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Measurement of entanglement remains an important problem for quantum information.

We present the design and simulation of an experimental method for an entanglement
indicator for a general multiqubit state. The system can be in a pure or a mixed state,
and it need not be “close” to any particular state. The system contains information
about its own entanglement; we use dynamic learning methods to map this informa-

tion onto a single experimental measurement which is our entanglement indicator. Our
method does not require prior state reconstruction or lengthy optimization. An entan-
glement witness emerges from the learning process, beginning with two-qubit systems,

and extrapolating this to three, four, and five qubit systems where the entanglement
is not well understood. Our independently learned measures for three-qubit systems
compare favorably with known entanglement measures. As the size of the system grows
the amount of additional training necessary diminishes, raising hopes for applicability

to large computational systems.
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1 Introduction

Because entanglement is crucial to most quantum information applications, convenient and

accurate methods for its measurement and calculation are essential. Alas, though considerable

work by a large number of very intelligent people has made considerable progress (see, e.g.,

[1-12] ), we have as yet no general method, of universal applicability, much less one which is

easy to implement experimentally.

For 2-qubit systems the problem is fairly well understood, from more than one point of

view. For example, the “entanglement of formation”[1, 2] approach is based on the idea of

construction: how much entanglement is necessary in order to reconstruct this particular

state? This gives us a general measure as an analytic formula, so that, if one knows the

density matrix, one can easily calculate the entanglement. However, generalizations to larger

systems are difficult[3]. Various geometric methods[4, 5] use an extremely appealing idea

of “closeness” to the subspace of separable states: one constructs some distance measure
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in the state space, then, performs a minimization calculation to find the distance of closest

approach. Product states, of course, have zero distance to that space, and have therefore zero

entanglement. Many entanglement witnesses[6] are based on this same idea. The drawback is,

of course, the optimization calculation, which rapidly becomes impractically difficult for large

systems. In addition, these approaches assume that one knows the density matrix. One might

not. And reconstruction of the density matrix, like optimization, is not easy to generalize to

large systems. Most witnesses also require that the state of the system be “close”, in some

sense, to a given, known state[7].

Clearly it would be of great interest to have a general, experimental method for an entan-

glement indicator, for which one would not have to know or to reconstruct the density matrix,

which would not require lengthy optimization procedures, and which could be applied to any

state. We present here such a method. We demonstrate that our method works for large

classes of states of 2-qubit, 3-qubit, 4-qubit, and 5-qubit systems, and show that extension to

larger systems is clearly achievable.

Our goals in this paper are: first, to show that our quantum neural network can learn

an entanglement indicator that compares well with existing entanglement witnesses for small

systems; and, second, to use neural network learning to construct a self-consistent entan-

glement indicator for larger systems for which entanglement is not yet well defined. That

is, the information contained within the quantum system includes “the entanglement”; if we

can successfully map that information onto an observable, we can extrapolate into regions

of phase space which are not yet understood, and, thus, learn about entanglement in large

systems. In the neural network literature this is called “bootstrapping”[8]: knowledge of part

of a pattern allowing tentative inference of the rest.

2 Dynamic learning: quantum neural network (QNN)

We begin with the Schrödinger equation:

dρ

dt
=

1

ih̄
[H, ρ] (1)

where ρ is the density matrix and H is the Hamiltonian, whose formal solution[14] is

ρ(t) = exp(iLt)ρ(0), (2)

where L is the Liouville operator. We consider an N-qubit system whose Hamiltonian is:

H =

N
∑

α=1

Kασxα + εασzα +

N
∑

α6=β=1

ζαβσzασzβ (3)

where {σ} are the Pauli operators corresponding to each of the qubits, {K} are the tunneling

amplitudes, {ε} are the biases, and {ζ}, the qubit-qubit couplings. We choose the usual

“charge basis ”, in which each qubit’s state is given as 0 or 1; for a system of N qubits there

are 2N states, each labelled by a bit string each of whose numbers corresponds to the state of

each qubit, in order. The amplitude for each qubit to tunnel to its opposing state (i.e., switch

between the 0 and 1 states) is its K value; each qubit has an external bias represented by its

ε value; and each qubit is coupled to each of the other qubits, with a strength represented by
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the appropriate ζ value. Note that, for example, the operator σxA = σx ⊗ I ... ⊗ I, where

there are (N-1) outer products, acts nontrivially only on qubit A.

The parameters {K, ε, ζ} direct the time evolution of the system in the sense that, if one

or more of them is changed, the way a given state will evolve in time will also change, because

of Eqs. 1-3. This is the basis for using our quantum system as a neural network. There is a

mathematical isomorphism between Eq. 2 and the equation for information propagation in a

neural network: φoutput = FWφinput, where φoutput is the output vector of the network, φinput
the input vector, and FW the network operator, which depends on the neuron connectivity

weight matrix W . Here the role of the input vector is played by the initial density matrix

ρ(0), the role of the output by the density matrix at the final time, ρ(tf ), and the role of

the “weights” of the network by the parameters of the Hamiltonian, {K, ε, ζ}, all of which

can be adjusted experimentally[15]. By adjusting the parameters using a neural network type

learning algorithm we can train the system to evolve in time from an input state to a set of

particular final states at the final time tf . Because the time evolution is quantum mechanical

(and, we assume, coherent), a quantum mechanical function, like an entanglement witness of

the initial state, can be mapped to an observable of the system’s final state, a measurement

made at the final time tf . Complete details, including a derivation of the quantum dynamic

learning paradigm using quantum backpropagation[16] in time[17], are given in [18].

The time evolution of the quantum system is calculated by integrating the Schrödinger

equation numerically in MATLAB Simulink, using ODE4 (Runge-Kutta), with a fixed inte-

gration step size of 0.05 ns[19]. (Numerical diagonalization of the Hamiltonian gives the same

results.) The system was initialized (prepared in) each input state, in turn, then allowed to

evolve for 300 ns. A measurement is then made at the final time. All of the parameters

{K, ε, ζ} were taken to be (piecewise constant) functions of time; this was done in the sim-

ulation by allowing them to change to a different constant value every ∆t =75 ns (i.e., four

“time chunks”.) Discretization error for the numerical integration was checked by redoing the

calculations with a timestep of a tenth the size; results were not affected. For the backpropa-

gation learning, the output error needs to be back-propagated through time[17], from tf to 0.

To implement this in MATLAB Simulink, a change of variable is made by letting t′ = tf − t,

and running this simulation forward in t′ in Simulink.

The picture is as follows: the system starts out in some state, whose entanglement we

wish to know. We allow it to evolve in time, under a Hamiltonian which is piecewise constant

in time, and has parameters which can be adjusted experimentally. At the final time we

perform a measurement. This measurement is the “output” of the neural net, corresponding

to the “input” of the initial state. We use neural network dynamic learning techniques to find

that set of adjustable parameters for the Hamiltonian such that, for a (small) training set

of initial states, the output numbers correspond well to the (known) entanglement of those

initial states. We then use that (trained) set of parameters, first, to find if results on states

not in the training set are also correct, and then, to extrapolate to larger classes of states.

For reasons explored more completely in [18], we choose as our “output” for pairwise (two-

qubit) entanglement, the square of the qubit-qubit correlation function 〈σzA(tf )σzB(tf )〉
2;

the natural generalization, as the “output” for three-way entanglement, is (square of the)

the three-point correlation function 〈σzA(tf )σzB(tf )σzC(tf )〉
2; for four-way entanglement the

four point correlation function, and so on.
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There are, of course, other approaches we could use[20]. Our indicator for the pairwise en-

tanglement of qubits A and B can also be written (for a pure state |ψ〉), 〈ψ|U †σzAσzBU |ψ〉2,

where the unitary matrix U is given by the product of the four (timechunk) propagators

e−iH∆t/h̄. Instead of optimizing the parameters of the Hamiltonian, we could optimize the

elements of U . However, our current approach makes the experimental implementation imme-

diate; it is also an easier calculation, as follows. For n qubits, there are 22n − 1 such elements

(taking, wolog, the determinant of U to be unity); our method requires determination of only

4[2n + n(n − 1)/2] parameters; this is significantly smaller. In addition, our approach gives

us a natural starting place for generalization from n to n+ 1 qubits, as we will see.

It is important to state here that we do not present a formula or algorithm for entanglement

calculation. Instead, an entanglement indicator or witness emerges as a result of the learning

process, that starts with data from known entanglement measures for the two-qubit system,

and continues to three-, four-, and five-qubit systems. Indeed, since the entanglement is not,

in fact, the expectation value of any operator, it is not possible to find a set of parameters

that perfectly maps the entanglement onto the measure we have chosen, or any measure. For

example, because of the phase oscillation problem[18, 21] we here consider only states with

real coefficients, for which the entanglement is much better behaved; even so, our results

are not perfect. Nonetheless an experimental indicator for which only a single measurement

need be taken, for which one need not know or reconstruct the density matrix, and which

does not require “closeness” to any one particular state, is, we think, of value. And while

our method has limitations it also seems to be fairly easily generalizable to large systems for

which analytical results are not available. This allows us, in a sense, to extract information

about the entanglement from the system itself.

3 Why this is not quantum control

More generally, a nonlinear system can be written as

ẋ = f(x, u, p) (4)

y = g(x, u) (5)

where x is the state, f is a nonlinear function, g is an output measure, u is the system external

control input, and y is the system output. x, u, and y are all functions of time, and p is a set

of parameters. Notice from Eq. 1 that our quantum system is of the form ẋ = Ax, where the

(complex) operator A contains the parameters p = {K, ε, ζ}. In general p can be a set of a

priori fixed system parameters (e.g. the mass, spring constant, and damping coefficient, in a

mass spring damper system.) u is a control input that is not fixed ahead of time, and can be

calculated on the fly and varied as the system is running, i.e., for every different run of the

system, u can be recalculated based, usually, on the current state of the system x(t) as it is

going from x(0) to x(tf ). So u can be different for different initial conditions (x(0) values).

While the set of parameters p can be functions of time as the system runs, they are fixed at

the same values every time the system is run going from any x(0) to x(tf ), once determined.

A control problem, then, would be to calculate u on the fly in order to make the system

states x or output y behave in a certain way. An optimal control problem would be to choose

u to minimize some cost function J(x, u) or J(y, u). Given initial conditions x(0) and u, the



40 Multiqubit entanglement of a general input state

system can be integrated from t = 0 to t = tf so that

x(tf ) = F (x(0), u, p) (6)

y(tf ) = g(x(tf ), u(tf )) (7)

where F =
∫ tf
0
f(x, u, p). Our quantum system, on the other hand, has no external input, so

it is written

x(tf ) = Q(x(0), p) (8)

y(tf ) = m(x(tf )) (9)

where now Q defines the quantum system and m is some output measurement made on the

system at the final time. The quantum computation problem is to find values for the specific

fixed parameters p such that the quantum system approximates a given function ŝ = h(r̂) at

a finite number of points, M , in the domain, that is, y(tf ) = ŝi when x(0) = r̂i i = 1,M .

This is not a control problem, but a problem of finding a finite dimensional (with dimension

equal to the number of parameters in p) subspace approximation of the function h. Interpreted

as a quantum neural network, the weights p are found through a learning algorithm, where

[r̂i, ŝi], i = 1,M are the training pairs in a training set, and the cost function to be minimized

is Ĵ = [ŝi − yi(tf )]
2 for each and every i = 1,M , where from Eqs. 8-9, yi(tf )=m(Q(xi(0),p))

is the output for the system started in initial condition xi(0)=ri.

Our method could also be called quantum system design through learning[18], as machine

learning is used to design an experimental quantum system to schieve a desired operational

result.

4 Entanglement

For pure states, almost all the information contained within a system of 3 qubits is contained

within the 2-particle reduced density matrices[9]. Thus it makes sense to train our entangle-

ment indicator, to begin with, to the set of pairwise entanglements. Fortunately in previous

work[18] we have already found a set of parameters that successfully maps the input state of

a two-qubit system to a good approximation of the entanglement of formation, via the qubit-

qubit correlation function at the final time, 〈σzA(tf )σzB(tf )〉
2. The parameters were found

by training with a set of just four initial quantum states (“inputs”), as shown in Table 1: a

fully entangled state (“Bell”), a “Flat” state (equal amounts of all basis states), a product

state“Corr” whose initial (t = 0) correlation function 〈σzAσzB〉
2 is nonzero, and a partially

entangled state “P”. (Note here, again, that all coefficients are real.)

For a three-qubit system ABC there are three possible pairs: AB, AC, and BC; and

therefore three different pairwise entanglements to train. We therefore used[22] a set of twelve

training pairs: the four in Table 1 for each pair, outerproducted with |0〉 for the unpaired

qubit. So, for example, the BellAC state was taken to be 1√
2
(|000〉+ |101〉), and was trained

to give an output of 1 for the network output measure OAC = 〈σzA(tf )σzC(tf )〉
2 and zero

for each of the output measures OAB = 〈σzA(tf )σzB(tf )〉
2 and OBC = 〈σzB(tf )σzC(tf )〉

2.

The top two rows of Table 2 show the target entanglement indicator values (“Targets: Stage

2”) ; the next three rows (“Trained”) show the average calculated values after training to

these twelve training pairs. Note that the third of the “Trained” rows (ABC) shows testing
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on the three-way entanglement indicator 〈σzA(tf )σzB(tf )σzC(tf )〉
2, which was, for Stage 2,

not trained for; even so, its calculated value for OABC = 〈σzA(tf )σzB(tf )σzC(tf )〉
2 is 0.57;

this pattern can be seen again and again in successive training stages. We report here the

averages; e.g., the Bellαβ column numbers are the averages over αβ = AB, AC, and BC.

(“Non-αβ” refers to the other two outputs (entanglement indicators) for each pair; there are

six of these numbers.) More detailed procedures and results are in [22].

After the pairwise training was accomplished for the 3-qubit system, we then trained the

residual[10] entanglement, as well. We did this by expanding the training set: adding one

additional training pair, the three-way entangled Greenberger-Horne-Zeilinger (GHZ)[3] state

for three qubits, 1√
2
(|000〉 + |111〉), for which we specified targets of zero for all three pair-

wise correlation functions, and 1 for an additional output measure (three-way entanglement

indicator), the three-point correlation function OABC = 〈σzA(tf )σzB(tf )σzC(tf )〉
2. The bot-

tom rows in Table 2, (labelled “Targets: Stage 3” and “Trained”)) display these targets and

calculated average outputs.

Once trained, the parameters that are found can be tested, by using the Hamiltonian so

defined to calculate our indicators for other initial states. (This will tell us whether we have

successfully generalized our knowledge of entanglement, or have just been curvefitting the

proverbial elephant.) Testing was therefore done on a large number of states not represented

in the training set, including fully entangled states, partially entangled states, product (un-

entangled) states, and even mixed states. (Note that only pure states were present in the

training sets.) Detailed results were presented for the three-qubit system in [22]; it is clear

from the output matrix that there is definite separation, in two senses: first, that it is easy to

see where the pairwise entanglement is (e.g., to distinguish between a state with AB entan-

glement and one with BC entanglement); and, second, that it is easy to differentiate among

unentangled, partially entangled, and fully entangled states.

It was natural to take this one step further, to a system of four qubits. Again, we started

from the already trained parameters for the smaller (3-qubit) system, and simply copied the

additional parameters necessary (one tunneling parameter, one bias parameter, and three cou-

pling parameters) from the trained parameters already found. Results are shown in Tables 3,

4, and 5. Again, we worked in stages: starting with a training set of 24 for the pairwise

(αβ) training (6 pairwise Bell states, 6 pairwise flat states, 6 pairwise correlated unentangled

states, and 6 pairwise partly entangled). Once those were trained, we added four more pairs

corresponding to the four distinct 3-way GHZ states αβγ; after those were trained, we added

also the single 4-way GHZ state ABCD. Testing was then done, as with the 3-qubit system, on

Table 1. Input matrix for training the pairwise quantum neural network (QNN) entanglement
witnesses. Each column is an input state, showing coefficients of the basis states (before normal-

ization.) The N-qubit system was trained on this set of four for each of the

(

N
2

)

pairs; this

constituted the “pairwise” training.

Input Bell Flat Corr. P
|00〉 1 1 0 1
|01〉 0 1 0 1
|10〉 0 1 0.5 1
|11〉 1 1 1 0
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Table 2. Stages 2 & 3: Three-qubit QNN entanglement targets and calculated average outputs.
Each column is an input state corresponding to the respective column in Table 1; each row corre-

sponds to a target function for the specified entanglement function. αβ runs over all three pairs of
qubits (AB, AC, and BC); ABC is the three-way entanglement. Stage 2 started from the trained
2-qubit system’s parameters (stage 1)[18], and trained the three-qubit system to the set of pairwise
entanglement training pairs(12 training pairs, 3 outputs per pair); Stage 3 used the pairwise set

plus the GHZ state (13 training pairs, 4 outputs per pair). The double vertical line separates the
states included in the training set from those only tested on. Nonzero target-training pairs are
boldfaced for easy comparison; dashes indicate non-applicable table entries (e.g., target values for
states not trained at a given stage, or αβ for a non-pair state.) RMS errors were: 1.2× 10−3 for

stage 2, and 1.8× 10−3 for stage 3.

O Bellαβ Flat Corr. P GHZ3

Targets: αβ 1 0 0 0.44 -
Stage 2 non-αβ 0 0 0 0 -
Trained αβ 0.9939 0.0001 0.0004 0.4392 -

non-αβ 0.0006 0.0006 0.0014 0.0006 0.0032
ABC 0.0081 0.0001 0.0001 0.0037 0.5735

Targets: αβ 1 0 0 0.44 -
Stage 3 non-αβ 0 0 0 0 0

ABC 0 0 0 0 1
Trained αβ 0.9948 0.0001 0.0009 0.4389 -

non-αβ 0.0005 0.0012 0.0004 0.0022 0.0035
ABC 0.0013 0.0006 0.0001 0.0012 0.9883

Table 3. Stage 4: Four-qubit QNN entanglement targets and calculated average outputs. αβ
runs over all six pairs of qubits; αβγ runs over all four triples of qubits; ABCD is the four-

way entanglement. Stage 4 trained the four-qubit system to the set of 24 pairwise entanglement
training pairs. Nonzero target-training pairs are boldfaced for easy comparison; dashes indicate
non-applicable table entries (e.g., target values for states not trained at a given stage, or αβ for a

non-pair state.) RMS error = 2.2× 10−3 (24 training pairs, 6 outputs per pair).

O Bellαβ Flat Corr. P GHZαβγ GHZ4

Targets: αβ 1 0 0 0.44 - -
Stage 4 non-αβ 0 0 0 0 - -
Trained αβ 0.9830 0.0002 0.0008 0.4426 - -

non-αβ 0.0009 0.0024 0.0028 0.0017 0.0023 0.0032
αβγ - - - - 0.8566 -
non-αβγ 0.0007 0.0014 0.0012 0.0003 0.0001 0.0004
ABCD 0.0021 0.0010 0.0000 0.0037 0.0020 0.9089

a similar (but expanded) set of states. Errors were slightly larger but the results maintained

good separation. Buoyed by confidence in our method we then successfully expanded to a

5-qubit system, using an exactly similar procedure. Training results are shown in Tables 6, 7

and 8. Final values for the parameters are in Table 9.

5 Results and discussion

Training of the three-qubit system required considerable time: 5000 epochs (passes through

the entire training set) to get pairwise entanglement from the trained results for the two-qubit

system[22]. But training of the four-qubit system was (unexpectedly) easy. The training sets
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Table 4. Stage 5: four-qubit QNN entanglement targets and calculated average outputs. Stage
5 added the four 3-way GHZ states to the training set of Table 3. Nonzero target-training pairs

are boldfaced for easy comparison; dashes indicate non-applicable table entries (e.g., target values
for states not trained at a given stage, or αβ for a non-pair state.) RMS error = 1.9 × 10−3 (28
training pairs, 10 outputs per pair).

O Bellαβ Flat Corr. P GHZαβγ GHZ4

Targets: αβ 1 0 0 0.44 - -
Stage 5 non-αβ 0 0 0 0 0 -

αβγ - - - - 1 -
non-αβγ 0 0 0 0 0 -

Trained αβ 0.9731 0.0001 0.0005 0.4360 - -
non-αβ 0.0006 0.0023 0.0024 0.0019 0.0023 0.0038
αβγ - - - - 0.9728 -
non-αβγ 0.0003 0.0014 0.0012 0.0003 0.0001 0.0007
ABCD 0.0014 0.0012 0.0000 0.0036 0.0010 0.7649

Table 5. Stage 6: four-qubit QNN entanglement targets and calculated average outputs. Stage
6 added the one 4-way GHZ state to the training set of stage 5. Nonzero target-training pairs
are boldfaced for easy comparison; dashes indicate non-applicable table entries (e.g., target values

for states not trained at a given stage, or αβ for a non-pair state.) RMS error = 2.2 × 10−3 (29
training pairs, 11 outputs per pair).

O Bellαβ Flat Corr. P GHZαβγ GHZ4

Targets: αβ 1 0 0 0.44 - -
Stage 6 non-αβ 0 0 0 0 0 0

αβγ - - - - 1 -
non-αβγ 0 0 0 0 0 0
ABCD 0 0 0 0 0 1

Trained αβ 0.9682 0.0000 0.0002 0.4341 - -
non-αβ 0.0002 0.0009 0.0011 0.0007 0.0010 0.0017
αβγ - - - - 0.9592 -
non-αβγ 0.0002 0.0005 0.0004 0.0002 0.0001 0.0003
ABCD 0.0004 0.0003 0.0000 0.0011 0.0014 0.9488

were, of course, larger (training set size is noted in each table caption): a 3-qubit system has

only three distinct pairs (and, therefore, pairwise entanglements), and only one triplet, while

the number of ways for the 4-qubit system are 6 and 4, respectively, with one quad (and so on,

following the binomial coefficients.) However the 4-qubit system required much less training:

only 100 epochs at each stage. The 5-qubit system was also trained for 100 epochs at each

stage, but didn’t really need so much: 98% of the change in the parameters, as well as in the

error reduction, had been accomplished by less than half that time, as shown in Figure 1.

Successively larger systems still need to be trained to decrease initial errors; yet the amount

of training necessary seems to diminish with successive training stages.

Figures 2 and 3 make this point graphically. They show the evolution of the tunneling,

bias, and coupling parameters, from initial training of the 2-qubit system, through each stage

of the training of the 3-qubit, 4-qubit, and 5-qubit systems. Initially the QNN’s learning

entanglement requires large changes in the parameters, but as the size and complexity of the
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Table 6. Stages 7 & 8: five-qubit QNN entanglement targets and calculated average outputs. αβ
runs over all ten pairs of qubits; αβγ runs over all ten triples of qubits; αβγδ runs over all five

quadruples of qubits; ABCDE is the five-way entanglement. Stage 7 trained the five-qubit system
to the set of 40 pairwise entanglement states for the 5-qubit system; Stage 8 added the ten 3-way
GHZ states. Nonzero target-training pairs are boldfaced for easy comparison; dashes indicate
non-applicable table entries (e.g., target values for states not trained at a given stage, or αβ for a

non-pair state.) RMS errors were: 5.6× 10−4 for stage 7 (40 training pairs, 10 outputs per pair),
and 7.9× 10−4 for stage 8 (50 training pairs, 20 outputs per pair).

O Bellαβ Flat Corr. P GHZαβγ GHZαβγδ GHZ5

Targets: αβ 1 0 0 0.44 - - -
Stage 7 non-αβ 0 0 0 0 - - -
Trained αβ 0.9908 0.0000 0.0003 0.4400 - - -

non-αβ 0.0003 0.0005 0.0010 0.0003 0.0003 0.0005 0.0007
αβγ - - - - 0.7055 - -
non-αβγ 0.0002 0.0003 0.0003 0.0001 0.0001 0.0001 0.0022
αβγδ - - - - - 0.7806 -
non-αβγδ 0.0004 0.0001 0.0000 0.0003 0.0015 0.0001 0.0013
ABCDE 0.0000 0.0000 0.0000 0.0000 0.0005 0.0039 0.8307

Targets: αβ 1 0 0 0.44 - - -
Stage 8 non-αβ 0 0 0 0 0 - -

αβγ - - - - 1 - -
non-αβγ 0 0 0 0 0 - -

Trained αβ 0.9754 0.0000 0.0002 0.4323 - - -
non-αβ 0.0001 0.0005 0.0005 0.0005 0.0003 0.0003 0.0001
αβγ - - - - 0.9765 - -
non-αβγ 0.0001 0.0002 0.0001 0.0001 0.0001 0.0006 0.0006
αβγδ - - - - - 0.7597 -
non-αβγδ 0.0002 0.0000 0.0000 0.0002 0.0004 0.0002 0.0085
ABCDE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0090 0.0612

system is increased, the relative size of the changes decreases, till by stage 10 (the 5-qubit

system’s training to the full set of 56 training pairs), changes in the parameters are just a

few percent. Note that in the two figures, the relative sizes of the final numbers (root square

percent change in Ka is 3.6%; in ζAB , 6.7%) are comparable. This is reminiscent of the well-

known neural network technique called “bootstrapping”[8]: in a sense, information about a

smaller system can, in part, generalize to a larger. This makes us hopeful that this technique

may be viable for use even on large systems.

Figure 4 shows the average total pairwise entanglement (sum over all outputs) of the Wk

states as a function of k, for k = 1 to 5, as computed by the QNN using the trained 5-qubit

system. This is our computational analog of the measurements done by Kimble et al.[23]

of the number of modes (k) sharing a single excitation photon. Our results show similar

separations among states of different k. These numbers change only very slightly when we

look at so-called “flipped” W states[11] instead (where, instead of a single excitation shared

among N qubits, we have a single 0 so shared - e.g., W̃3 = 1√
3
(|110〉 ± |101〉 ± |011〉)).

Figure 5 shows the pairwise entanglements of the (normalized) states α|0001〉+β|0010〉+

|0100〉 + |1000〉, calculated by the QNN using the trained 4-qubit system, as a function of
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Fig. 1. Root mean squared error per training pair as a function of epoch (pass through the training
set), for the 5-qubit system on the pairwise training set (stage 7), summed over the 10 outputs
per pair.

Fig. 2. Root square relative difference,
√

∑

∆K2/
∑

K, for both KA and KB , as a function of
training stage. The sums are over the timeslices, and the differences are to each successive stage.
Stage 1 is 2-qubit training[18]; stage 2, 3-qubit pairwise; stage 3, 3q pairwise plus 3-way; stage 4,
4q pairwise; stage 5, 4q pairwise plus 3-way; stage 6, 4q pairwise plus 3-way plus 4-way; stage 7,
5q pairwise; stage 8, 5q pairwise plus 3-way; stage 9, 5q pairwise plus 3-way plus 4-way; stage 10,

5q pairwise plus 3-way plus 4-way plus 5-way.

Fig. 3. Root square relative difference in each of the parameters εA, εB and ζAB as functions of
training stage. Stages as in Figure 2.
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Table 7. Stage 9: five qubit QNN entanglement targets and calculated average outputs. Stage
9 added the five 4-way GHZ states to the training set of stage 8. Nonzero target-training pairs

are boldfaced for easy comparison; dashes indicate non-applicable table entries (e.g., target values
for states not trained at a given stage, or αβ for a non-pair state.) RMS error = 1.4 × 10−3 (55
training pairs, 25 outputs per pair).

O Bellαβ Flat Corr. P GHZαβγ GHZαβγδ GHZ5

Targets: αβ 1 0 0 0.44 - - -
Stage 9 non-αβ 0 0 0 0 0 0 -

αβγ - - - - 1 - -
non-αβγ 0 0 0 0 0 0 -
αβγδ - - - - - 1 -
non-αβγδ 0 0 0 0 0 0 -

Trained αβ 0.9647 0.0000 0.0001 0.4315 - - -
non-αβ 0.0000 0.0002 0.0002 0.0002 0.0001 0.0001 0.0002
αβγ - - - - 0.9574 - -
non-αβγ 0.0000 0.0001 0.0000 0.0001 0.0000 0.0002 0.0005
αβγδ - - - - - 0.9630 -
non-αβγδ 0.0001 0.0000 0.0000 0.0000 0.0002 0.0001 0.0015
ABCDE 0.0000 0.0000 0.0000 0.0000 0.0002 0.0022 0.1855

Table 8. Stage 10: five-qubit QNN entanglement targets and calculated average outputs. Stage
10 added the one 5-way GHZ state to the training set of stage 9. Nonzero target-training pairs
are boldfaced for easy comparison; dashes indicate non-applicable table entries (e.g., target values
for states not trained at a given stage, or αβ for a non-pair state.) RMS error = 2.4 × 10−3 (56

training pairs, 26 outputs per pair).

O Bellαβ Flat Corr. P GHZαβγ GHZαβγδ GHZ5

Targets: αβ 1 0 0 0.44 - - -
Stage 10 non-αβ 0 0 0 0 0 0 0

αβγ - - - - 1 - -
non-αβγ 0 0 0 0 0 0 0
αβγδ - - - - - 1 -
non-αβγδ 0 0 0 0 0 0 0
ABCDE 0 0 0 0 0 0 1

Trained αβ 0.9148 0.0000 0.0000 0.4295 - - -
non-αβ 0.0000 0.0001 0.0001 0.0001 0.0001 0.0000 0.0003
αβγ - - - - 0.9195 - -
non-αβγ 0.0000 0.0005 0.0004 0.0002 0.0000 0.0000 0.0005
αβγδ - - - - - 0.9195 -
non-αβγδ 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0004
ABCDE 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.8258

both α and β. Results are not significantly different when using the trained 5-qubit system.

When α = 0 and β = 0, this is (|01〉+ |10〉)⊗ |00〉 = EPRAB ⊗ |00〉, which has full pairwise

AB entanglement while all other entanglements are zero; our results match this. When α = 1

and β = 0, this is |0001〉+ |0100〉+ |1000〉, which is the three-way W state in qubits ABD. In

terms of pairwise entanglement, a three-way W state is equally pairwise entangled in all three

possible combinations AB, AD, and BD, so we would expect the red, green, and blue surfaces
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Table 9. Final (stage 10) trained parameters for entanglement of 5-qubit system, in MHz. Each
row is a different parameter, as labelled. Each parameter is a function of time; the first row shows

the timeslice number.

t 1 2 3 4
KA 2.1733 2.4021 2.4688 2.4139
KB 2.5842 2.1591 2.2702 2.4710
KC 2.3984 2.3252 2.3501 2.4294
KD 2.3893 2.3128 2.3451 2.4327
KE 2.3926 2.3144 2.3446 2.4274
εA 0.7443 -0.1558 -1.1248 -0.7230
εB 0.9903 -0.4483 -1.0216 -0.4294
εC 1.1027 -0.4998 -0.8678 -0.4752
εD 0.7783 -0.2453 -1.1015 -0.6125
εE 0.7703 -0.2472 -1.0941 -0.6116
ζAB -0.3576 0.2797 -0.5974 0.1521
ζAC -0.1761 0.1800 -0.5796 -0.0604
ζAD -0.1687 0.1802 -0.5558 -0.0471
ζAE -0.1563 0.1758 -0.5324 -0.0402
ζBC -0.2228 0.1806 -0.5462 0.0340
ζBD -0.2138 0.1808 -0.5227 0.0431
ζBE -0.2026 0.1785 -0.5014 0.0484
ζCD -0.3052 0.2375 -0.4795 0.1959
ζCE -0.2965 0.2358 -0.4638 0.1801
ζDE -0.2896 0.2265 -0.4465 0.1771

to come together at that point, while the yellow (AC), cyan (BC) and magenta (CD) surfaces

are zero there. This is in fact what we see in the figure. Similarly, when α = 0 and β = 1,

this is |0010〉+ |0100〉+ |1000〉, which is the three-way W state in qubits ABC; at this point

the AB (red), AC (yellow), and BC (cyan) entanglements are all approximately equal and

the AD (green), BD (blue), and CD (magenta) entanglements are zero. When both α = 1

and β = 1, this is the four-way W state |001〉 + |0010〉 + |0100〉 + |1000〉, equally entangled

in all six pairwise ways AB (red), AC (yellow), AD (green), BC (cyan), BD (blue), and CD

(magenta).

The value for the pairwise entanglement of the three-way W states deserves some further

comment. In the original training set for the two-qubit system, it was found[18] that the value

for the entanglement of the “P” state, |01〉+ |10〉+ |11〉, that resulted in the smallest overall

error (training plus testing), was 0.44: that is, using this value, rather than some other, led to

the greatest possible self-consistency for the QNN method. We therefore used this same value

for P ⊗ |0〉 for each of the three pairs, in training the three-qubit system[22]. The three-way

W state WABC = |001〉+ |010〉+ |100〉 is not a “P” state in any of the three pairs, of course,

but it is related in the following sense: we can write WABC = |001〉+ (|01〉+ |10〉)⊗ |0〉, that

is, an EPR state in two of the qubits, plus a contamination term. In the same way, we can

think of “P” as being a (fully entangled) EPR state, plus an amount of contamination, the

inclusion of which diminishes the entanglement. Thus for self-consistency we would expect

each of the pairwise entanglements of a W3 state to be approximately 0.44, as in fact occurs.
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Fig. 4. Total (pairwise) entanglement of Wk, calculated by the QNN using the trained parameters
listed in Table 9, as a function of k. Each data point is the average of the total entanglement for

the 2k−1

(

5
k

)

states of the form Wk ⊗ |0〉N−k. Error bars show the standard deviation at each

point, which increases from from 0.7%, for the W2 state, to 2.8% for the W5 state. The line is

drawn to guide the eye.

Fig. 5. Pairwise entanglement of α|0001〉+ β|0010〉+ |0100〉+ |1000〉, as a function of α and β, as

calculated by the QNN. Each color represents a different entanglement measure: red, the pairwise
entanglement between A and B, OAB ; yellow, that between A and C, OAC ; green, OAD; cyan,
OBC ; blue, OBD; and magenta, OCD.
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Fig. 6. Entanglement of α|110〉 + β|111〉 + |000〉, as a function of α and β, as calculated by the

QNN, and compared with the 3-tangle[10]. The red surface shows the pairwise entanglement
between qubits A and B, OAB ; the green, three-way entanglement among A, B, and C,OABC ;
and magenta is the 3-tangle.

(It should be noted here that this is an internal self-consistency; we do not know whether the

number itself has any physical meaning, and we claim none.)

We can also look at states which have three-way (or higher) entanglement. Figure 6

shows the pairwise (red) and three-way (green) entanglement of the states α|110〉+ β|111〉+

|000〉, calculated by the QNN using the trained 3-qubit system, as a function of α and β,

and compared with the residual or 3-tangle of Coffman[10] (magenta). Results were not

significantly different when using the trained 4-qubit or five-qubit systems. When α = 0

and β = 1, this is the pure GHZ state for three qubits, and the three-way entanglement is

maximal; both the 3-tangle and the QNN calculate this to be one. Indeed the QNN three-

way entanglement (green) tracks the 3-tangle (magenta) fairly well over the entire range of

parameters shown. This can also be seen in Figure 7, where we show the tracking of both

pairwise and residual tangle by the QNN for states of the form |100〉+ β|010〉+ γ|001〉.

With the trained net, we can evaluate any pairwise or N-wise entanglement for mixed

states, as well, without having to find an optimal decomposition[11]. Figure 8 shows the

computed entanglement of states of the form α|GHZ5〉〈GHZ5| + β|W5〉〈W5| + (1 − α −

β)|W̃5〉〈|W̃5|, as a function of both α and β. As expected from symmetry, all the pairwise

entanglements lie atop one another, so only one is shown, for clarity; all the three-way and

four-way entanglements are zero. As this is a mixture, not a superposition, there is no

interference among the three contributing states, and the |W5〉 and |W̃5〉 states contribute

equivalently to the pairwise (red) entanglements. Compare this relatively featureless behavior

with that shown in Figure 9, which shows the calculated pairwise (red), four-way (blue), and

five-way (green) entanglements of the superposition states α|GHZ5〉+β|W5〉+(1−α−β)|W̃5〉.

Again, all the pairwise entanglements (red) lie atop each other, by symmetry, as do the three-

way (not shown) and the four-way (blue). The three-way entanglements are still all zero;

however, the four-way (blue) are not, because there are combinations of the coefficients such
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Fig. 7. Entanglement of |100〉 + β|010〉 + γ|001〉, as a function of γ and β, as calculated by the

QNN, and compared with analytical results. Each color corresponds to a different entanglement
measure: red, pairwise AB entanglement, OAB ; and blue, pairwise AC entanglement, OAC , both
computed by the QNN. Compare these to τAB , the tangle between A and B, in cyan; and τAC , the

tangle between A and C, in yellow (both computed analytically.) The residual tangle is identically
zero for all these states, in agreement with the QNN’s calculated OABC , in green.

that the superposition contains some nonzero amplitude of each of the |GHZ4〉 states; in

neither |W5〉 nor |W̃5〉 are there any states with exactly three qubits in the same state, so

there is no three-way entanglement. In both Figure 9 and Figure 8 we see the expected

limiting behavior: for α = 1 and β = 0, we have maximal five-way entanglement only; for

α = 0 and β = 1, we have maximal pairwise entanglement only, spread over all ten possible

pairs (see also Figure 4.)

6 Conclusions

We have presented a new approach for pairwise and multiqubit entanglement, in which we use

a quantum neural network to create an entanglement indicator by extrapolation from accepted

particular cases. Our method is applicable to any state, whether pure or mixed. Using

dynamic quantum backpropagation learning, we have shown that a quantum system can be

trained, in a sense, to compute its own degree of entanglement. No prior state reconstruction

or tedious optimization procedure is necessary, nor is “closeness” to any particular state. We

envision an experimental implementation in which parameters could be, to begin with, roughly

estimated from simulations such as those presented here (in the neural network literature,

this is called “offline” or “batch” training[24].) These parameters could then be refined

experimentally (“online” training of the neural network.) Because the state of the system

at each timeslice must be known in order to do quantum backprop, it can only be done

in simulation; a different parameter adjustment method would be used experimentally, e.g.,

a reinforcement or genetic algorithm. The experimental refinement procedure might also

provide for the inclusion of features and interactions present in the physical state but not

in the (simplified) model. In any case, once good values for the parameters are determined,

any state’s entanglement can be approximately found by experimental measurement. And
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Fig. 8. Entanglement of the mixed states α|GHZ5〉〈GHZ5|+ β|W5〉〈W5|+ (1−α− β)|W̃5〉〈|W̃5|,

as a function of both α and β. Each color represents a different entanglement measure: red, the
pairwise entanglement; blue, four-way entanglement; and green, five-way entanglement.

Fig. 9. Entanglement of the superposition states α|GHZ5〉 + β|W5〉 + (1 − α − β)|W̃5〉, as a
function of both α and β. Each color represents a different entanglement measure: red, the

pairwise entanglement; blue, four-way entanglement; and green, five-way entanglement.
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while we have only carried out simulations through a system size of 5 qubits, the additional

training necessary significantly decreases as the size of the system grows, raising hopes for

the method’s feasibility even for large qubit networks.

It should be emphasized, though, that this method provides only an indicator of the

entanglement (a “witness”, not a “measure.”) Agreement with analytical results, while good,

is not exact - nor, indeed, can it be, as discussed earlier. And while agreement is here

demonstrated for some classes of states, the testing shown is not exhaustive even for states

with real coefficients: large classes of states may be being missed. Since there is a natural

measure on the set of real state vectors (the uniform measure on the unit sphere), the notion of

an average agreement can be well defined, which will allow us to do systematic testing on large

random sets. This work is in progress. More important, we have not explored here application

to phase shifted superpositions and mixtures. This is a much harder problem to solve, either

analytically or computationally, since entanglement depends on phase in complicated ways.

Any single-measurement witness must[18] exhibit oscillation as a function of relative phase,

but it is not at all clear what is the most efficient way of dealing with this[11, 12, 13, 25].

Quantum tomography obviates the problem but rapidly becomes impractical with increasing

system size. It is possible that we will see an increased efficiency with size in the complex

case, as we saw in with real coefficients. Further work is needed in all these areas, and is

ongoing[21].

That being said, we believe our present work is still of great value, providing as it does

a way of bypassing difficult analytical work in addressing the need[23] for experimental mea-

surements to determine entanglement. Moreover, our approach may have other important

advantages. Classically neural networks have proven fault tolerant and robust to noise; they

are also famously used for noise reduction in signals. In quantum systems there is also the

problem of decoherence. It is possible that quantum neural networks may be well suited for

dealing with these types of problems in quantum computing. There are undoubtedly many

other possible applications for the use of learning or AI methods as shortcuts to constructing

quantum algorithms.
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