal probability (i, j = 0, 1, 2).

Its easy form leads to the following analytical expression for I(X;Y ↓ Z):

I(X;Y ↓ Z) = − log(1− x2)− x log

(

1 + x

1− x

√

τ − 2x

τ + 2x

)

+
τ

4
log (τ2 − 4x2) +

(

1− τ

2

)

log(2− τ)

where τ = 1 + p, x =
√

2p(1− p). Figure 2 shows the behavior of this quantity in the region

of interest.

Fig. 2. Behaviour of the intrinsic information for the PXY Z relative to the Werner state. Note that:
i) I(X;Y ↓ Z) is equal to 0 at point p = 0.5 which corresponds to the last point of separability

for the Werner state; ii) I(X;Y ↓ Z) is strictly positive at point p = 0.6 which corresponds to the
extreme value of p for which it is 1-copy distillable.

Moving to the distillability properties, we study AD protocols and identify a value of p

for which positive secret-key rate can be obtained by the two honest parties through these

protocols. The considered protocol is the quantum analogue of the quantum one and uses a

binaryzation. Alice and Bob first discard one (but the same) of their symbols. Then, one

of the parties, say Bob, applies a local permutation to his symbols. For example, if they

agreed on discarding symbol 2, then Bob applies 0 ↔ 1. Alice and Bob now apply AD to the

resulting two-bit distribution. This distribution is shown in Table 2.

From the obtained table, it is possible to estimate the dependence of Bob’s and Eve’s

errors on the size of the blocks used for AD, denoted by N . Recall that in the case of bits

the protocols works as follows: Alice generates a random bit ζ and chooses N symbols a from

her list of data. She then sends to Bob the information about these symbols and the vector

ā such that ai ⊕ āi = ζ, ∀i. Bob takes the symbols in his list corresponding to those chosen

by Alice, b, and accepts only when χ = bi ⊕ āi, ∀i. Bob’s error probability βN is now easy

to compute. Denote by β the error probability in the initial two-bit probability distribution,

β = P (X 6= Y ) = 2λ1/(3λ1 + λ2). Bob accepts a bit whenever either all his N symbols are

identical to those of Alice, which happens with probability (1 − β)N , or all his symbols are



G. Prettico and A. Aćın 255

different, whose probability is βN . Thus, the probability of accepting a wrong bit conditioned

on acceptance is given by:

βN =
βN

βN + (1− β)N
≤
(

β

1− β

)N

. (9)

The upper bound becomes tight in the limit N → ∞.

0 1

0 λ1+λ2

2

{

δZ (z11)

1− δZ (z00)
λ1 (z01)

1 λ1 (z10)
λ1+λ2

2

{

δZ (z00)

1− δZ (z11)

Table 2. Two-bit distribution resulting from projecting the initial distribution of Table 1 on
the space X,Y = 0, 1 and after Bob permutes his symbol. For the sake of clarity, we apply a
permutation also on the second index of Eve’s symbols, that is zij → zi1−j . All the terms in the
table should be normalized by a factor 3λ1 + λ2.

We now move to the estimation of Eve’s error ǫN . As her information is probabilistic, there

is always a non-zero probability that she makes a mistake. For the estimation we compute a

lower bound on the error given by all the cases in which the N symbols observed by Eve do not

provide her any information about the value of the bit generated by Alice. In the computation,

it is simpler to use Eve’s probabilities conditioned on the fact that Alice and Bob have made

no mistake after AD (which means that no mistake has occurred for any of the N symbols).

Or in other words, we only consider the terms in the diagonal of Table 2. This does not

make any difference for what follows as in the limit N → ∞ the probability of Bob accepting

a wrong symbol goes to zero. After Bob’s acceptance, Eve knows that the actual string a

used by Alice is either equal to ā (the one sent on the public channel) when ζ = 0, or ā′ (the

permuted one, that is, ā′i = 1− āi) when ζ = 1. Clearly, all the events in which the N symbols

observed by Eve, Z(i), are such that P (Z(1).. Z(N)|a = ā) = P (Z(1).. Z(N)|a = ā′) do not give

her any information about ζ. In these cases, Eve has to randomly guess Alice’s symbol and

makes an error with probability 1/2. Due to the symmetry in the diagonal of Table 2, that is,

P (Z = z00|X = 0) = P (Z = z11 = 1|X = 1) and P (Z = z11|X = 0) = P (Z = z00|X = 1), all

the events where Eve has exactly N/2 of her symbols equal to z00 and N/2 equal to z11 satisfy

the previous condition and, thus, contribute to her error. Counting all the possible ways of

distributing these cases leads to the following lower bound on Eve’s error probability [36]:

ǫN ≥ 1

2

(

N
N/2

)

δ
N/2
Z (1− δZ)

N/2 (10)

where δZ is the probability for Eve to guess wrongly conditioned on those cases in which

Alice and Bob’s symbols coincide (this value is made explicit in the caption of Figure 1). The

asymptotic behavior of eq. (10), after applying the Stirling’s approximation (n!)2 ≃ (2n)!/22n
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and expanding the binomial coefficient can be expressed as:

ǫN ≥ c(2
√

δZ(1− δZ))
N , (11)

with c being a positive constant.

By comparing Eqs. (9) and (11) one concludes that whenever

β

1− β
< 2
√

δZ(1− δZ) (12)

key distillation is possible. This follows from the fact that, if this condition holds, Bob’s

error is exponentially smaller than Eve’s with N . This in turn implies that it is possible to

choose a value of N such that Alice-Bob mutual information is larger than Alice-Eve and

one-way distillation techniques can distill a secret key (we prove this in Appendix A). From

Eq. (11) one gets that AD works whenever p > 3/5, as for 1-distillability in the quantum case.

Before concluding this part, we would like to mention that the same range of parameters for

distillation is obtained if one applies the generalized AD protocol of Ref. [27].

Symmetric states distribution. We apply the same machinery to the symmetric states

σ(q). Again, the symmetries of the states allow the explicit computation of the measurement

by Eve minimizing her error probability for any value of q. The obtained distributions, denoted

by QX1,Y 1,X2,Y 2,Z̃ , is significantly more complex and shown in Appendix B. It consists of two

trits for Alice, (X1, X2) and two trits for Bob, (X2, Y2), while Eve’s variable can take 63

possible values. It is now much harder to estimate the secrecy properties of the distribution.

For instance, we did not make any attempt to compute the intrinsic information. However,

we are able to show that Alice and Bob can distill a secret key whenever q > 1/5 as in the

quantum regime.

To simplify our task, we exploit again the concept of binaryzation. Inspired by the quantum

projections used for the distillation of σ(q), Alice and Bob select two outcomes on each side,

namely 00, 01 for Alice and 10, 11 for Bob. The obtained two-bit distribution is shown in

Table 3.

They apply the standard bit AD protocol to this distribution. As before, Bob’s error can

be easily computed, getting the same as in Eq. (9), but now with β equal to 3(1−q)/(5+11q).

The estimation of Eve’s error is much more cumbersome. As above, the main idea is to derive

a lower bound on it based on those instances in which Eve’s symbols do not provide her any

information about the symbol ζ Alice used for AD. Again, one can restrict the analysis to

the terms in the diagonal of Table 3. The main difference in comparison with the simple case

discussed above is the larger number of symbols for Eve. However, given the symmetry of the

distribution (3) it is enough to consider Eve’s symbols pair-wise:

P (Z̃ = z̃0100|X̃Ỹ = 00) = P (Z̃ = z̃0111|X̃Ỹ = 11) = δ̄1

P (Z̃ = z̃0100|X̃Ỹ = 11) = P (Z̃ = z̃0111|X̃Ỹ = 00) = η̄1

P (Z̃ = z̃1000|X̃Ỹ = 00) = P (Z̃ = z̃1011|X̃Ỹ = 11) = δ̄2

P (Z̃ = z̃1000|X̃Ỹ = 11) = P (Z̃ = z̃1011|X̃Ỹ = 00) = η̄2

where we have used X̃, Ỹ to denote the re-labeling of Alice and Bob’s symbols. Note that

the last two subindexes of Eve’s symbols are those that give her information about Alice’s
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0 [10] 1 [11]

0 [00] 1+7q
5+11q















































PG (z̃0100)

PL (z̃0111)

PL (z̃0122)

PB (z̃1000)

PH (z̃1011)

PH (z̃1022)

3(1−q)
2(5+11q)

{

1/2 (z̃0101)

1/2 (z̃1001)

1 [01] 3(1−q)
2(5+11q)

{

1/2 (z̃0110)

1/2 (z̃1010)

1+7q
5+11q















































PL (z̃0100)

PG (z̃0111)

PL (z̃0122)

PH (z̃1000)

PB (z̃1011)

PH (z̃1022)

Table 3. Two-bit distribution obtained as a result of the binaryzation applied to Q
X1,Y 1,X2,Y 2,Z̃

.

Note that we have relabeled the old symbols (shown in square brakets) by 0 and 1, in the following
we use X̃, Ỹ to refer to them. The parameters in the table are as follows: α =

√

8q/(1 + 7q)
and γ =

√

(1− q)/(2(1 + 7q)), PG = (α + 2γ)2/6, PB = (−α + 2γ)2/6, PL = (α − γ)2/6,
PH = (α+ γ)2/6.
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(and Bob’s) symbol. Symbols z̃∗∗22 give her no information about Alice’s symbols, so we sum

them, their total probability being δ3. Given the public string āN , one can see that all those

cases for which Eve has the same number n1 of z̃0100 and z̃0111 and the same number n2 of

z̃1000 and z̃1011, with N = 2n1+2n2+2n3 and where 2n3 is the total number of symbols z̃∗∗22,

contribute to her error. Thus, counting all these cases leads to the following lower bound on

Eve’s error:

ǫN ≥ 1

2

∑

n1,n2,n3

N !

(2n1)!(2n2)!(2n3)!

(

2
√

δ1η1

)2n1
(

2
√

δ2η2

)2n2

(δ3)
2n3 (13)

where δi and ηi are the probabilities shown above but normalized (since as already stated we

are considering the asymptotic case). After Stirling’s approximation and summing eq. (13)

the following compact form is obtained:

ǫN ≥ c
(

2
√

δ1η1 + 2
√

δ2η2 + δ3

)N

(14)

with c being a positive constant. Comparing the scaling of the errors, one has that AD works

whenever
β

1− β
< 2
√

δ1η1 + 2
√

δ2η2 + δ3 (15)

where the right hand side is equal to (α + γ)2/3 (the values of α and γ are reported in the

caption of Table 3). The argument is the same as used before with Eq. (12), which can be

found in Appendix A. Eq. (15) is hence satisfied whenever q > q̃ = 0.2, as announced.

3.2.2 Protocol for Classsical Activation

Inspired by the quantum activation example of Ref. [8], we consider the following classical

protocol. Alice and Bob have access to the trits X and Y , whose correlations are described by

PXY Z , and the two trits (X1, X2) and (Y1, Y2) correlated according to QX1,Y 1,X2,Y 2,Z̃ . Alice

(Bob) keeps X2 (Y2), and only X2 (Y2), whenever X = X1 (Y = Y1); otherwise they discard

all the symbols. This filtering projects the initial probability into a slightly simpler two-trit

distribution. The new probability distribution Q∗(X2, Y2, E) reads:

Q∗(X2, Y2, E) =

2
∑

x,y=0

P (X = x, Y = y, Z)Q(X1 = x, Y1 = y,X2, Y2, Z̃) (16)

where E = [Z, Z̃] is the collection of Eve’s ymbols. Finally Alice and Bob binaryze their

symbols by discarding one of the three values (the same for both), say 2. The resulting

distribution is shown in Table 4.

As above, we use AD protocols to estimate the value of p for which Alice and Bob can

extract a positive secret key rate if they are sharing pairs of bits distributed according to

Table 4. We are able to prove that whenever p > pc ≃ 0.513 an AD protocol allows distilling

a secret key from the distribution in Table 4 and, thus, a form of activation is possible.

Unfortunately, we are unable to reach the point p = 0.5, as in the quantum scenario. However,

our analysis suggests that the secret key rate is non-additive for some values of p. In the

following we summarize the key steps leading to this result.
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0 1

0

λ1(1−q)
72cN







2/3 (zii, z̃ii00)

1/6 (zii, z̃ii11)

1/6 (zii, z̃ii22)

λ1(1−q)
48cN







1 (z00, z̃0001)

1 (z11, z̃1101)

1 (z22, z̃2201)

(λ1+λ2)sN
2























































































δZPG + (1− δZ)PB (zts, z̃st00)

δZPL + (1− δZ)PH (zts, z̃st11)

δZPL + (1− δZ)PH (zts, z̃st22)

δZPB + (1− δZ)PG (zts, z̃ts00)

δZPH + (1− δZ)PL (zts, z̃ts11)

δZPH + (1− δZ)PL (zts, z̃ts22)

δZPB + (1− δZ)PG (zst, z̃st00)

δZPH + (1− δZ)PL (zst, z̃st11)

δZPH + (1− δZ)PL (zst, z̃st22)

δZPG + (1− δZ)PB (zst, z̃ts00)

δZPL + (1− δZ)PH (zst, z̃ts11)

δZPL + (1− δZ)PH (zst, z̃ts22)

(λ1+λ2)(1−q)
192cN























































































1/2 (z01, z̃0101)

1/2 (z01, z̃1001)

1/2 (z10, z̃0101)

1/2 (z10, z̃1001)

1/2 (z02, z̃0201)

1/2 (z02, z̃2001)

1/2 (z20, z̃0201)

1/2 (z20, z̃2001)

1/2 (z12, z̃1201)

1/2 (z12, z̃2101)

1/2 (z21, z̃1201)

1/2 (z21, z̃2101)

1

λ1(1−q)
48cN







1 (z00, z̃0010)

1 (z11, z̃1110)

1 (z22, z̃2210)

λ1(1−q)
72cN







1/6 (zii, z̃ii00)

2/3 (zii, z̃ii11)

1/6 (zii, z̃ii22)

(λ1+λ2)(1−q)
192cN























































































1/2 (z01, z̃0110)

1/2 (z01, z̃1010)

1/2 (z10, z̃0110)

1/2 (z10, z̃1010)

1/2 (z02, z̃0210)

1/2 (z02, z̃2010)

1/2 (z20, z̃0210)

1/2 (z20, z̃2010)

1/2 (z12, z̃1210)

1/2 (z12, z̃2110)

1/2 (z21, z̃1210)

1/2 (z21, z̃2110)

(λ1+λ2)sN
2























































































δZPL + (1− δZ)PH (zts, z̃st00)

δZPG + (1− δZ)PB (zts, z̃st11)

δZPL + (1− δZ)PH (zts, z̃st22)

δZPH + (1− δZ)PL (zts, z̃ts00)

δZPB + (1− δZ)PG (zts, z̃ts11)

δZPH + (1− δZ)PL (zts, z̃ts22)

δZPH + (1− δZ)PL (zst, z̃st00)

δZPB + (1− δZ)PG (zst, z̃st11)

δZPH + (1− δZ)PL (zst, z̃st22)

δZPL + (1− δZ)PH (zst, z̃ts00)

δZPG + (1− δZ)PB (zst, z̃ts11)

δZPL + (1− δZ)PH (zst, z̃ts22)

Table 4. Resulting tripartite distribution after the application of the classical protocol by the two
honest parties. The initial probability distributions PXY Z and Q

X1,Y 1,X2,Y 2,Z̃
are mapped to the

new probability distribution Q∗(X2, Y2, E) shown above. From this classical object we can derive

the minimum value of p for which positive secret key can be extracted by A and B. The parameters
that appear above are expressed as a function of p and q, the two key parameters in the initial
probability distributions. cN = (λ1 + λ2)(5 + 11q)/48 + 5λ1(1 − q)/24, sN = (1 + 7q)/(144cN ),

i, s, t = 0, 1, 2 with s 6= t and s < t. In our procedure the optimal q for the symmetric state
distribution is taken equal to 1/5.
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Fig. 3. The CAD protocol certifies that if the Werner state distribution (Table 1) is taken with
p > 0.513 positive secrecy can be extracted by the honest parties. Unfortunately, we cannot

completely close the gap up to p = 0.5. This would have shown a direct correspondence between
the quantum and the classical scenario

As mentioned, the values of interest for PXY Z and QX1,Y 1,X2,Y 2,Z̃ are, 0.5 < p ≤ 0.6 and

q = 0.2, respectively. The distribution Q∗(X2, Y2, E) resulting from the local filtering by the

honest parties depends on the parameter p. In order to estimate Eve’s error we follow a similar

argument as for QX1,Y 1,X2,Y 2,Z̃ , now adapted to this slightly more complex case. Despite the

big amount of symbols on Eve’s side (see Table 4), the symmetry in the distribution leads

to six main classes that are relevant for the AD analysis (Appendix C further clarifies this

point). These arguments lead to the following bound on Eve’s error:

ǫN ≥ 1

2

∑

n1,n2...n6

N !

(2n1)! . . . (2n6)!

(

6
√

δ1 η1

)2n1

. . .
(

6
√

δ5 η5

)2n5

δ2n6

6 (17)

where
∑6

i=1 2ni = N . Note that as before the terms δiηi with i = 1 . . . 5 take into account

those cases in which Eve has ni symbols that coincide with the public string sent by Alice

and ni symbols that are opposite to those appearing in the public string. The last term,

δ6, as before, refers to the sum of probabilities for which Eve has no information at all (see

details in Appendix C). In the asymptotic case we are treating here, Eq. (17) converges to a

multinomial distribution, namely:

ǫN ≥ c
(

6
(

√

δ1 η1 + . . .
√

δ5 η5

)

+ δ6

)N

(18)

with c being a positive constant. Bob’s error is much easier to compute, getting β = (3λ1 +

λ2)(1 − q)/(16cN ). Putting these two terms together, we have that the AD protocols works

whenever:
β

1− β
< 6

(

√

δ1 η1 + . . .
√

δ5 η5

)

+ δ6 (19)

As above, the different scaling guarantees that Alice and Bob are able to distill a key after

choosing blocks of large enough size, see again Appendix A. Figure 3 shows the ratio between
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the left hand side and the right hand side, Rβǫ, as a function of the parameter p. As above,

whenever Rβǫ < 1, the AD protocol succeeds. The point at which Rβǫ = 1 corresponds to

p = 0.513, as already announced.

4 Conclusions

Non-additivity is an ubiquitous phenomenon in Quantum Information Theory due to the

presence of entanglement. In this work, we provide some evidence for the existence of similar

effects for secret classical correlations. Exploiting the analogies between the entanglement

and secret-key agreement scenario, we have shown that two classical distributions from which

no secrecy can be extracted by AD protocols can lead to a positive secret key rate when

combined.

The evidence we provide is somehow similar to the conjectured example of activation for

bipartite entangled states. Note however that, in the quantum case, one of the two states

is provably bound. As mentioned several times, it could well happen that one, or even the

two probability distributions considered here are key-distillable. Indeed, there exist examples

of bound entangled states from which one can obtain probability distributions with positive

secret-key rate [37]. Note however that all the known examples of bound entangled states

with non-zero privacy are based on the existence of ancillary systems on the honest parties,

known as shields, that prevent Eve from having the purification of the systems Alice and Bob

measure to construct the key. If any of the probability distributions constructed here were

key distillable, they would constitute a novel example of secret correlations from a bound

entangled state that does not fit in the construction of [37].
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Appendix A

The main goal of this appendix is to show that conditions (12), (15) and (19) suffice to

guarantee that Alice and Bob are able to distill a secret key by choosing large enough blocks

for advantage distillation. In all the analyzed cases, the honest parties are left after AD with

one bit each. Bob’s error probability scales with N as:

ǫB ≤ λBµ
N
B (A.1)

where λB is a positive constant and µB < 1 (recall that N is the length of the block used in

the AD protocol). On Eve’s side, her error can also be expressed as:

ǫE ≥ λEµ
N
E , (A.2)

where, as above, λE > 0 and µE < 1. For what follows, it is important to keep in mind that

the previous lower bound on Eve’s error probability has been estimated using those cases in

which she has no information on Alice’s symbol. We now show that if µB < µE holds, then

there exists a value of N such that the mutual information between Alice and Bob on the

distribution resulting after AD is larger than Alice-Eve’s, i.e.

I(A : B)− I(A : E) (A.3)

becomes positive. This condition is sufficient for the honest parties to distill a secret key by

one-way communication protocols.

Alice-Bob mutual information can easily be calculated and gives:

I(A : B) = 1− h(ǫB) (A.4)

where h(ǫB) is the binary entropy, h(ǫB) = −ǫB log ǫB − (1− ǫB) log(1− ǫB), and we used the

fact that Alice’s bit has in all cases entropy equal to one. The second element is given by:

I(A : E) = H(A)−H(A|E) = 1−
∑

e

P (E = e)H(A|E = e). (A.5)

Additionally, the term H(A|E) can be decomposed as follows:

H(A|E) =
∑

eb

P (E = eb)H(A|E = eb) +
∑

er

P (E = er)H(A|E = er) (A.6)

where eb refers to all those sequences for which Eve has no information, and that were used

to bound her error, and er refers to the remaining ones. It thus follows that

H(A|E) ≥
∑

eb

P (E = eb) (A.7)
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since H(A|E = eb) = 1 and H(A|E = e) ≥ 0. Now, recall that the bound (A.2) on Eve’s

error probability was always obtained by identifying instances (possibly not all) in which Eve

had no information about Alice’s symbol and, thus, such that her error probability was 1/2.

It then follows that
∑

eb

P (E = eb) ≥ 2λEµ
N
E . (A.8)

Using all these bounds, Eq. (A.3) reads:

I(A : B)− I(A : E) ≥ −ǫB | log ǫB |+ (1− ǫB) log(1− ǫB) + 2λEµ
N
E . (A.9)

Since for large N Bob’s error ǫB tends to zero, one has that (1− ǫB) log(1− ǫB) also tends to

zero. Given that, and using Eq. (A.1), Eq. (A.9) becomes:

I(A : B)− I(A : E) ≥ 2λEµ
N
E

(

1− λBµ
N
B (N | log µB |+ | log λB |)

2λEµN
E

)

(A.10)

Since µB < µE , there exists a value of N such that the r.h.s of the previous expression becomes

positive. This ends the proof.

Appendix B

This appendix shows the probability distribution obtained by Alice, Bob and Eve after

measuring the symmetric state (8). Being the table very big we try to give here a schematic

representation of it which can be equivalently useful to the reader to follow our arguments.

It reads:

00 01 02 10 11 12 20 21 22

00 (1u) + + (2u) ∗ ∗ (2w) ∗ ∗
01 + (1u) + ∗ (2u) ∗ ∗ (2w) ∗
02 + + (1u) ∗ ∗ (2u) ∗ ∗ (2w)

10 (2u) ∗ ∗ (1v) + + (2v) ∗ ∗
11 ∗ (2u) ∗ + (1v) + ∗ (2v) ∗
12 ∗ ∗ (2u) + + (1v) ∗ ∗ (2v)

20 (2w) ∗ ∗ (2v) ∗ ∗ (1w) + +

21 ∗ (2w) ∗ ∗ (2v) ∗ + (1w) +

22 ∗ ∗ (2w) ∗ ∗ (2v) + + (1w)

Table B.1. Schematic view of the distribution Q
X1,Y 1,X2,Y 2,Z̃

. Due to the lack of space, cells have
been grouped in terms of probability distributions and number of elements (symbols) as explained

below.

The joint probabilities P (X1 = i, Y1 = k,X2 = j, Y2 = l) between the honest parties are

distributed as follows:

- cells of type (1i), with i = u, v, w are equal to 1−q
72
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- cells of type (2i), with i = u, v, w, are equal to 1+7q
144 ;

- cells of type ∗ , are equal to 1−q
48 ;

- cells of type + , are equal to 1−q
96 ;

Concerning Eve’s side (see caption of Table 1 for more details about how to read the tables):

- cells of type (1i), with i = u, v, w contain three elements. The terms that play a role in

her discrimination are indicated by the same number and subindex letter. For example,

consider the cell X1 = 0, Y1 = 0, X2 = 0, Y2 = 0. The label 1u is used for this cell (the

same one indicates X1 = 0, Y1 = 0, X2 = 1, Y2 = 1 and X1 = 0, Y1 = 0, X2 = 2, Y2 = 2).

The three elements here are the three probability distributions:

P (0, 0, 0, 0, z̄00,00), P (0, 0, 0, 0, z̄00,11), P (0, 0, 0, 0, z̄00,22).

P (0, 0, 0, 0, z̄00,00) refers to the probability that Eve guesses correctly, the remaining two

P (0, 0, 0, 0, z̄00,11), P (0, 0, 0, 0, z̄00,22) refers to the probability she guesses wrongly.

- cells of type (2i), with i = u, v, w, contain six elements;

- cells of type ∗ , contain two elements distributed with probability one half (in this cases,

she knows nothing about A and B symbols) ;

- cells of type + , contains only one term since in this case Eve’s symbol is perfectly

correlated with those of A and B;

Appendix C

In this appendix, we clarify why it is enough to consider six classes of distributions in the

AD analysis of section 3.2.2. From Table 4 the following relations hold:

P (E = [zii, z̃ii00]|X2Y2 = 00) = P (E = [zii, z̃ii11]|X2Y2 = 11) = δ̄1 (C.1)

P (E = [zii, z̃ii11]|X2Y2 = 00) = P (E = [zii, z̃ii00]|X2Y2 = 11) = η̄1 (C.2)

P (E = [zts, z̃st00]|X2Y2 = 00) = P (E = [zts, z̃st11]|X2Y2 = 11) = δ̄2 (C.3)

P (E = [zts, z̃st11]|X2Y2 = 00) = P (E = [zts, z̃st00]|X2Y2 = 11) = η̄2 (C.4)

P (E = [zts, z̃ts00]|X2Y2 = 00) = P (E = [zts, z̃ts11]|X2Y2 = 11) = δ̄3 (C.5)

P (E = [zts, z̃ts11]|X2Y2 = 00) = P (E = [zts, z̃ts00]|X2Y2 = 11) = η̄3 (C.6)

P (E = [zst, z̃st00]|X2Y2 = 00) = P (E = [zst, z̃st11]|X2Y2 = 11) = δ̄4 (C.7)

P (E = [zst, z̃st11]|X2Y2 = 00) = P (E = [zst, z̃st00]|X2Y2 = 11) = η̄4 (C.8)

P (E = [zst, z̃ts00]|X2Y2 = 00) = P (E = [zst, z̃ts11]|X2Y2 = 11) = δ̄5 (C.9)

P (E = [zst, z̃ts11]|X2Y2 = 00) = P (E = [zst, z̃ts00]|X2Y2 = 11) = η̄5 (C.10)

and δ̄6 is the sum of all the P (E = [z∗∗, z̃∗∗22]|X2 = Y2). As already stated in the caption of

Table 4, i, s, t = 0, 1, 2 with s 6= t and s < t. In the computation, it is simpler to use Eve’s

probabilities conditioned on the fact that Alice and Bob have made no mistake after AD,

so this means that we only need to consider the terms in the diagonal of Table 4. For this

reason the δi, ηi appearing in eq. (17) are the previous ones but normalized. The complete

expression is then derived according to the argument already presented at page 258.


