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Départment de Physique, Université de Sherbrooke
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We propose a simplified version of the Kitaev’s surface code in which error correction
requires only three-qubit parity measurements for Pauli operators XXX and ZZZ. The

new code belongs to the class of subsystem stabilizer codes. It inherits many favorable

properties of the standard surface code such as encoding of multiple logical qubits on a
planar lattice with punctured holes, efficient decoding by either minimum-weight match-

ing or renormalization group methods, and high error threshold. The new subsystem

surface code (SSC) gives rise to an exactly solvable Hamiltonian with 3-qubit interac-
tions, topologically ordered ground state, and a constant energy gap. We construct a

local unitary transformation mapping the SSC Hamiltonian to the one of the ordinary
surface code thus showing that the two Hamiltonians belong to the same topological

class. We describe error correction protocols for the SSC and determine its error thresh-

olds under several natural error models. In particular, we show that the SSC has error
threshold approximately 0.6% for the standard circuit-based error model studied in the

literature. We also consider a model in which three-qubit parity operators can be mea-
sured directly. We show that the SSC has error threshold approximately 0.97% in this
setting.
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1 Introduction

Quantum error correcting codes are vital ingredients in all scalable quantum computing archi-

tectures proposed so far. By actively monitoring and correcting errors, the encoded quantum
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states can be protected from noise up to any desired precision provided that the error rate of

elementary quantum operations is below certain constant value known as the error threshold.

Topological codes such as the surface code family [1, 2, 3] have received considerable atten-

tion lately due to their several attractive features. First, the quantum hardware envisioned in

the surface code architecture consists of a 2D array of qubits with controlled nearest-neighbor

interactions and a local readout. In principle, it can be implemented using the Josephson

junction qubits technology [4]. Surface codes feature an error threshold of at least 1% [5]

which is one of the highest thresholds among all studied codes. Secondly, encoded Clifford

gates such as the CNOT gate can be implemented efficiently by the code deformation method

[6, 7, 8] which requires only a mild overhead in space and time. The error rate of encoded gates

decreases exponentially with the lattice size [9]. Thirdly, the surface codes can be decoded

efficiently using Edmonds’s minimum weight matching algorithm [3, 10] or renormalisation

group methods [11, 12, 13].

Although the surface code is among the best code candidates, a promising direction for

improvements has been recently identified by Bombin [14] who proposed topological subsystem

codes [15]. A subsystem code [16, 17] can be viewed as a regular stabilizer code in which one

or several logical qubits do not encode any information. The presence of unused logical

qubits, known as gauge qubits, simplifies eigenvalue measurements of multi-qubit stabilizers—

such as the plaquette and star operators of the surface code—which are required for error

correction. Consider as an example the simplest 4-qubit code with two stabilizers SX = X⊗4

and SZ = Z⊗4. It encodes two qubits with logical Pauli operators XL = X1X2, ZL = Z1Z3

and XG = X1X3, ZG = Z1Z2. If only the first logical qubit is used to encode information,

the syndrome (eigenvalue) of SX can be determined indirectly by measuring eigenvalues of

the unused logical operators XG and SXXG = X2X4. Multiplying the measured eigenvalues

together yields the desired eigenvalue of SX . The syndrome of SZ is determined similarly

by measuring eigenvalues of the unused logical operators ZG and SZZG = Z3Z4 followed by

multiplication of the outcomes. Hence the full syndrome extraction requires only two-qubit

parity measurements and simple classical post-processing. The unused logical operators that

need to be measured in order to extract the syndrome of all stabilizers are usually referred to

as gauge generators, see [17] for the general theory of subsystem codes.

A simplified syndrome readout offered by subsystem codes has its own costs. In any

practical settings, eigenvalues of individual gauge generators can only be measured with a

finite accuracy. As one multiplies together measured eigenvalues, errors tend to accumulate

rendering the inferred syndrome bit unreliable. This strongly limits the class of candidate

subsystem codes for the topological fault-tolerant architecture. First, a suitable code must

have local gauge generators, ideally, 2- or 3-qubit Pauli operators acting on nearest-neighbor

qubits. This ensures that the syndrome readout requires only local measurements. To avoid

accumulation of measurement errors, a suitable code must also have low-weight stabilizers.

More precisely, each stabilizer must be composed of only a few gauge generators. The lat-

ter requirement leaves out many interesting families of codes, such as the 2D Bacon-Shor

codes [16] and random 2D subsystem codes discovered in [18]. In contrast, subsystem color

codes found in [14] have 2-qubit gauge generators while stabilizers act on either 6 or 18 qubits.

These codes were shown to have a constant error threshold of at least 2% under depolarizing

noise assuming noiseless syndrome readout [19, 20]. Unfortunately, subsystem color codes
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do not inherit favorable properties of the surface code such as encoding of multiple logical

qubits [14] on a planar lattice required for the code deformation method.

In the present paper we propose a subsystem version of the standard surface code on the

regular square lattice. Each plaquette of the lattice carries one gauge qubit and a pair of

weight-6 stabilizers of type X⊗6 and Z⊗6, see Fig. 1. The code has 3-qubit gauge generators

of type XXX and ZZZ which makes it suitable for architectures where direct 3-qubit parity

measurements in the X- and Z-basis are available. A promising proposal for implementing

3-qubit parity measurements in Josephson junction qubits has been recently made by DiVin-

cenzo and Solgun [21]. By analogy with the surface code, the new subsystem surface code

(SSC) can encode multiple logical qubits on a planar lattice with punctured holes. We de-

scribe error correction protocols for the SSC and determine its error thresholds under several

natural error models. First, we study the so called “code capacity” model where each qubit

is subject to independent bit-flip and phase-flip errors with rate p, while syndrome measure-

ments are noiseless. By relating the optimal error correction to the phase transition in the

random-bond Ising model on the honeycomb lattice, we show that the threshold error rate

is p0 ≈ 7%. Secondly, we study the circuit-based error model where the syndrome readout

is simulated by noisy quantum gates, single-qubit measurements, and ancilla preparations.

Each operation can fail with a probability p, see Section 6 for details. Monte Carlo simula-

tion suggests that the SSC has error threshold pc ≈ 0.6% for the circuit-based error model.

Finally, we consider a model in which 3-qubit parity can be measured directly. We show that

the SSC has error threshold approximately 0.97% for this direct parity measurement model.

The new code also gives rise to an exactly solvable Hamiltonian with 3-qubit interactions

which has a topologically ordered ground state and whose excitations are non-interacting

abelian anyons. The exact solvability of the model stems from a peculiar commutativity

structure of the model’s Hamiltonian. We show that the set of all relevant 3-qubit interactions

can be partitioned into small clusters such that interactions from different clusters pairwise

commute. In contrast, it was shown recently by Aharonov and Eldar [22] that topological

order cannot be realized by 3-local Hamiltonians in which all interactions pairwise commute.

We also construct a local unitary transformation U that maps the 6-qubit stabilizers of the

SSC to the plaquette and star operators of the Kitaev’s surface code on the square lattice. The

gauge generators XXX and ZZZ are mapped to single-qubit X and Z operators. Loosely

speaking, the map U decouples gauge qubits from the surface code qubits.

The rest of the paper is organized as follows. Sections 2,3 introduce a subsystem version of

the toric code with 3-qubit gauge generators, the corresponding exactly solvable Hamiltonian

and discuss its connection to the ordinary toric code. Extension to the planar geometry is

given in Section 4 that defines subsystem surface codes. The concept of a virtual lattice which

is crucial for understanding our error correction protocols is introduced in Section 5. This

section also discusses error correction for the idealized settings when syndrome readout is

noiseless. Error correction protocols for the circuit-based syndrome readout and numerical

simulations are presented in Section 6. Finally, Section 7 focuses on a model in which direct

3-qubit parity measurement are available.
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2 A subsystem toric code

We begin by introducing a subsystem version of the toric code that encodes two logical

qubits [1]. Extension to planar lattices with a boundary will be described in the next sec-

tion. The code is defined on the regular square lattice of size L× L with periodic boundary

conditions. It contains L2 vertices, 2L2 edges, and L2 plaquettes. We place a qubit at every

vertex and at the center of every edge of the lattice. Hence there are in total n = 3L2 code

qubits. For each plaquette p define weight-6 Pauli operators SXp and SZp as shown on Fig. 1
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Fig. 1. Subsystem toric code. Qubits live at vertices and centers of edges of the regular square

lattice. Opposite sides of the lattice are identified. Left: Four types of triangles and the corre-
sponding triangle operators G(T ). Triangle operators that belong to different plaquettes pairwise

commute. Right: Stabilizer operators SXp (top) and SZp (bottom). Stabilizers are analogues of

the plaquette and star operators of the standard toric code. Triangle operators commute with
stabilizers. Eigenvalue of any stabilizer can be determined by measuring eigenvalues of individual

triangle operators. For a lattice of size L × L the code has parameters [[3L2, 2, L]]. This should

be compared with the standard surface code which has parameters [[2L2, 2, L]].

(right). One can easily check that SXp and SZq commute with each other for all p and q.

Let S be the abelian group generated by 2L2 operators SXp and SZp . It defines a quantum

stabilizer code with a codespace C spanned by n-qubit states ψ invariant under S, that is,

ψ ∈ C iff SXp · ψ = ψ and SZp · ψ = ψ for all p. A simple algebra shows that
∏
p S

X
p = I and∏

p S
Z
p = I, where the product is taken over all plaquettes of the lattice. Furthermore, since

each qubit belongs to exactly two stabilizers SXp and two stabilizers SZp , these are the only

dependencies among the generators of S. This shows that S has s = 2(L2 − 1) independent

generators. The standard stabilizer formalism [23] then implies that S is a stabilizer code

encoding k′ = n− s = L2 + 2 qubits, that is, dim(C) = 2k
′
.

We shall now divide the k′ encoded qubits into g = L2 gauge qubits and k = 2 logical

qubits. Let u be any vertex of the lattice and f, g be a pair of orthogonal edges incident to

u. The triple (u, f, g) will be referred to as a triangle. Note that the lattice has four non-

equivalent types of triangles, see Fig. 1. We shall say that a triangle T = (u, f, g) is north-west

(NW) if u is at the north-west corner of the plaquette formed by f and g. Similarly one defines
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north-east (NE), south-west (SW), and south-east (SE) triangles. Define triangle operators

G(T ) =

{
XuXfXg if T is SW or NE triangle,
ZuZfZg if T is SE or NW triangle,

(1)

see Fig. 1. Here subscripts indicate qubits acted upon by the Pauli operators X and Z. Note

that triangle operators that belong to different plaquettes commute with each other.

Any stabilizer can be expressed as a product of two triangle operators using identities

SXp = G(TSWp )G(TNEp ),

SZp = G(TSEp )G(TNWp ), (2)

see Fig. 1. Here TNWp , TNEp , TSWp , and TSEp are triangles of type NW, NE, SW, SE respec-

tively that belong to a plaquette p.

Let us now show that triangle operators commute with all stabilizers, thus being logical

operators of the code S. Consider any stabilizer, say, SXp and any triangle operator G(T )

of Z-type. If T does not belong to the plaquette p then SXp commutes with G(T ) because

triangle operators from different plaquettes always commute. If T belongs to p then G(T )

anti-commutes with both X-type triangles forming SXp , that is, G(T ) commutes with SXp . A

similar argument shows that Z-type stabilizers commute with X-type triangle operators.

The above observations show that we can choose g = L2 pairs of logical operators for the

code S as

Xp = G(TSWp ) and Zp = G(TSEp ), (3)

where p runs over all plaquettes of the lattice. We shall treat encoded qubits defined by Xp

and Zp as gauge qubits encoding no useful information because the corresponding logical

operators have very small weight. Hence each plaquette of the lattice carries one gauge qubit.

As we will show in Sec. 3, it is possible to completely disentangle these gauge qubits from the

code with a depth 4 local quantum circuit, leaving behind the usual toric code on 2L2 qubits

and L2 ancillary qubits that are decoupled from the code.

Recall that the code S has k′ = L2 + 2 encoded qubits. This leaves k = k′ − g = 2 logical

qubits which have not been identified yet. Let Γ and Λ be the set of all qubits lying on some

fixed horizontal and some fixed vertical line of the lattice respectively, see Fig. 2. Note that

|Γ| = |Λ| = 2L. Define

X1 =
∏
j∈Γ

Xj , Z1 =
∏
j∈Λ

Zj (4)

and

X2 =
∏
j∈Λ

Xj , Z2 =
∏
j∈Γ

Zj . (5)

Any triangle operator commutes with Xj and Zj because triangles share 0 or 2 qubits

with Γ and Λ. In addition, since Γ and Λ are even sets of qubits overlapping on exactly one

qubit, one has commutation rules XiZj = (−1)δi,jZjXi. Hence one can view X1, Z1 and

X2, Z2 as logical X and Z operators on the two remaining logical qubits of the code S.

The minimum distance d of a subsystem code is defined as the minimum weight of a Pauli

error E that commutes with all stabilizers and implements a non-trivial transformation on
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Fig. 2. Non-contractible loops on the toric code lattice. Each loop contains 2L qubits.

the logical qubits, see [17]. Let us show that the subsystem toric code has distance d = L.

Indeed, any error E as above must anti-commute with at least one of the logical operators

X1, Z1, X2, Z2. Assume wlog that E anti-commutes with Z1. Let Λ′ be any vertical line

on the lattice (a horizontal translation of Λ) and Z
′
1 =

∏
j∈Λ′ Zj . One can easily check that

Z1Z
′
1 coincides with the product of stabilizers SZp over all plaquettes p lying between Λ and

Λ′. Since E commutes with all stabilizers, we conclude that E anti-commutes with Z
′
1. But

this means that E must act non-trivially on at least one qubit of Λ′. Since there are L non-

overlapping choices of the line Λ′, we conclude that E must have weight at least L. One can

also easily check that translating Λ by the half of the lattice period gives a logical operator

of weight L equivalent to Z1 (modulo gauge operators). Hence the code has distance d = L.

The first step in any error correction protocol based on stabilizer codes is the syndrome

readout, that is, a non-destructive eigenvalue measurement of every stabilizer operator. To

measure the 6-qubit stabilizers SZp and SXp we shall take advantage of the gauge qubits and

the identity Eq. (2). The simplest syndrome readout protocol consists of two steps: Step

1. Measure the eigenvalue of every X-type triangle operator G(T ) and record the outcome

λ(T ) = ±1. Step 2. Measure the eigenvalue of every Z-type triangle operator G(T ) and

record the outcome λ(T ) = ±1. Since any triangle operator commutes with stabilizers, the

eigenvalue of any stabilizer remains unchanged throughout the execution of this protocol.

Hence the eigenvalues of stabilizers SZp and SXp are given by λ(SZp ) = λ(TSEp )λ(TNWp ) and

λ(SXp ) = λ(TSWp )λ(TNEp ), see Eq. (2). In practice it may be advantageous to use ‘interleaved’

protocols in which Steps 1,2 defined above are implemented in parallel, see Section 6 for more

details.

3 Topological quantum order

Consider a Hamiltonian

H = −
∑
T

G(T ), (6)

where the sum is over all triangles of the lattice. Recall that G(T ) are the 3-qubit triangle

operators defined in Eq. (1). In this section we compute the entire eigenvalue spectrum of H

and show that on the torus H has a four-fold degenerate ground state separated from excited

states by a constant energy gap. Moreover, we shall construct a unitary locality preserving

transformation U such that UHU† can be regarded as the standard toric code Hamiltonian
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on the square lattice (with some irrelevant ancillary qubits).

Let us first compute eigenvalues of H. Since the stabilizers SXp , SZp commute with every

term in H, we can assume that any eigenvector ψ of H is also an eigenvector of any stabilizer,

that is, SXp ψ = xpψ and SZp ψ = zpψ for some syndromes xp, zp = ±1. Using identities

Eq. (2,3) one gets

Hψ = −
∑
p

(1 + xp)Xpψ + (1 + zp)Zpψ

where Xp, Zp are the logical operators on the gauge qubit located at the plaquette p. Hence

the restriction of H onto the sector with fixed syndromes xp, zp describes L2 non-interacting

gauge qubits.

Let ε0(xp, zp) and ε1(xp, zp) be the smallest and the largest eigenvalues of a gauge qubit

p for a fixed syndromes xp, zp. A simple algebra shows that

xp zp ε0(xp, zp) ε1(xp, zp)

1 1 −2
√

2 2
√

2
1 −1 −2 2
−1 1 −2 2
−1 −1 0 0

For example, if xp = zp = 1, the gauge qubit on the plaquette p has an effective Hamiltonian

−2Xp − 2Zp with eigenvalues ±2
√

2. Hence ε0(1, 1) = −2
√

2 and ε1(1, 1) = 2
√

2.

To minimize the overall energy one has to choose xp = zp = 1 for all p. This shows

that ground states of H belong to the trivial syndrome sector and the ground state energy is

E0 = −2
√

2L2. The ground state is four-fold degenerate since the code has two logical qubits.

Excitations of H fall into two categories. First, there are gauge excitations that are

confined to the trivial syndrome subspace xp = zp = 1. The energy cost of a single gauge

excitation is ∆g = ε1(1, 1) − ε0(1, 1) = 4
√

2. A gauge excitation on a plaquette p can be

created locally by a proper combination of operators Xp and Zp. Hence gauge excitations do

not carry any topological charge. Secondly, there are syndrome excitations that flip syndrome

bits xp and zp. The energy cost of a single syndrome excitation is ∆s = ε0(1,−1)− ε0(1, 1) =

2(
√

2 − 1). It corresponds to flipping xp (or zp) on any plaquette p. A single syndrome

excitation however cannot be created locally due to the constraints
∏
p xp =

∏
p zp = 1, see

the previous section. It means that syndrome excitations can only be created in pairs. Each

pair costs energy 2∆s.

We can now show that the Hamiltonian of Eq. 6 is locally equivalent to Kitaev’s toric code.

Consider a quantum circuit U shown on Fig. 3. It consists of four rounds of CNOT gates,

U = U (4)U (3)U (2)U (1), where U (j) is a tensor product of L2 disjoint CNOT gates labeled by j

on Fig. 3. Note that U is a locality preserving transformation, that is, the Heisenberg evolution

of any observable O → UOU† can only enlarge the support of O by a few units of length. Such

transformations do not change any topological features of the model [24]. A simple algebra

shows that the transformed stabilizers USXp U
† ≡ Ap and USZp U

† ≡ Bp coincide with the

star and plaquette operators of the Kitaev’s toric code on a tilted square lattice, see Fig. 3.

Furthermore, the transformed gauge generators UXpU
† ≡ JXp and UZpU

† ≡ JZp become

one-qubit Pauli operators X and Z respectively acting on the qubit located at the bottom
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edge of p, see Fig. 3. Using identities Eqs. (2,3) we arrive at

H ′ ≡ UHU† = −
∑
p

JXp + JXp Ap + JZp + JZp Bp.

The same arguments as above show that ground states of H ′ are defined by equations Apψ0 =

Bpψ0 = ψ0 and (JXp +JZp )ψ0 =
√

2ψ0 for all plaquettes p. Thus any ground state of H ′ must

have a form ψ0 = ψtop ⊗ ψanc, where ψtop is a ground state of the Kitaev’s toric code on

the tilted square lattice while ψanc is a tensor product of one-qubit ancillary states located

on horizontal edges of the original lattice. Such ancillary unentangled states clearly have no

effect on topological features of the model. We conclude that that the Hamiltonian Eq. (6)

is in the same topological phase as the toric code model. The exact solvability of the model

clearly extends to a more general Hamiltonian H = −
∑
T gTG(T ), where gT are arbitrary

coefficients.

Consider now a modified Hamiltonian

H ′′ = −
∑
p

JXp + JZp +Ap +Bp.

Note that H ′ and H ′′ have the same ground subspace and H ′′ coincides with the ordinary

toric code Hamiltonian [1] if one ignores the ancillary qubits. For any state φ orthogonal to

the common ground subspace of H ′, H ′′ and for any parameter 0 ≤ t ≤ 1 one has

〈φ|(1− t)H ′ + tH ′′|φ〉 ≥ (1− t)∆′ + t∆′′

where ∆′ = 4(
√

2− 1) and ∆′′ = 2 are the energy gaps of H ′ and H ′′ respectively. It follows

that the Hamiltonian (1 − t)H ′ + tH ′′ has energy gap at least min (∆′,∆′′) = 4(
√

2 − 1) for

all 0 ≤ t ≤ 1. Hence we can continuously deform H ′ to H ′′ without closing the gap.

The decoupling circuit of Fig. 3 illustrates a feature of a more general family of 2D

translationally-invariant subsystem codes described in [20]: they can be mapped to (one or

more copies of) the standard toric code with additional decoupled qubits by a constant-depth

quantum circuit.

We note that in general the Hamiltonian obtained by the sum of the gauge operators of

a topological subsystem code does not necessarily produce topological order. The peculiar

feature of the present model is that the canonical logical Pauli operators on the gauge qubits

Xp and Zp are local. In contrast, it was shown in [25] that the subsystem color code can

be obtained from multiple copies of the ordinary color code by gauging out both local and

non-local logical operators. In particular, some of the logical operators that are gauged out

carry topological charge. The present analysis does not apply to such models.

4 Subsystem surface codes

We can now describe a subsystem version of the simplest surface code on a planar lattice

with two rough and smooth boundaries that encodes one logical qubit [2]. Now the lattice

has open boundary conditions. A lattice of size L×L has (L+ 1)2 vertices, 2L(L+ 1) edges,

and L2 plaquettes. As before, code qubits are placed at vertices and centers of edges, so the

total number of code qubits is n = (L+ 1)2 + 2L(L+ 1) = 3L2 + 4L+ 1.
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Fig. 3. Decoupling circuit. Applying four rounds of CNOT gates as shown on the left in a

translational invariant way transforms the gauge operators and stabilizers as shown on the right.
The stabilizer generators become those of Kitaev’s toric code on a tilted square lattice, while

the extra gauge generators are mapped to single-qubit Pauli operators acting on ancillary qubits

(horizontal edges). Thus, the circuit has the effect of decoupling the gauge operators from the
toric code.

For every edge e lying on the boundary of the lattice define a weight-2 Pauli operator Se of

type XX or ZZ as shown on Fig. 4. Let S be the group generated by weight-6 operators SXp ,

SZp defined earlier and all weight-2 operators Se associated with boundary edges. One can

easily check that S is an abelian group with s = 2L2 + 4L independent generators. Therefore

it defines a stabilizer code encoding k′ = n− s = L2 + 1 qubits.
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Fig. 4. Subsystem version of the surface code.

Since the additional weight-2 stabilizers Se lying on the boundary commute with all tri-

angle operators G(T ), we can use Eq. (3) to define g = L2 gauge qubits associated with

plaquettes of the lattice. Logical operators on the remaining k = k′ − g = 1 logical qubit can
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be chosen as X1 and Z1, see Eq. (4), that is, a horizontal line of X’s and a vertical line of Z’s.

Note that a vertical line of X’s and a horizontal line of Z’s are no longer logical operators

because they anti-commute with some of the boundary stabilizers Se. The same arguments

as above imply that the code has minimum distance d = L. An extension to a planar lattice

with punctured holes encoding multiple logical qubits is sketched on Fig. 5.
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Fig. 5. Subsystem version of the surface code with two punctured holes. Each pair of holes encodes

one logical qubit. The external boundary of the lattice generates the third logical qubit. Thick

red and blue lines show the logical operators.

5 Error correction with noiseless syndromes

In this section we propose an error correction protocol for the idealized setting where the

syndrome readout is noiseless. For simplicity, we shall first focus on the subsystem toric code

defined in Section 2. It suffices to construct a protocol for correcting errors of X-type (bit

flips). Due to the code symmetry, the same protocol can be applied to Z-type errors. Let E

be an unknown Pauli error of X-type. We will say that E creates a defect at a plaquette p iff

E anti-commutes with the stabilizer SZp . The syndrome measurement reveals a configuration

of defects created by E. The key observation is that any single-qubit X-error creates exactly

two defects. Indeed, an X error on a vertical or horizontal edge e creates defects at the two

plaquettes adjacent to e. An X error at any vertex u creates defects at the two plaquettes

lying in the north-west and the south-east quadrants of u. The relationship between single-

qubit X-errors and the corresponding pairs of defects can be captured by introducing a virtual

lattice Λ that consists of virtual vertices and virtual edges. A virtual vertex p represents a

stabilizer SZp (plaquette p of the original lattice), while a virtual edge represents a pair of

defects that can be created by a single-qubit X error. One can easily check that Λ is the

regular triangular lattice, see Fig. 6.

Furthermore, for each virtual edge e = (p, q) there is only one X-error creating a pair of

defects at p and q. For any virtual vertex p let δ(p) be the set of virtual edges incident to p.

Then

SZp =
∏

e∈δ(p)

Ze,
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that is, Z-type stabilizers can be regarded as star operators of the standard toric code defined

on the triangular lattice. Note that a closed loop on the virtual lattice enclosing any triangular

face is an X-type triangle operator G(T ), while non-contractible closed loops correspond to

logical operators.

Z	

 Z	



Z	



Z	

 Z	



Z	

 	
  
	
  
	
  

	
  
	
  
	
  

Fig. 6. The virtual lattice Λ (solid lines) describing correction of X-type errors for the subsystem
toric code of Fig. 1. Opposite sides of the lattice must be identified. The original square lattice

is shown by dashed lines. Each virtual edge represents a code qubit. Stabilizers of Z-type SZp
correspond to stars on the virtual lattice (solid blue lines). Triangle operators of X-type correspond

to triangular faces of the virtual lattice (not shown). Error correction amounts to finding the

minimum weight matching of defects on the virtual lattice. The virtual lattice describing correction
of Z-type errors is obtained from Λ by the 90◦ rotation.

Assuming that errors on different qubits are independent and have the same rate p, the

most likely error E∗ consistent with the observed syndrome coincides with the minimum

weight matching of defects on the virtual lattice. The latter can be found efficiently using the

Edmonds’s algorithm, see [3] for details. Choosing E∗ as a correction operator always returns

the system back to the codespace C. The overall evolution of the system is described by an

operator EE∗ which has trivial syndrome and thus can be viewed as a linear combination

of closed loops on the virtual lattice with Z2 coefficients. Error correction is successful iff

EE∗ acts non-trivially only on the gauge qubits, that is, EE∗ is a product of X-type triangle

operators G(T ). Equivalently, EE∗ must represent the trivial cycle in the homology group

H1(Λ,Z2).

As was argued in [3, 11, 14], the optimal error correction strategy amounts to finding

the most likely equivalence class of errors consistent with the observed syndrome rather than

the most likely error. More specifically, let G be the gauge group generated by the triangle

operators G(T ) of X-type. Since logical operators acting on gauge qubits are irrelevant, all

errors in the coset E ·G must be considered equivalent. Note that there are only four cosets of

G consistent with the observed syndrome, namely, E ·G, EX1 ·G, EX2 ·G, and EX1X2 ·G. As

was shown in [3, 14], the probability of each coset can be expressed as the partition function

of the random bond ±J Ising model. In our case Ising spins reside on triangular faces of the

virtual lattice, anti-ferromagnetic bonds correspond to virtual edges that belong to E, and the

inverse temperature β is determined by the Nishimori condition e−2βJ = p
1−p . The threshold

error rate pc for the optimal decoding coincides with the density of anti-ferromagnetic bonds

at the phase transition point [3]. The latter has been recently computed by Queiroz [26] who
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found pc ≈ 7%.

One can similarly construct the virtual lattice for the subsystem surface code, see Fig. 7.

The only difference is that now defects can be matched either to each other, or to one of the

boundaries.

Fig. 7. The virtual lattice Λ (solid lines) describing correction of X-type errors for the subsystem
surface code of Fig. 4. Each virtual edge represents a code qubit. Diamonds and open circles

represent Z-type stabilizers SZp and Se respectively. A stabilizer associated with a vertex of the

virtual lattice is the product of Pauli Z operators over all edges incident to this vertex. The
original square lattice is shown by dashed lines. The virtual lattice describing correction of Z-type

errors is obtained from Λ by the 90◦ rotation.

6 Error correction for the circuit-based error model

Let us now consider more realistic settings when the syndrome information itself may contain

errors. We assume that the library of elementary operations supported by the quantum

hardware includes CNOT gates between nearest-neighbor qubits, single-qubit measurements

in X- or Z-basis, and preparation of single-qubit ancillary states |0〉 and |+〉. Our error

correction protocol will be defined as a sequence of rounds, where at each round any qubit

can participate in one elementary operation. We assume that each elementary operation is

noisy, so it can fail with a probability p that we call an error rate. More precisely, our error

model, borrowed from [8], is defined as follows.

• A noisy X or Z measurement is the ideal measurement in which the outcome is flipped

with probability p.

• A noisy |0〉 or |+〉 ancilla preparation returns the correct state with probability 1 − p
and the orthogonal state with probability p.

• A noisy CNOT gate is the ideal CNOT followed by an error (1− p)Id+ pD, where Id

is the identity map and D is the fully depolarizing two-qubit map applying one of 16

two-qubit Pauli operators with probability 1/16 each.

We assume that once a qubit has been measured, its state is unknown. To use such a qubit

again, it must be explicitly initialized using the noisy preparation defined above. We do not

need to define memory errors because no qubit will be idle at any round of our protocol.
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In order to measure eigenvalue of individual triangle operators ZiZjZk and XpXqXr we

shall use quantum circuits shown on Fig. 8. Measuring a single triangle operator requires

one ancillary qubit and five rounds. Similar circuits with one extra CNOT gate were used in

fault-tolerant protocols based on the standard surface code [3, 8], where one has to measure

four-qubit plaquette and star operators Z⊗4 and X⊗4.

Fig. 8. Quantum circuits for measuring the eigenvalue of triangle operators ZiZjZk (top) and

XpXqXr (bottom). The circuits use one ancillary qubit. A single Z (X) error on the ancilla az

(ax) can propagate via CNOTs to at most one Z (X) error on code qubits modulo gauge operators.

A single X (Z) error on the ancilla az (ax) results in a faulty measurement outcome.

We begin by highlighting strengths and weaknesses of the subsystem and the standard

surface code. The key advantage of the SSC is a limited propagation of errors by the CNOT

gates. Consider, for example, a single Z error on the ancillary qubit az in the circuit measuring

the triangle operator ZiZjZk, see Fig. 8 (top). Depending on the round at which the error has

occurred, it propagates to one of the errors Zi, ZiZj , ZiZjZk on the code qubits. Multiplying

the last two errors by the triangle operator ZiZjZk leaves only single-qubit errors Zi, Zk, and

the identity error. It shows that a single Z error on the ancilla az can lead to at most one

Z error on the code qubits, modulo gauge operators. An X error on az cannot propagate

to code qubits, so its only effect is flipping the measurement outcome which results in a

faulty syndrome bit. On the negative side, since each stabilizer is composed of two disjoint

triangle operators, see Fig. 4, each syndrome bit effectively accumulates errors from ten

rounds (assuming that the circuits shown on Fig. 8 are used for the syndrome readout). For

comparison, the standard surface code requires six rounds to measure a single syndrome bit,

however a single error on the ancilla can feed back to two errors on code qubits (such double

errors were referred to as ‘horizontal hooks’ in [3]). This shows that neither of the two codes

offers an obvious advantage compared with the other.

Let us now discuss our syndrome readout circuit in more details. Since individual syn-

dromes can no longer be trusted, we shall repeat syndrome measurements T times for some

T � 1. We choose T = L in all numerical simulations. Error correction is deemed successful

if the accumulated error E on the code qubits that results from T noisy syndrome measure-

ments can be corrected based on the full observed syndrome history and one final syndrome
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readout which we assume to be noiseless. (In practice the final readout involves measuring

each code qubit in |0〉 or |+〉 basis. Outcomes of such measurement determine the syndrome

of Z-type or X-type stabilizers respectively. We can assume that single-qubit measurements

are noiseless by absorbing measurement errors into memory errors that occurred one round

earlier.)

Repeating the circuits shown on Fig. 8 cyclically L times would naively require 5L rounds.

We can reduce the required number of rounds to 4L by introducing two ancillary qubits for

each triangle. One of them serves as the ancilla az or ax shown on Fig. 8. The purpose of the

second ancilla is to enable offline preparation of |0〉 or |+〉 states which can be performed in

the same round as the measurement of the main ancilla. To simplify notations, we will only

show one ancilla per triangle and assume that this ancilla is initialized in the |0〉 or |+〉 state

at the end of each measurement round (with a duly added noise).

The readout circuit will be chosen such that any fixed triangle alternates between three

gate rounds and one measurement round in a cyclic fashion. It can be represented by a local

readout schedule

· · ·MG1G2G3MG1G2G3M · · · (7)

where M is either X-type or Z-type measurement on the ancilla while G1, G2, G3 are CNOT

gates coupling the ancilla and the code qubits (the ancilla is control for X-type triangles and

target for Z-type triangles). Time flows from the left to the right. Local schedules chosen

at different triangles must be consistent with each other, such that at any round any qubit

participates in at most one operation.

We shall focus on schedules which are periodic both in space and time. Hence the entire

readout circuit is completely specified by local schedules inside a 3D elementary cell which

consists of four rounds labeled as 0, 1, 2, 3 and four triangles of type NE, SE, SW, NW located

at some fixed plaquette p. We begin by observing that a consistent schedule cannot have a

round at which every triangle applies a CNOT. Indeed, this would define a matching between

code qubits and triangles. However, the lattice has 4L2 triangles and only 3L2 code qubits.

This observation shows that at every round all triangles of some type have to be measured.

Furthermore, it is natural to demand that if some pair of triangles form a stabilizer, these

triangles must be measured in two consecutive rounds (otherwise the corresponding syndrome

bit would accumulate too much errors). In other words, we would like to measure all triangles

of X-type in two consecutive rounds and all triangles of Z-type in the two remaining consec-

utive rounds. Our choice of the measurement rounds satisfying these conditions is shown on

Fig. 9. Note that all X-type triangles are measured at rounds 3, 0, while all Z-type triangles

are measured at rounds 1, 2.

It remains to schedule CNOT gates. We will say that a schedule is correct iff for each

triangle one can move all gates forward in time towards the next measurement. Here moving

a gate is allowed as long as it commutes with other gates. A correct schedule faithfully

simulates the simple syndrome extraction routine described in Section 2 since after moving

all gates towards the next measurement all X-type stabilizers are measured at rounds 3, 0,

while all Z-type stabilizers are measured at rounds 1, 2. We shall look for a schedule which is

correct and invariant under the exchange of X and Z (modulo lattice symmetries and time

translations). The latter requirement is rather natural since our error model does not have a

bias towards X or Z errors.
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Fig. 9. The numbers indicate rounds (modulo four) at which the ancillas assigned to each triangle

have to be measured.

To derive sufficient conditions for correctness let us introduce some terminology. Consider

any triangle T and its local schedule, see Eq. (7). We shall refer to the gates G1 and G3 as

the first gate and the last gate for the chosen triangle. If some pair of triangles T and T ′ are

measured at two subsequent rounds j and j+ 1 respectively, we will say that T is the leading

triangle and T ′ is the tailing triangle. If T and T ′ are measured two rounds apart, the choice

of the leading and the tailing triangle is arbitrary.

Lemma 1: A schedule of CNOTs is correct if for any X-type and any Z-type triangle at

least one of the following is true:

• The two triangles are disjoint,

• The two triangles are measured two rounds apart,

• The last gate of the leading triangle commutes with the first gate of the tailing triangle.

Proof: Suppose T x and T z are X-type and Z-type triangles respectively. If T x and T z are

measured two rounds apart, their combined local schedules can be represented by a diagram
· · · Mx Gx1 Gx2 Gx3 Mx Gx1 Gx2 · · ·
· · · Gz2 Gz3 Mz Gz1 Gz2 Gz3 Mz · · ·

The gates Gx1 and Gz3 must be disjoint. Similarly, the gates Gx3 and Gz1 must be disjoint.

Hence we can deform the diagram by moving Gx1 , Gz1 one round forward and moving Gx3 , Gz3
one round backward obtaining an equivalent circuit:

· · · Mx Gx1G
x
2G

x
3 Mx Gx1G

x
2G

x
3 · · ·

· · · Gz1G
z
2G

z
3 Mz Gz1G

z
2G

z
3 Mz · · ·

We can further deform the circuit by moving each measurement backwards towards the next

gate.

Suppose now that T x and T z are measured in two subsequent rounds such that T x is the

leading and T z is the tailing (the opposite case is completely analogous). Then their combined

schedules can be represented by a diagram
· · · Mx Gx1 Gx2 Gx3 Mx Gx1 · · ·
· · · Gz3 Mz Gz1 Gz2 Gz3 Mz · · ·

By assumption, the gates Gx3 and Gz1 commute. Hence we can deform the diagram by moving

Gx3 one round backward and moving Gz1 one round forward. In addition, we can move Gx1 one

round forward and move Gz3 one round backward. It gives an equivalent circuit:
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· · · Mx Gx1G
x
2G

x
3 Mx Gx1G

x
2G

x
3 · · ·

· · · Mz Gz1G
z
2G

z
3 Mz · · ·

We can further deform the circuit by moving each measurement backwards towards the next

gate.

After the deformation each triangle applies the entire sequence G1G2G3M in a single

round which is two rounds apart from the measurement round in the original schedule. We

can now move the sequence G1G2G3M two rounds forward for each triangle simultaneously

until X-type triangles apply Gx1G
x
2G

x
3M at rounds 0, 3 and Z-type triangles apply Gz1G

z
2G

z
3M

at rounds 1, 2. This shows that the original schedule is correct.
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Fig. 10. Example of a correct syndrome extraction schedule with four rounds labeled by 0, 1, 2, 3
repeated cyclically. The numbers assigned to vertices of each triangle indicate the rounds at which

the code qubits comprising a triangle are coupled to the ancilla by CNOT gates. Measurement

rounds are shown on Fig. 9. One can check that any pair of x-type and z-type triangles satisfies
conditions of Lemma 1.

Our choice of a CNOT schedule is shown on Fig. 10. One can easily check that it satisfies

conditions of Lemma 1. It remains to define the classical post-processing step that extracts the

syndromes from the measured eigenvalues of triangle operators. For any integer t ∈ [0, L− 1]

and a plaquette p we define a syndrome bit sZp (t) as a product of eigenvalues of Z-type

triangles SE and NW located at the plaquette p that were measured at rounds 4t + 1 and

4t + 2. Similarly, we define a syndrome bit sXp (t) as a product of eigenvalues of X-type

triangles SW and NE located at the plaquette p that were measured at rounds 4t + 3 and

4t+ 4. Hence each syndrome bit combines eigenvalues of two triangle operators measured in

two consecutive rounds.

Let us now move to the error correction protocol that takes as input the syndrome in-

formation and outputs a correcting Pauli operator E∗ acting on the code qubits. It mostly

follows [3, 8, 27]. Our protocol deals with X-type and Z-type errors independently. It should

be noted that the schedule shown on Figs. 9,10 is invariant under the horizontal reflection

of the lattice and shifting the time by two rounds. Since the horizontal reflection exchanges

X-type and Z-type triangles, it suffices to analyze X-type errors.

Let us introduce a 3D virtual lattice Λ that consists of virtual vertices and virtual edges.

A virtual vertex is a pair (p, t), where p is a plaquette of the 2D code lattice and t ∈ [0, L− 1]

is the discrete time. We shall say that a virtual vertex u = (p, t) has a defect iff the syndrome

bits sZp (t) and sZp (t + 1) are different. Hence the full syndrome history can be regarded as a
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configuration of defects on the virtual lattice.

We begin by considering configurations of defects created by a single fault in the readout

circuit. Here a single fault includes one of the following possibilities:

• Wrong measurement outcome on some ancilla,

• Wrong ancilla preparation,

• One of the errors IX, XI, or XX inserted after some CNOT gate.

In other words, a single fault is any event that can occur with probability Ω(p) in the limit

p → 0 (recall that we only keep track of X-type errors). In order to define virtual edges we

need the following observation.

Lemma 2: Any single fault in the readout circuit creates either 0 or 2 defects on the virtual

lattice.

Proof: A measurement error on the ancilla az at a plaquette p creates two defects at virtual

vertices (p, t) and (p, t + 1) for some t. Measurement errors on ancillas ax create no defects

since we ignore X-type syndromes. Ancilla preparation error can be regarded as an X-type

error for ancillas az and Z-type error for ancillas ax. Such an error can be propagated forward

in time without feeding back to the code qubits because az is always a target qubit and ax is

always a control qubit for any CNOT gate, see Fig. 8. Hence ancilla preparation errors are

equivalent to the measurement errors. By the same reason, an X-error on az caused by any

CNOT gate is equivalent to a measurement error.

Consider now a single-qubit X error on some code qubit. If the syndrome were measured

on all plaquettes directly after the error, one would observe non-trivial syndromes sZp , sZq at

some pair of plaquettes p, q, see Section 2. Since there are no other errors in the readout

circuit, it will faithfully simulate the ideal syndrome measurements, that is, the syndrome

sZp (t) will change from 1 to −1 for some step tp and the syndrome sZq (t) will change from 1 to

−1 for some step tq. This produces a pair of defects at virtual sites (p, tp) and (q, tq). (More

detailed analysis shows that either tp = tq or tp = tq ± 1). An error XX that occurred after

a CNOT gate is equivalent to a single X error on the control qubit that occurred before this

CNOT. The only remaining case is a single X error on the ancilla ax. It can be propagated

forward or backward towards the nearest ax-measurement. Such propagation feeds back at

most one X error to code qubits. This is the case that we have already explored.

A trivial corollary of the lemma is that the number of defects on the virtual lattice is

always even.

We connect a pair of virtual vertices u, v by a virtual edge iff there a single fault in the

readout circuit capable of creating a pair of defects at u and v. A more detailed analysis

shows that the virtual lattice has seven types of edges (not counting the orientation). The

table below shows all 14 neighbors v of some fixed virtual vertex u = (x, y, t) as well as the

total number of single faults of each type in the readout circuit that create defects at u and v.

For brevity we refer to single faults IX, XI, XX as G-faults (gate faults), while measurement

and preparation single faults are referred to as M-faults and P-faults.
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Neighbor of (x, y, t) G-faults M-faults P-faults Prior
(x, y, t± 1) 6 2 2 11p/2
(x± 1, y, t) 8 0 0 2p

(x± 1, y ∓ 1, t) 8 0 0 2p
(x, y ± 1, t) 4 0 0 p

(x, y ± 1, t± 1) 2 0 0 p/2
(x∓ 1, y, t± 1) 2 0 0 p/2

(x∓ 1, y ± 1, t± 1) 2 0 0 p/2

Note that the space-like virtual edges (those for which u and v have the same t coordi-

nate) correspond to edges of the 2D virtual lattice defined in Section 5. If one ignores the t

coordinate, space-like virtual edges correspond to the code qubits. In particular, pairs of de-

fects located on space-like virtual edges can be viewed as memory errors. On the other hand,

pairs of defects located on time-like virtual edges(those for which u and v have the same x,y

coordinates) can be viewed as syndrome measurement errors. The remaining virtual edges

represent various combinations of memory errors and measurement errors.

For every virtual edge e we define a prior pe as the probability to observe a pair of defects

at the endpoints of e. Taking into account that any single G-fault has probability p/4, while

a single M-fault and a single P-fault have probability p, one arrives at the priors listed in the

table.

We shall choose the correction operator E∗ by pretending that the creation of defect

pairs on different virtual edges are independent events. Then the most likely combination of

memory errors and measurement errors consistent with the observed configuration of defects

coincides with the minimum weight matching of defects on the virtual lattice, where an edge

e is assigned a weight we ∼ log (1/pe). The minimum weight matching M can be found

efficiently using the Edmonds’s algorithm. Finally, we choose the correction operator E∗ as

the product of all memory errors that appear in M . In order to decide whether the error

correction is successful we compare E∗ with the accumulated error E on the code qubits

generated by the syndrome readout circuit. The results of our Monte Carlo simulation are

shown on Figs. 11,12. The threshold error rate pc can be estimated as the common intersection

point of the error correction failure probability curves corresponding to different lattice sizes

L (for simplicity we neglect finite-size effects that lead to small variations between pairwise

intersection points on Fig. 11 for small values of L). The data indicates that the threshold

error rate for the circuit-based error model is pc ≈ 0.6%.

7 Direct 3-qubit parity measurements

In the previous section we estimated the threshold in a model where the triangle operators are

measured by performing CNOT gates between the code qubits and an ancillary qubit. In this

section, we will study a different model where measurements are performed directly. For some

physical devices, it is possible to directly probe a multi-qubit parity operator without the need

to use an ancillary qubit—the probe itself is used as a mediator that stores and accumulates

the multi-qubit correlations. Direct two-qubit measurements have been realized in circuit

quantum electrodynamics [28, 29, 30, 31], and there are proposals [32] to turn these two-

qubit measurements into parity measurements. These direct measurement schemes require a

separate threshold analysis because they have different noise models and propagation.
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Fig. 11. Probability of the error correction failure for the subsystem toric code under the circuit-

based error model. For a lattice of size L the syndrome measurement has been repeated L times.
Each data point was obtained using 104 − 106 Monte Carlo trials. The simulation was performed

only for X-type errors (Z-type errors on the reflected lattice).

We will focus on the recent proposal of DiVincenzo and Solgun [21] that realizes a three-

qubit parity measurement ZZZ by capacitively coupling three Josephson-junction qubits to

two transmission-line resonators. In the dispersive regime—where the difference between the

resonant frequency of the transmission lines and the qubit transition frequency is much larger

than the coupling strength—the transmission-line will pick-up a qubit-state-dependent fre-

quency shift (Stark shift). When a near-resonant frequency probe signal is sent through one

of the transmission lines, it picks up a phase that depends on the resonant frequency. Thus,

the state-dependent resonant frequency shift will imprint a phase shift on the probe pulse that

depends on the state of all three qubits. With an appropriate choice of parameters (qubit-

transmission line detuning, coupling strength, probe signal frequency), the probe signals sent

through the two transmission lines can be measured interferometrically to reveal information

only about the parity of the three qubits, all other information about the qubit state imprinted

on the probe signals being erased by the interferometric measurement. One important advan-

tage of this measurement scheme is that a single qubit can participate to two distinct parity

measurements simultaneously with an appropriate arrangement of transmission lines.

The main source of errors in this measurement is dephasing caused by the finite band-

width of the probe pulse [21]. In an ideal parity measurement, the coherence between two

computational basis states of the three-qubit systems |x〉 and |y〉 would be totally suppressed

when x and y have different parities, and unaffected otherwise. The finite bandwidth of the

probe pulse will cause dephasing between states of a given parity, and incomplete dephasing

between states of distinct parity. Moreover, these errors are otherwise uniform, they do not

depend, e.g., on the Hamming distance |x−y| between the computational basis states. This is

characteristic of a collective noise model, where multi-qubit errors are as likely as single qubit

errors. In contrast, when qubits are subject to independent noise, dephasing would increase

with Hamming distance between the states.

Parity measurements in the conjugate basis are required to measure the X-type triangle
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Fig. 12. Scaling of the error correction failure probability for different error rates below the

threshold. Error bars represent the statistical error. Achieving the failure probability 10−6 at the
error rate p = 0.5% would require L ≈ 100.

operators. These can be realized by rotating the qubits prior to sending the probe signal in the

transmission line. Single qubit rotations are very fast and accurate in this architecture [33].

Nonetheless, they propagate errors, and can interchange X-type and Z-type errors. Based

on these considerations, we will model noisy measurement of X-type and Z-type triangles in

the following way:

• A noisy XXX or ZZZ measurement is modeled by a perfect even/odd subspace pro-

jection, followed by an error (1− p)Id+ pD, where Id is the identity map and D is the

fully depolarizing three-qubit map applying one of 64 three-qubit Pauli operators with

probability 1/64 each.

• The measurement outcome is flipped with probability p.

With this model, the syndrome extraction cycle requires only two rounds: one to measure

all X-type triangles and one to measure all Z-type triangles. This implies that some qubits

participate to two simultaneous measurements. As mentioned above, this is not a problem

physically so far as a single qubit can be coupled to multiple transmission lines, which has

already been demonstrated experimentally [34]. Moreover, two noisy parity measurements in

the same basis always commute with our choice of noise model.

We have simulated fault-tolerant error correction of the subsystem toric code using direct

parity measurement with the noise model described above, our results are presented on Fig. 13.

Since errors are correlated in this model, we have opted for the renormalization group (RG)

decoding algorithm proposed in [11, 12]. Indeed, Edmonds’s minimum weight matching algo-

rithm assumes an independent noise model and consequently yields a lower threshold in the

presence of correlations. The RG decoder can exactly account for some of these correlations

(those that are contained within a RG unit cell). Additional correlations can be approximated

by updating the error prior on each RG unit cell using a belief propagation decoder [35]. The

RG decoding is executed using these updated error priors. Following the proposal of [20],

we map the code and its (updated) noise model onto the standard toric code on which we
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execute RG b. While Refs. [11, 12] assumed noiseless syndrome measurements, the decoding

algorithm can easily be extended to noisy syndrome by renormalizing a 3D lattice [36].
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Fig. 13. Decoding error probability as a function of the physical error rate p for various lattice
sizes L. The lines are obtained using the fitting functions a+ b(p− pth)L1/ν + c[(p− pth)L1/ν ]2,

which produces a threshold pth ≈ 0.968% and a critical exponent ν ≈ 1.36.

The results shown on Fig. 13 indicate a threshold value of roughly 0.97%. This value

should be seen as lower bound to the true threshold of this code, which may well be above

1%. Indeed, the results presented here were obtained from a unit cell of dimension 2× 2× 1:

two of the three space-time dimensions are renormalized at each iteration, and by rotating

the unit cell at each iteration we obtain a renormalization of the entire space-time lattice

by a factor 4 after 3 RG rounds. Based on our experiments, larger RG unit cells produce

higher thresholds because they make use of more correlations existing in the noise model. The

decoding complexity scales exponentially with the unit cell size however, so in practice we

are limited to relatively small cells. Furthermore, while the simulated syndrome extraction

protocol involved measurements of both X-type and Z-type triangles, error correction has been

performed only for X-type errors. Applying the same error correction algorithm independently

to X-type and Z-type errors would result in the same error threshold c. We expect that more

sophisticated decoders taking into account correlations between X and Z errors could achieve

higher error thresholds.

Finally, we note that direct parity measurements of weight-four operators such as ZZZZ

and XXXX can be realized similarly [21]. This could be used to implement Kitaev’s toric

code. However, it is not reasonable to assume that the noise rate p is independent of the

weight w of the operator being measured. Thus, one needs to work out this dependence p(w)

from physical considerations before comparing thresholds of different codes obtained from

direct parity measurements.

bThis last step plays no fundamental role, it only saves us from programming a distinct RG decoder for each
code: since the decoding problem of any 2D translationally-invariant stabilizer code can be mapped to that
of decoding of the standard toric code [20], the same program can be used with different codes.
cSince the subsystem toric code and the error model are symmetric under exchange of Pauli X and Z, the
error threshold must be the same for the models with only X and only Z errors. Correcting each type of
errors independently for the full error model can increase the decoding failure probability at most by a factor
of two compared with the case of X errors only (use the union bound).
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8 Conclusion

We have presented a subsystem version of Kitaev’s surface code. The main features of our code

is that it requires only 3-qubit parity measurements and its stabilizer generators have weight 6.

Minimizing the weight of the parity measurements is helpful as it simplifies the measurement

procedure, while minimizing the weight of the stabilizer generators is also desirable since it

makes syndromes more reliable. In contrast to our code, the standard toric code requires

weight 4 parity measurements and has weight 4 stabilizer generators. The subsystem color

codes require only weight 2 parity measurements, but have stabilizer generators of weight up

to 18. Thus, based only on these considerations, it is not clear how the threshold of these

various codes should compare.

Our numerics show that in the circuit based model, our code has a threshold (0.6%)

which is almost an order of magnitude larger than the one of the color code on the square-

octagon lattice (0.08%) [37], and a bit more than half that of the standard toric code (0.9%)

[5]. Motivated by the recent work of DiVincenzo and Solgun [21], we have also considered

a setting where parity measurements can be implemented directly and found a threshold of

0.97%. This value cannot be compared directly to the thresholds reported above since it is

based on a substantially different noise model, and additional physical considerations must

be taken into account before comparing.

We have shown that the new subsystem toric code gives rise to an exactly solvable spin

Hamiltonian with 3-qubit interactions and topologically ordered ground state which is locally

equivalent to the standard toric code.
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