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We contribute a 2D nearest-neighbor quantum architecture for Shor’s algorithm to factor

an n-bit number in O(log3 n) depth. Our implementation uses parallel phase estimation,

constant-depth fanout and teleportation, and constant-depth carry-save modular addi-
tion. We derive upper bounds on the circuit resources of our architecture under a new

2D model which allows a classical controller and parallel, communicating modules. We

provide a comparison to all previous nearest-neighbor factoring implementations. Our
circuit results in an exponential improvement in nearest-neighbor circuit depth at the

cost of a polynomial increase in circuit size and width.
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1 Introduction

Shor’s factoring algorithm is a central result in quantum computing, with an exponential
speed-up over the best known classical algorithm [1]. As the most notable example of a
quantum-classical complexity separation, much effort has been devoted to implementations
of factoring on a realistic architectural model of a quantum computer [2, 3, 4, 5, 6]. We
can bridge the gap between the theoretical algorithm and a physical implementation by de-
scribing the layout and interactions of qubits at an intermediate, architectural level of ab-
straction. This gives us a model for measuring circuit resources and their tradeoffs. In this
work, we contribute a circuit implementation for prime factorization of an n-bit integer on a
two-dimensional architecture that allows concurrent (parallel) two-qubit operations between
neighboring qubits, an omnipresent classical controller, and modules which are allowed to
teleport qubits to each other. We call this new model 2D CCNTCM. We show that our
circuit construction is asymptotically more efficient in circuit depth than previous state-of-
the-art techniques for nearest-neighbor architectures, achieving a depth of O(log3 n), a size
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938 A 2D nearest-neighbor quantum architecture for factoring in polylogarithmic depth

of O(n4 log n), and a width of O(n4) qubits, as detailed in Table 3 of Section 8.
Our technique hinges on several key building blocks. Section 2 introduces quantum ar-

chitectural models, circuit resources, and constant-depth communication techniques due to
[7, 8]. Section 3 places our work in the context of existing results. In Section 4, we provide a
self-contained pedagogical review of the carry-save technique and encoding. In Section 5 we
modify and extend the carry-save technique to a 2D modular adder, which we then use as a
basis for a modular multiplier (Section 6) and a modular exponentiator (Section 7). For each
building block, we provide numerical upper bounds for the required circuit resources. Finally,
we compare our asymptotic circuit resource usage with other factoring implementations.

2 Background

Quantum architecture is the design of physical qubit layouts and their allowed interactions to
execute quantum algorithms efficiently in time, space, and other resources. In this paper, we
focus on designing a realistic nearest-neighbor circuit for running Shor’s factoring algorithm
on two-dimensional architectural models of a physical quantum device with nearest-neighbor
interactions.

2.1 Architectural Models and Circuit Resources

Following Van Meter and Itoh [5], we distinguish between a model and an architectural
implementation as follows. A model is a set of constraints and rules for the placement and
interaction of qubits. An architecture (or interchangeably, an implementation or a circuit) is
a particular spatial layout of qubits (as a graph of vertices) and allowed interactions (edges
between the vertices), following the constraints of a given model. In this section, we describe
several models which try to incorporate resources of physical interest from experimental work.
We also introduce a new model, 2D CCNTCM, in order to analyze our current circuit.

The most general model is called Abstract Concurrent (AC) and allows arbitrary, long-
range interactions between any qubits and concurrent operation of quantum gates. This
corresponds to a complete graph with an edge between every pair of nodes. It is the model
assumed in most quantum algorithms.

A more specialized model restricts interactions to nearest-neighbor, two-qubit, concurrent
gates (NTC) in a regular one-dimensional chain (1D NTC), which is sometimes called linear
nearest-neighbor (LNN). This corresponds to a line graph. This is a more realistic model
than AC, but correspondingly, circuits in this model may incur greater resource overheads.

To relieve movement congestion, we can consider a two-dimensional regular grid (2D NTC),
where each qubit has four planar neighbors, and there is an extra degree of freedom over the
1D model in which to move data. In this paper, we extend the 2D NTC model in three ways.
The first two extensions are described in Section 2.2, and the third extension is described in
Section 2.3.

2.2 2D CCNTC: Two-Dimensional Nearest-Neighbor Two-Qubit Concurrent Gates

with Classical Controller

The first extension allows arbitrary planar graphs with bounded degree, rather than a regular
square lattice. Namely, we assume qubits lie in a plane and edges are not allowed to intersect.
All qubits are accessible from above or below by control and measurement apparatus. Whereas
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2D NTC conventionally assumes each qubit has four neighbors, we consider up to six neighbors
in a roughly hexagonal layout. The second extension is the realistic assumption that classical
control (CC) can access every qubit in parallel, and we do not count these classical resources in
our implementation since they are polynomially bounded. The classical controllers correspond
to fast digital computers which are available in actual experiments and are necessary for
constant-depth communication in the next section.

We call an AC or NTC model augmented by these two extensions CCAC and CCNTC,
respectively. Before we describe the third extension, let us formalize our model for 2D CC-

NTC, with definitions that are (asymptotically) equivalent to those in [8].
Definition 1 2D CCNTC architecture consists of

• a quantum computer QC which is represented by a planar graph (V,E). A node v ∈ V
represents a qubit which is acted upon in a circuit, and an undirected edge (u, v) ∈ E
represents an allowed two-qubit interaction between qubits u, v ∈ V . Each node has
degree at most 6.

• a universal gate set G = {X,Z,H, T, T †, CNOT,MeasureZ}.
• a deterministic machine (classical controller) CC that applies a sequence of concurrent

gates in each of D timesteps.

• In timestep i, CC applies a set of gates Gi = {gi,j ∈ G}. Each gi,j operates in one of
the following two ways:

1. It is a single-qubit gate from G acting on a single qubit vi,j ∈ V
2. It is the gate CNOT from G acting on two qubits v(1)

i,j , v
(2)
i,j ∈ V where (v(1)

i,j , v
(2)
i,j ) ∈ E

All the gi,j can only operate on disjoint qubits for a given timestep i. We define the
support of Gi as Vi, the set of all qubits acted upon during timestep i.

Vi =
⋃

j:gi,j∈Gi

vi,j ∪ v(1)
i,j ∪ v(2)

i,j (1)

We can then define the three conventional circuit resources in this model.

circuit depth (D): the number of concurrent timesteps.

circuit size (S): the total number of non-identity gates applied from G, equal to
∑D
i=1 |Gi|.

circuit width (W ): the total number of qubits operated upon by any gate, including inputs,
outputs, and ancillae. It is equal to |⋃Di=1 Vi|.

We observe that the following relationship holds between the circuit resources. The circuit
size is bounded above by the product of circuit depth and circuit width, since in the worst
case, every qubit is acted upon by a gate for every timestep of a circuit. The circuit depth is
also bounded above by the size, since in the worst case, every gate is executed serially without
any concurrency.

D ≤ S ≤ D ·W (2)
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Fig. 1. A circuit for measurement in the Bell state basis.

The set G includes measurement in the Z basis, which is actually not a unitary operation,
or gate per se. All other gates in G form a universal set of unitary gates [9]. In this paper
we will treat the operations in G as elementary gates. We also find it useful to define a Bell
basis measurement using operations from G. A circuit performing this measurement is shown
in Figure 1 and has depth 4, size 4, and width 2.

The third extension to our model, and the most significant, is to consider multiple discon-
nected planar graphs, each of which is a 2D CCNTC architecture. This is described in more
detail in the next section.

2.3 2D CCNTCM: Two-Dimensional Nearest-Neighbor Two-Qubit Concurrent

Gates with Classical Controller and Modules

A single, contiguous 2D lattice which contains an entire quantum architecture which may be
prohibitively large to manufacture. In practice, scalable experiments will probably use many
smaller quantum computers which communicate by means of shared entanglement [10]. We
call these individual machines modules, each of which is a self-contained 2D CCNTC lattice.

We treat these modules and teleportations between them as nodes and edges, respectively,
in a higher-level planar graph. The teleportations each transmit one qubit from one module
to another, from any location within the source module to any location within the destination
module, making use of the omnipresent classical controller. The modules can be arbitrarily
far apart physically, but they have bounded-degree connectivity with other modules, and their
edges are planar (they cannot intersect).

A single module can be part of multiple teleportation operations in a single timestep, as
long as they involve disjoint qubits within the module. We justify this assumption in that it
is possible to establish entanglement between multiple quantum computers in parallel. We
call this new model 2D CCNTCM, and we argue that is captures the essential aspects of
2D architectures without being overly sensitive to the exact geometry of the lattices involved.
An graphic depiction of three modules in 2D CCNTCM is shown in Figure 2. Each module
contains within it a 2D CCNTC lattice. We can equivalently consider the omnipresent,
single classical controller as a collection of multiple classical controllers, one for each module
or teleportation operation, which can inter-communicate classically and share a clock.
Definition 2 A 2D CCNTCM architecture consists of

• a quantum computer QC which is represented by a planar graph (V ,E). A node v ∈
V represents a module, or a graph (V,E) from a 2D CCNTC architecture defined
previously. It can have unbounded degree. An undirected edge (u, v) ∈ E represents an
allowed teleportation from any qubit in module u to another qubit in module v.
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Fig. 2. Three modules in the 2D CCNTCM model

• All modules are restricted to be linear in the number of their qubits: |V | = Θ(n) for all
(V,E) ∈ V .

• a universal gate set G = {X,Z,H, T, T †, CNOT,MeasureZ} for the qubits within the
same modules which is the same as for 2D CCNTC, and an additional operation
Teleport which only operates on qubits in different modules.

• a deterministic machine (classical controller) CC that applies a sequence of concurrent
gates in each of D + D timesteps. This can be a separate classical controller for every
pair of modules.

• In timestep i, CC applies gates Gi = {gi,j : gi,j ∈ G ∨ gi,j = Teleport}. That is, there
are two kinds of timesteps with respect to the kinds of gates which operate within them.

1. In the first kind, gates are exclusively from G, and they operate within modules as
described for 2D CCNTC above. We say there are D such timesteps.

2. In the second kind, gates are exclusively Teleport gates between two qubits v(1)
i,j ∈ v1

and v(2)
i,j ∈ v2 for (possibly non-distinct) modules v1, v2 ∈ V . Again, all such qubits

much be distinct within a timestep. We say there are D such timesteps.

Again, we define the support of Gi as Vi, the set of all qubits acted upon by any gi.j,
which includes all the modules.

Vi =
⋃

j:gi,j∈Gi

vi,j ∪ v(1)
i,j ∪ v(2)

i,j (3)

We measure the efficiency of a circuit in this new module using not just the three conven-
tional circuit resources, but with three novel resources based on modules.

module depth (D): the depth of consecutive teleportations between modules.

module size (S): the number of total qubits teleported between any two modules over all
timesteps.

module width (W ): the number of modules whose qubits are acted upon during any timestep.

We note the following relationship between circuit width and module width.

W = O(nW ) (4)
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2.4 Circuit Resource Comparisons

Counting gates from G as having unit size and unit depth is an overestimate compared to the
model in [3], in which a two-qubit gate has unit size and unit depth and absorbs the depth and
size of any adjacent single-qubit gates. We intend for this more pessimistic estimate to reflect
the practical difficulties in compiling these gates using a non-Clifford gate in a fault-tolerant
way, such as the T gate or the Toffoli gate [11].

In both our resource counting method and that of [12, 3], multiple gates acting on disjoint
qubits can occur in parallel during the same timestep. For each building block, from modular
addition to modular multiplication and finally to modular exponentiation, we provide closed
form equations upper-bounding the required circuit resources as a function of n, the size of
the modulus m to be factored. We will use the term numerical upper bound to distinguish
these formulae from asymptotic upper bounds.

It is possible to reduce the numerical constants with more detailed analysis, which would
be important for any physical implementation. However, we have chosen instead to simplify
the number of terms in the formulae for the current work. We do not intend for these upper
bounds to represent the optimal or final work in this area.

The modular adder in Section 5 and its carry-save subcomponents only occur within a
single module, so we only give their circuit resources and not their module resources. For the
modular multiplier in Section 6 and the modular exponentiator in Section 7, we give both
circuit and module resources.

2.5 Constant-depth Teleportation and Fanout

Communication, namely the moving and copying of quantum information, in nearest-neighbor
quantum architectures is challenging. The first challenge of moving quantum information from
one site to another over arbitrarily long distances can be addressed by using the constant-
depth teleportation circuit shown in Figure 3 due to Rosenbaum [8], illustrated using standard
quantum circuit notation [13]. This requires the circuit resources shown in Table 1. The depth
includes a layer of H gates; a layer of CNOTs; an interleaved layer of Bell basis measurements;
and two layers of Pauli corrections (X and Z for each qubit), occurring concurrently with
resetting the |j〉 and |k〉 qubits back to |0〉. These correction layers are not shown in the
circuit.

Although general cloning is impossible [13], the second challenge of copying information
can be addressed by performing an unbounded quantum fanout operation: |x, y1, . . . , yn〉 →
|x, y1 ⊕ x, . . . , yn ⊕ x〉. This is used in our arithmetic circuits when a single qubit needs to
control (be entangled with) a large quantum register (called a fanout rail). We employ a
constant-depth circuit due to insight from measurement-based quantum computing [16] that
relies on the creation of an n-qubit cat state [15] which was communicated to us by Harrow
and Fowler [7].

This circuit requires O(1)-depth, O(n)-size, and O(n)-width. Approximately two-thirds
of the ancillae are reusable and can be reset to |0〉 after being measured. Numerical upper
bounds are given in Table 1. The constant-depth fanout circuit is shown in Figure 4 for the
case of fanning out a given single-qubit state |ψ〉 = α |0〉+β |1〉 to four qubits. The technique
works by creating multiple small cat states of a fixed size (in this case, three qubits), linking
them together into a larger cat state of unbounded size with Bell basis measurements, and
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|ψ〉
Bell

=<
:;

j1

|0〉 H • k1

|0〉 �������� Zj1Xk1 |ψ〉

Bell
=<
:;

j2

|0〉 H • k2

|0〉 �������� Zj2Zj1Xk2Xk1 |ψ〉

Bell
=<
:;

j3

|0〉 H • k3

|0〉 �������� Zj1Zj2Zj3Xk3Xk2Xk1 |ψ〉

Fig. 3. Constant-depth circuit based on [14, 15] for teleportation over n = 5 qubits [8].

|ψ〉
Bell′

=<
:;

j1

|0〉 H • k1

|0〉1 �������� • Zj1Xk1 |`〉1
|0〉 ��������

Bell
=<
:;

j2

|0〉 H • k2

|0〉2 �������� • Zj2Xk2Xk1 |`〉2
|0〉 ��������

Bell
=<
:;

j3

|0〉 H • k3

|0〉3 �������� • Zj3Xk3Xk2Xk1 |`〉3|0〉4 �������� Xk3Xk2Xk1 |`〉4

Fig. 4. Constant-depth circuits based on [14, 15] for fanout [7] of one qubit to n = 4 entangled

copies.

finally entangling them with the source qubit to be fanned out. The qubits marked |`〉 are
entangled into the larger fanned out state given in Equation 5. The Pauli corrections from
the cat state creation are denoted by Xk2 , Xk3 , Zj2 and Zj3 on qubits ending in states |`〉1,
|`〉2, |`〉3, and |`〉4. The Pauli corrections Xk1 and Zj1 are from the Bell basis measurement
entangling the cat state with the source qubit (denoted Bell′).

Zj11 X
k1
1 Zj22 X

k2
2 Xk1

2 Zj33 X
k3
3 Xk2

3 Xk1
3 Xk3

4 Xk2
4 Xk1

4 (α |0〉1 |0〉2 |0〉3 |0〉4 + β |1〉1 |1〉2 |1〉3 |1〉4)
(5)

The operators Xk
i and Zjh denote Pauli X and Z operators on qubits i and h, controlled by

classical bits k and j, respectively. These corrections are enacted by the classical controller
based on the Bell measurement outcomes (not depicted). Note the cascading nature of these
corrections. There can be up to n− 1 of these X and Z corrections on the same qubit, which
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Circuit Name Depth Size Width
Teleportation from Figure 3 7 3n + 4 n+1

Fanout from Figure 4 9 10n - 9 3n-1
Un-fanout 8 log2(2n) 33n log2(2n) + 10 log2

2(2n) 3n− 1

Table 1. Circuit resources for teleportation, fanout, and un-fanout (consisting of alternating rounds
of constant-depth teleportation and CNOT).

can be simplified by the classical controller to a single X and Z operation and then applied
with a circuit of depth 2 and size 2. Also, given the symmetric nature of the cat state, there
is an alternate set of Pauli corrections which would give the same state and is of equal size
to the corrections given above.

Reversing the fanout (un-fanout) in constant depth is an interesting problem. Doing so
would allow us to improve the overall depth of our factoring implementation to O(log2 n)
instead of O(log3 n). In this work it is sufficient to perform un-fanout using alternating
rounds of teleportation and CNOT among the n fanned-out qubits in a logarithmic-depth
binary tree. The resources for this are given in Table 1.

From an experimental perspective, it is physically efficient to create a cat state in trapped
ions using the Mølmer-Sørensen gate [17][18]. However, the fanout circuit for the 2D CC-
NTCM model would still be useful for other technologies, such as superconducting qubits on
a two-dimensional lattice.

3 Related Work

Our work builds upon ideas in classical digital and reversible logic and their extension to
quantum logic. Any circuit implementation for Shor’s algorithm requires a quantum adder.
Gossett proposed a quantum algorithm for addition using classical carry-save techniques to
add in constant-depth and multiply in logarithmic-depth, with a quadratic cost in qubits
(circuit width) [19]. The techniques relies on encoded addition, sometimes called a 3-2 adder,
and derives from classical Wallace trees [20].

Takahashi and Kunihiro discovered a linear-depth and linear-size quantum adder using
zero ancillae [21]. They also developed an adder with tradeoffs between O(n/d(n)) ancillae
and O(d(n))-depth for d(n) = Ω(log n) [22]. Their approach assumes unbounded fanout,
which had not previously been mapped to a nearest-neighbor circuit until our present work.

Studies of architectural constraints, namely restriction to a 2D planar layout, were exper-
imentally motivated. For example, these layouts correspond to early ion trap proposals [23]
and were later analyzed at the level of physical qubits and error correction in the context of
Shor’s algorithm [24]. Choi and Van Meter designed one of the first adders targeted to a 2D
architecture and showed it runs in Θ(

√
n)-depth on 2D NTC [25] using O(n)-qubits with

dedicated, special-purpose areas of a physical circuit layout.
Modular exponentiation is a key component of quantum period-finding (QPF), and its

efficiency relies on that of its underlying adder implementation. Since Shor’s algorithm is a
probabilistic algorithm, multiple rounds of QPF are required to amplify success probability
arbitrarily close to 1. It suffices to determine the resources required for a single round of QPF
with a fixed, modest success probability (in the current work, 3/4).
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The most common approach to QPF performs controlled modular exponentiation followed
by an inverse quantum Fourier transform (QFT) [13]. We will call this serial QPF, which
is used by the following implementations. Beauregard [2] constructs a cubic-depth quantum
period-finder using only 2n + 3 qubits on AC. It combines the ideas of Draper’s transform
adder [26], Vedral et al.’s modular arithmetic blocks [27], and a semi-classical QFT. This
approach was subsequently adapted to 1D NTC by Fowler, Devitt, and Hollenberg [12] to
achieve resource counts for an O(n3)-depth quantum period-finder. Kutin [3] later improved
this using an idea from Zalka for approximate multipliers to produce a QPF circuit on 1D

NTC in O(n2)-depth. Thus, there is only a constant overhead from Zalka’s own factoring
implementation on AC, which also has quadratic depth [28]. Takahashi and Kunihiro ex-
tended their earlier O(n)-depth adder to a factoring circuit in O(n3)-depth with linear width
[29]. Van Meter and Itoh explore many different approaches for serial QPF, with their lowest
achievable depth being O(n2 log n) with O(n2) on NTC [5]. Cleve and Watrous calculate a
theoretical minimum circuit depth of O(log3 n) and corresponding circuit size of O(n3) on
AC, using an adder which has depth O(log n) and O(n) size and width. We meet this bound
and provide a concrete architectural implementation using an adder with O(1)-depth and
O(n) size and width.

In the current work, we assume that errors do not affect the storage of qubits during the
circuit’s operation. An alternate approach is taken by Miquel [30] and Garcia-Mata [31], who
both numerically simulate Shor’s algorithm for factoring specific numbers to determine its
sensitivity to errors. Beckman et al. provide a concrete factoring implementation in ion traps
with O(n3) depth and size and O(n) width [32].

In all the previous works, it is assumed that qubits are expensive (width) and that exe-
cution time (depth) is not the limiting constraint. We make the alternative assumption that
ancillae are cheap and that fast classical control is available which allows access to all qubits
in parallel. Therefore, we optimize circuit depth at the expense of width. We compare our
work primarily to Kutin’s method [3].

These works also rely on serial QPF which in turn relies on an inverse QFT. On an
AC architecture, even when approximating the (inverse) QFT by truncating two-qubit π/2k

rotations beyond k = O(log n), the depth is O(n log n) to factor an n-bit number. To be
implemented fault-tolerantly on a quantum device, rotations in the QFT must then be com-
piled into a discrete gate basis. This requires at least a O(log(1/ε)) overhead in depth to
approximate a rotation with precision ε [33, 9]. We would like to avoid the use of a QFT due
to its compilation overhead.

There is an alternative, parallel version of phase estimation [34, 9], which we call parallel
QPF (we refer the reader to Section 13 of [9] for details), which decreases depth in exchange
for increased width and additional classical post-processing. This eliminates the need to do an
inverse QFT. We develop a nearest-neighbor factoring circuit based on parallel QPF and our
proposed 2D quantum arithmetic circuits. We show that it is asymptotically more efficient
than the serial QPF method. We compare the circuit resources required by our work with
existing serial QPF implementations in Table 3 of Section 8. However, a recent result by [35]
allows one to enact a QFT using only Clifford gates and a Toffoli gate in O(log2 n) expected
depth. This would allow us to greatly improve the constants in our circuit resource upper
bounds in Section 7 by combining a QFT with parallel multiplication similar to the approach
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described in [5, 34].
We also note that recent results by Browne, Kashefi, and Perdrix (BKP) connect the

power of measurement-based quantum computing to the quantum circuit model augmented
with unbounded fanout [15]. Their model, which we adapt and call CCNTC, uses the classical
controller mentioned in Section 2.5. Using results by Høyer and Špalek [36] that unbounded
quantum fanout would allow for a constant-depth factoring algorithm, they conclude that a
probabilistic polytime classical machine with access to a constant-depth one-way quantum
computer would also be able to factor efficiently.

4 The Constant-Depth Carry-Save Technique

Our 2D factoring approach rests on the central technique of the constant-depth carry-save
adder (CSA) [19], which converts the sum of three numbers a, b, and c, to the sum of two
numbers u and v: a + b + c = u + v. The explanation of this technique and how it achieves
constant depth requires the following definitions.

A conventional number x can be represented in n bits as x =
∑n−1
i=0 2ixi, where xi ∈ {0, 1}

denotes the i-th bit of x, which we call an i-bit and has significance 2i, and the 0-th bit is
the low-order bit.cEquivalently, x can be represented as a (non-unique) sum of two smaller,
(n− 1)-bit, conventional numbers, u and v. We say (u+ v) is a carry-save encoded, or CSE,
number. The CSE representation of an n-bit conventional number consists of 2n−2 individual
bits where v0 is always 0 by convention.

Consider a CSA operating on three bits instead of three numbers; then a CSA converts
the sum of three i-bits into the sum of an i-bit (the sum bit) and an (i + 1)-bit (the carry
bit): ai + bi + ci = ui + vi+1. By convention, the bit ui is the parity of the input bits
(ui = ai ⊕ bi ⊕ ci) and the bit vi+1 is the majority of {ai, bi, ci}. Figure 5 gives a concrete
example, where (u+ v) has 2n− 2 = 8 bits, not counting v0.

It will also be useful to refer to a subset of the bits in a conventional number using
subscripts to indicate a range of indices:

x(j,k) ≡
k∑
i=j

2ixi x(i) ≡ x(i,i) = 2ixi. (6)

Using this notation, the following identity holds:

x(j,k) = x(j,`) + x(`+1,k), for all j ≤ ` < k. (7)

We can express the relationship between the bits of x and (u+ v) as follows:

x = x(0,n−1) ≡ u+ v = u(0,n−2) + v(1,n−1). (8)

Finally, we denote arithmetic modulo m with square brackets.

x(j,k) mod m = x(j,k)[m] (9)

Figure 6 gives a circuit description of carry-save addition (CSA) for a single bit position
i. The resources for this circuit are given in Table 2, using the resources for the Toffoli gate
cIt will be clear from the context whether we mean an i-bit, which has significance 2i, or an i-bit number.



P. Pham and K.M. Svore 947

x = 30 = u+ v = 8 + 22 =


u3 u2 u1 u0

v4 v3 v2 v1
x4 x3 x2 x1 x0

 =


1 0 0 0

1 0 1 1
1 1 1 1 0


Fig. 5. An example of carry-save encoding for the 5-bit conventional number 30.

|0〉 �������� |ai∧(bi⊕ci)〉 �������� |(bi∧ci)⊕ai∧(bi⊕ci)〉 × × |ui〉
|ai〉 • �������� |ai⊕bi⊕ci〉 × |0〉
|bi〉 • �������� |bi⊕ci〉 • • �������� • |bi〉
|ci〉 • • • • |ci〉
|0〉 �������� |bi∧ci〉 • �������� × |vi+1〉

Fig. 6. Carry-save adder circuit for a single bit position i: ai + bi + ci = ui + vi+1.

(in the same table) based on [37]. We note here that a more efficient decomposition for the
Toffoli is possible using a distillation approach described in [38].

We must lay out the circuit to satisfy a 2D NTC model. The Toffoli gate decomposition
in [37], duplicated in Figure 7, requires two control qubits and a single target qubit to be
mutually connected to each other. Given this constraint, and the interaction of the CNOTs
in Figure 6, we can rearrange these qubits on a 2D planar grid and obtain the layout shown
in Figure 8, which satisfies our 2D NTC model. Qubits |a〉i, |b〉i, and |c〉i reside at the top of
Figure 8, while qubits |ui〉 and |vi+1〉 are initialized to |0〉. Upon completion of the circuit,
qubit |ai〉 is in state |0〉, as seen from the output in Figure 6. Note that this construction
uses more gates and one more ancilla than the equivalent quantum full adder circuit in Figure
5 of [19]. However this is necessary in order to meet our architectural constraints and does
not change the asymptotic results. Also in Figure 8 is a variation called a 2-2 adder, which
simply re-encodes two i-bits into an i-bit and an (i+ 1)-bit. The 2-2 adder uses at most the
resources of a 3-2 adder, so we can count it as such in our calculations. It will be useful in
the next section.

At the level of numbers, the sum of three n-bit numbers can be converted into the sum
of two n-bit numbers by applying a CSA layer of n parallel, single-bit CSA circuits (Fig. 6).

•

•
��������

= T † �������� T �������� T † �������� T ��������
T † • • • •

H • �������� T �������� • T † H

Fig. 7. The depth-efficient Toffoli gate decomposition from [37].
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Circuit Name Depth Size Width
Toffoli gate from [37] and Figure 7 8 15 3

Single-bit 3-to-2 adder from Figure 6 33 55 5

Table 2. Circuit resources for Toffoli and single-bit addition.

Since each CSA operates in constant depth, the entire layer also operates in constant depth,
and we have achieved (non-modular) addition. Each single addition of three n-bit numbers
requires O(n) circuit width.

5 Quantum Modular Addition

To perform addition of two numbers a and b modulo m, we consider the variant problem of
modular addition of three numbers to two numbers: Given three n-bit input numbers a, b,
and c, and an n-bit modulus m, compute (u + v) = (a + b + c)[m], where (u + v) is a CSE
number.

In this section, we provide an alternate, pedagogical explanation of Gossett’s modular
reduction [19]. Later, we contribute a mapping of this adder to a 2D architecture, using
unbounded fanout to maintain constant depth for adding back modular residues. This last
step is absent in Gossett’s original approach.

To start, we will demonstrate the basic method of modular addition and reduction on an
n-bit conventional number. In general, adding two n-bit conventional numbers will produce
an overflow bit of significance 2n, which we can truncate as long as we add back its modular
residue 2n mod m. How can we guarantee that we won’t generate another overflow bit by
adding back the modular residue? It turns out we can accomplish this by allowing a slightly
larger input and output number (n + 1 bits in this case), truncating multiple overflow bits,
and adding back their modular residues.

For two (n + 1)-bit conventional numbers x and y, we truncate the three high-order bits
of their sum zn−1,n+3 and add back their modular residue z(n−1,n)[m]:

x+ y mod m = z(0,n+1)[m]

= z(0,n−2) + z(n−1,n+1)[m]. (10)

Since both the truncated number z(0,n−2) and the modular residue are n-bit numbers, their
sum is an (n+ 1)-bit number as desired, equivalent to x[m].

Now we must do the same modular reduction on a CSE number (u + v), which in this
case represents an (n + 2)-bit conventional number and has 2n + 3 bits. First, we truncate

cibiai bi ci

ui vi+1 ui vi+1

Fig. 8. The carry-save adder (CSA), or 3-2 adder, and carry-save 2-2 adder.
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the three high-order bits (vn, un−1, vn−1) of (u + v), yielding an n-bit conventional number
with a CSE representation of 2n bits: {u0, u1, . . . , un−1} ∪ {v1, v2, . . . , vn−1}. Then we add
back the three modular residues (v(n+1)[m], u(n)[m], v(n)[m]), and we are guaranteed not to
generate additional overflow bits (of significance 2n or higher). This equivalence is shown in
Equation 11.

(u+ v)[m] =
(
u(0,n+1) + v(1,n+2)

)
[m]

= u(0,n) + v(1,n) +

u(n+1)[m] + v(n+1)[m] + v(n+2)[m] (11)

Lemma 1 (Modular Reduction in Constant Depth) The modular addition of three n-
bit numbers to two n-bit numbers can be accomplished in constant depth with O(n) width in
2D CCNTC.

Proof: Our goal is to show how to perform modular addition while keeping our numbers
of a fixed size by treating overflow bits correctly. We map the proof of [19] to 2D CCNTC

and show that we meet our required depth and width. First, we enlarge our registers to
allow the addition of (n + 2)-bit numbers, while keeping our modulus of size n bits. (In
Gossett’s original approach, he takes the equivalent step of restricting the modulus to be
of size (n − 2) bits.) We accomplish the modular addition by first performing a layer of
non-modular addition, truncating the three high-order overflow bits, and then adding back
modular residues controlled on these bits in three successive layers, where we are guaranteed
that no additional overflow bits are generated in each layer. This is illustrated for a 3-bit
modulus and 5-bit registers in Figure 9.

We use the following notation. The non-modular sum of the first layer is u and v. The
CSE output of the first modular reduction layer is u′ and v′, and the modular residue is
written as cvn+1 to mean the precomputed value 2n+1 mod m controlled on vn+1. The CSE
output of the second modular reduction layer is u′′ and v′′, and the modular residue is written
as cun+1 to mean the precomputed value 2n+1 mod m controlled on un+1. The CSE output of
the third and final modular reduction layer is u′′′ and v′′′, and the modular residue is written
as cvn+2 to mean the precomputed value 2n+2 mod m controlled on vn+2.

We show that no layer generates an overflow (n + 2)-bit, namely in the v component of
any CSE output. (The u component will never exceed the size of the input numbers.) First,
we know that no v′n+2 bit is generated after the first modular reduction layer, because we
have truncated away all (n+ 1)-bits. Second, we know that no v′′n+2 bit is generated because
we only have one (n + 1)-bit to add, v′n+1. Finally, we need to show that v′′′n+2 = 0 in the
third modular reduction layer.

Since u′(n) + v′(n+1) = u(n) + v(n) ≤ 2n+1, the bits u′n and v′n+1 cannot both be 1. But
u′′n+1 = v′n+1 and v′′n+1 = u′n ∧ v′n, so u′′n+1 and v′′n+1 cannot both be 1, and hence v′′′n+2 = 0.
Everywhere we use the fact that the modular residues are restricted to n bits. Therefore,
the modular sum is computed as the sum of two (n + 2)-bit numbers with no overflows in
constant-depth.

As a side note, we can perform modular reduction in one layer instead of three by decoding
the three overflow bits into one of seven different modular residues. This can also be done
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a4 a3 a2 a1 a0 5-bit input number a

b4 b3 b2 b1 b0 5-bit input number b

c4 c3 c2 c1 c0 5-bit input number c [Layer 1]

u4 u3 u2 u1 u0 truncate u4

v5 v4 v3 v2 v1 truncate v4, v5

cv42 cv41 cv40 add back 24 mod m controlled on v4 [Layer 2]

u′3 u′2 u′1 u′0

v′4 v′3 v′2 v′1

cu4
2 cu4

1 cu4
0 add back 24 mod m controlled on u4 [Layer 3]

u′′4 u′′3 u′′2 u′′1 u′′0 the bit u′′4 is the same as v′4

v′′4 v′′3 v′′2 v′′1

cv52 cv51 cv50 add back 25 mod m controlled on v5 [Layer 4]

u′′′4 u′′′3 u′′′2 u′′′1 u′′′0 Final CSE output with 5 bits

v′′′4 v′′′3 v′′′2 v′′′1 Final CSE output with 5 bits

Fig. 9. A schematic proof of Gossett’s constant-depth modular reduction for n = 3.

in constant depth, and in this case we only need to enlarge all our registers to (n + 1) bits
instead of (n+ 2) as in the proof above. We omit the proof for brevity.

In the following two subsections, we give a concrete example to illustrate the modular
addition circuit as well as a numerical upper bound for the general circuit resources.

5.1 A Concrete Example of Modular Addition

A 2D CCNTC circuit for modular addition of 5-bit numbers using four layers of parallel
CSA’s is shown graphically in Figure 10 which corresponds directly to the schematic proof in
Figure 9. Note that in Figure 10, the least significant qubits are on the left, and in Figure
9, the least significant qubits are on the right. Figure 10 also represents the approximate
physical layout of the qubits as they would look if this circuit were to be fabricated. Here,
we convert the sum of three 5-bit integers into the modular sum of two 5-bit integers, with
a 3-bit modulus m. In the first layer, we perform 4 CSA’s in parallel on the input numbers
(a, b, c) and produce the output numbers (u, v).

As described above, we truncate the three high-order bits during the initial CSA round
(bits u4, v4, v5) to retain a 4-bit number. Each of these bits serves as a control for adding its
modular residue to a running total. We can classically precompute 24[m] for the two additions
controlled on u4 and v4 and 25[m] for the addition controlled on v5.

In Layer 2, we use a constant-depth fanout rail (see Figure 4) to distribute the control
bit v4 to its modular residue, which we denote as |cv4〉 ≡ ∣∣24[m] · v4

〉
. The register cv4 has n

bits, which we add to the CSE results of layer 1. The results ui and vi+1 are teleported into
layer 3. The exception is v′4 which is teleported into layer 4, since there are no other 4-bits
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cv5
2

v′′′
3u′′′

2v′′′
2u′′′

1v′′′
1u′′′

0

cv5
0 cv5

1
FANOUT RAIL

cu4
2

u′′
2 v′′

3v′′
2u′′

1

cu4
0

u′′
0 v′′

1

cu4
1

FANOUT RAIL

cv4
2

u′
2 v′

3

cv4
1

u′
1 v′

2

cv4
0

v′
1u′

0

FANOUT RAIL

a4 b4 c4

u4 v5v1u0 u2

u′
3 v′

4

u′′
3 v′′

4

u′′′
3 v′′′

4

u0 v1 u1 v2 u2 v3 u3

u′
3v′

3u′
2v′

2u′
1v′

1u′
0

v′
4v′′

4u′′
3v′′

3u′′
2v′′

2u′′
1v′′

1u′′
0

u′′′
4

a0 b0 c0 a2 b2 c2

v3

a3 b3 c3

u3 v4

a1 b1 c1

u1 v2

Fig. 10. Addition and three rounds of modular reduction for a 3-bit modulus.

to which it can be added. Wherever there are only two bits of the same significance, we use
the 2-2 adder from Section 4.

Layer 3 operates similarly to layer 2, except that the modular residue is controlled on u4:
|cu4〉 ≡ ∣∣24[m] · u4

〉
. The register cu4 has 3 bits, which we add to the CSE results of layer 2,

where u′i and v′i+1 are teleported forward into layer 4.
Layer 4 is similar to layers 2 and 3, with the modular residue controlled on v5: |cv5〉 ≡∣∣25[m] · v5

〉
. The register cv5 has 3 bits, which we add to the CSE results of layer 3. There is

no overflow bit v′′′5 , and no carry bit from v′′4 and v′4 as argued in Lemma 1. The final modular
sum (a+ b+ c)[m] is u′′′ + v′′′.

The general circuit for adding three n-qubit quantum integers to two n-qubit quantum
integers is called a CSA tile. Each CSA tile in our architecture corresponds to its own module,
and it will be represented by the symbol in Figure 11 for the rest of this paper. We call this
an n-bit modular adder, even though it accepts (n + 2)-bit inputs, because the size of the
modulus is still n bits.

Fig. 11. Symbol for an n-bit 3-to-2 modular adder, also called a CSA tile.
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5.2 Quantum Circuit Resources for Modular Addition

We now calculate numerical upper bounds for the circuit resources of the n-bit 3-to-2 modular
adder described in the previous section. There are four layers of non-modular n′-bit 3-to-2
adders, each of which consists of n′ parallel single-bit adders whose resources are detailed in
Table 2. For factoring an n-bit modulus, we have n′ = n+ 2 in the first and fourth layers and
n′ = n+ 1 in the second and third layers.

After each of the first three layers, we must move the output qubits across the fanout rail
to be the inputs of the next layer. We use two swap gates, which have a depth and size of
6 CNOTs each, since the depth of teleportation is only more efficient for moving more than
two qubits. The control bit for each modular residue needs to be teleported 0, 4, and 7 qubits
respectively according to the diagram in Figure 10, before being fanned out n times along the
fanout rails, where the fanned out copies will end up in the correct position to be added as
inputs.

The resources for the n-bit 3-to-2 modular adder depicted in Figure 10 is more complicated
due to the un-fanout procedure. The formulae below reflect the resources needed for both
computing the output in the forward direction (creating an entangled fanned-out state) and
also uncomputing ancillae in the backward direction (disentangling fanned-out copies).

The circuit depth is: O(log n):

356 + 8 log2(2n+ 4). (12)

The circuit size is O(n log n):

33n log2 n+ 40 log2 n+ 575n+ 752. (13)

The circuit width is O(n):

33n+ 47. (14)

6 Quantum Modular Multiplication

We can build upon our carry-save adder to implement quantum modular multiplication in
logarithmic depth. We start with a completely classical problem to illustrate the principle
of multiplication by repeated addition. Then we consider modular multiplication of two
quantum integers in a serial and a parallel fashion in Section 6.1. Both of these problems use
as subroutines partial product creation, which we define and solve in Section 6.2 and modular
multiple addition, which we define and solve in Section 6.3.

First we consider a completely classical problem: given three n-bit classical numbers a, b,
and m, compute c = ab mod m, where c is allowed to be in CSE.

We only have to add shifted multiples of a to itself, “controlled” on the bits of b. There
are n shifted multiples of a, let’s call them z(i), one for every bit of b: z(i) = 2iabi mod m.
We can parallelize the addition of n numbers in a logarithmic depth binary tree to get a total
depth of O(log n).
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6.1 Modular Multiplication of Two Quantum Integers

We now consider the problem of multiplying a classical number controlled on a quantum bit
with a quantum integerd, which is a quantum superposition of classical numbers:

Given an n-qubit quantum integer |x〉, a control qubit |p〉, and two n-bit classical
numbers a and m, compute |c〉 = |xa[m]〉, where c is allowed to be in CSE.

This problem occurs naturally in modular exponentiation (described in the next section)
and can be considered serial multiplication, in that t quantum integers are multiplied in series
to a single quantum register. This is used in serial QPF as mentioned in Section 3.

We first create n quantum integers
∣∣z(i)

〉
, which are shifted multiples of the classical

number a controlled on the bits of x:
∣∣z(i)

〉 ≡ ∣∣2ia[m] · xi
〉
. These are typically called partial

products in a classical multiplier. How do we create these numbers, and what is the depth of
the procedure? First, note that

∣∣2ia[m]
〉

is a classical number, so we can precompute them
classically and prepare them in parallel using single-qubit operations on n registers, each
consisting of n ancillae qubits. Each n-qubit register will hold a future

∣∣z(i)
〉

value. We then
fan out each of the n bits of x, n times each, using an unbounded fanout operation so that n
copies of each bit |xi〉 are next to register

∣∣z(i)
〉
. This takes a total of O(n2) parallel CNOT

operations. We then entangle each
∣∣z(i)

〉
with the corresponding xi. After this, we interleave

these numbers into groups of three using constant-depth teleportation. This reduces to the
task of modular multiple addition in order to add these numbers down to a single (CSE)
number modulo m, which is described in Section 6.3.

Finally, we tackle the most interesting problem:

Given two n-qubit quantum integers |x〉 and |y〉 and an n-bit classical number m,
compute |c〉 = |xy mod m〉, where |c〉 is allowed to be in CSE.

This can be considered parallel multiplication and is responsible for our logarithmic speedup
in modular exponentiation and parallel QPF.

Instead of creating n quantum integers
∣∣z(i)

〉
, we must create up to n2 numbers

∣∣zi,j〉 for
all possible pairs of quantum bits xi and yj , i, j ∈ {0, . . . , n − 1}: ∣∣zi,j〉 ≡ ∣∣2i2j [m] · xi · yj

〉
.

We create these numbers using a similar procedure to the previous problem. Adding n2

quantum integers of n qubits each takes depth O(log(n2)), which is still O(log n). Creating
n2 × n-bit quantum integers takes width O(n3). Numerical constants are given for these
resource estimates in Section 6.4 for the entire modular multiplier.

Here is an outline of our modular multiplier construction, combining the two halves of
partial product creation (Section 6.2) and modular multiple addition (Section 6.3).

1. Initially, the inputs consist of the CSE quantum integers x and y, each with 2n+ 3 bits,
sitting on adjacent edges of a square lattice that has sides of length 3(2n+ 3) qubits.

2. For each of dlog2(2n+ 3)e rounds:

(a) Of the existing {xi} and {yj} bits, apply a CNOT to create an entangled copy in
an adjacent qubit.

dIn this paper, an n-qubit quantum integer is a general superposition of up to 2n classical integers. As a
special case, a classical number controlled on a single qubit is a superposition of 2 classical integers.



954 A 2D nearest-neighbor quantum architecture for factoring in polylogarithmic depth

(b) Teleport this new copy halfway between its current location and the new copy.

(c) At every site where an |xi〉 and an |yj〉 meet, apply a Toffoli gate to create |xi · yj〉.
(d) Teleport |xi · yj〉 to the correct z-site module.

3. Within each z-site module, fanout |xi · yj〉 up to n times, corresponding to each 1 in
the modular residue 2i2j mod m, to create the n-qubit quantum integer

∣∣z(i,j)
〉
.

4. For each triplet of z-site modules, teleport the quantum integers
∣∣z(i,j)

〉
to a CSA tile

module, interleaving the three numbers so that bits of the same significance are adjacent.
This concludes partial product creation (Section 6.2).

5. Perform modular multiple addition (described in Section 6.3) on t′ n-qubit quantum
integers down to 2 n-qubit quantum integers (one CSE number).

6. Uncompute all the previous steps to restore ancillae to |0〉.

6.2 Partial Product Creation

This subroutine describes the procedure of creating t′ = O(n2) partial products of the CSE
quantum integers x and y, each with 2n + 3 bits each. We will now discuss only the case of
parallel multiplication. Although we will not provide an explicit circuit for this subroutine,
we will outline our construction and upper bound the resources required.

First, we need to generate the product bits |xi · yj〉 for all possible (2n+ 3)2 pairs of |xi〉
and |yj〉. A particular product bit |xi · yj〉 controls a particular classical number, the n-bit
modular residue 2i2j [m], to form the partial product

∣∣z(i,j)
〉

defined in the previous section.
However, some of these partial products consist of only a single qubit, if 2i2j < 2n, which is
the minimum value for an n-bit modulus m. There are at least 2n2 − 2n + 1 such single-bit
partial products, which can be grouped into at most (2n+3)×n-bit numbers. Of the (2n+3)2

possible partial products, this leaves the number of remaining n-bit partial products as at
most 2n2 + 14n+ 8. Therefore we have a maximum number of n-bit partial products, which
we will simply refer to as t′ from now on.

t′ = 2n2 + 16n+ 11 (15)

The creation of the product bits |xi · yj〉 occurs on a square lattice of (3(2n+ 3))2 qubits,
with the numbers |xi〉 and |yj〉 located on adjacent edges. The factor of 3 in the size of the
lattice allows the |xi〉 and |yj〉 bits move past each other. The |xi〉 bits are teleported along an
axis that is perpendicular to the teleportation axis for the |yj〉 bits, and vice versa. Product
bit creation, and this square lattice, comprise a single module. In dlog2(2n+3)e rounds, these
bits are copied via a CNOT and teleported to the middle of a recursively halved interval of
the grid. The copied bits |xi〉 and |yj〉 first form 1 line, then 3 lines, then 7 lines, and so forth,
intersecting at 1 site, then 9 sites, then 49 sites, and so forth.

At each intersection, a Toffoli gate is used to create |xi · yj〉 from the given |xi〉 and |yj〉.
These product bits are then teleported away from this qubit, out of this product bit module,
to different modules where the

∣∣z(i,j)
〉

numbers are later generated, called z-sites. There are t′

z-site modules which each contain an n-qubit quantum integer. Any round of partial product
generation will produce at most as many product bits xi · yj as in the last round, which is
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half the total number of (2n+3)2. We now present the resources for partial product creation,
the first half of a modular multiplier, including the reverse computation.

The circuit depth is O(log n):

DPPC = 40 log2 10n. (16)

The module depth is O(1):

DPPC = 8. (17)

The circuit size is O(n2 log2 n):

SPPC = (12n2 + 84n+ 48) log2
2(10n) + (18)

(8n3 + 64n2 + 94n+ 31) log2(10n) + (19)

(78n3 + 597n2 + 419n+ 133). (20)

The module size is O(n2):

SPPC = 6n2 + 26n+ 19. (21)

The circuit width is O(n3):

WPPC = 6n3 + 48n2 − 8n+ 1. (22)

The module width is O(n2):

WPPC = 2n2 + 14n+ 9. (23)

6.3 Modular Multiple Addition

As a subroutine to modular multiplication, we define the operation of repeatedly adding
multiple numbers down to a single CSE number, called modular multiple addition.

The modular multiple addition circuit generically adds down t′×n-bit conventional num-
bers to an n-bit CSE number:

z(1) + z(2) + . . . z(t′) ≡ (u+ v)[m]. (24)

It does not matter how the t′ numbers are generated, as long as they are divided into groups
of three and have their bits interleaved to be the inputs of a CSA tile. From the previous
section, serial multiplication results in t′ ≤ n and parallel multiplication results in t′ ≤ n2.
Each CSA tile is contained in its own module. These modules are arranged in layers within
a logarithmic depth binary tree, where the first layer contains dt′/3e modules. A modular
addition occurs in all the modules of the first layer in parallel. The outputs from this first
layer are then teleported to be the inputs of the next layer of modules, which have at most
two-thirds as many modules. This continues until the tree terminates in a single module,
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whose output is a CSE number u+v which represents the modular product of all the original
t′ numbers. The resulting height of the tree is (dlog3/2(t′/3)e+ 1) modules.

As the parallel modular additions proceed by layers, all previous layers must be maintained
in a coherent state, since the modular addition leaves garbage bits behind. Only at the end
of modular multiple addition, after the final answer u + v is obtained, can all the previous
layers be uncomputed in reverse to free up their ancillae.

These steps are best illustrated with a concrete example in Figure 12. The module for each
CSA tile is represented by the symbol from Figure 11. The arrows indicate the teleportation
of output numbers from the source tile to be input numbers into a destination tile.

|z0〉 , |z1〉 , |z2〉 |z3〉 , |z4〉 , |z5〉 |z6〉 , |z7〉 , |z8〉 |z9〉 , |z10〉 , |z11〉 |z12〉 , |z13〉 , |z14〉 |z15〉 , |z16〉 , |z17〉

|u〉 , |v〉

|u〉 , |v〉

INPUT

OUTPUT
(CSA ENCODED)

t′ × n-bit numbers

Fig. 12. Modular multiple addition of quantum integers on a CSA tile architecture for t′ = 18

in a logarithmic-depth tree with height (dlog 3
2

(t′/3)e+ 1) = 6. Arrows represent teleportation in

between modules.

Now we can analyze the circuit resources for multiplying n-bit quantum integers, which
requires (t′ − 2) modular additions, for t′ from Equation 15. The circuit width is the sum
of the O(n3) ancillae needed for partial product creation and the ancillae required for O(n2)
modular additions. Each modular addition has width O(n) and depth O(1) from the previous
section. There are dlog3/2(n2/3)e + 1 timesteps of modular addition. Therefore the entire
modular multiplier circuit has depth O(log n) and width O(n3).

6.4 Modular Multiplier Resources

.
The circuit depth of the entire modular multiplier is O(log2 n):

DMM = 3.4 log3
2 n+ 1295 log2 n+ 6911. (25)
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The module depth is O(log n):

DMM = 2 log2 n+ 11. (26)

The circuit size is O(n3 log n):

SMM = (12n2 + 644n+ 288) log2
2(10n) + (27)

(74n3 + 606n2 + 292n+ 41) log2(10n) + (28)

(1228n3 + 10151n2 + 14397n+ 4645). (29)

The module size is O(n3):

SMM = 15n3 + 127n2 + 178n+ 50. (30)

The circuit width is O(n3):

WMM = 66n3 + 558n2 + 870n+ 290. (31)

The module width is O(n2):

WMM = 4n2 + 28n+ 15. (32)

7 Quantum Modular Exponentiation

We now extend our arithmetic to modular exponentiation, which is repeated modular multi-
plication controlled on qubits supplied by a phase estimation procedure. If we wish to multiply
an n-qubit quantum input number |x〉 by t classical numbers a(j), we can multiply them in
series. This requires depth O(t log n) in modular multiplication operations.

Now consider the same procedure, but this time each classical number a(j) is controlled
on a quantum bit pj . This is a special case of multiplying by t quantum integers in series,
since a classical number entangled with a quantum integer is also quantum. It takes the same
depth O(t log n) as the previous case.

Finally, we consider multiplying t quantum integers {x(1), x(2), . . . , x(t−1), x(t)} in a par-
allel, logarithmic-depth binary tree. This is shown in Figure 13, where arrows indicate mul-
tiplication. The tree has depth log2(t) in modular multiplier operations. Furthermore, each
modular multiplier has depth O(log2(n)) and width O(n3) for n-qubit numbers. Therefore,
the overall depth of this parallel modular exponentiation structure is O(log(t) log2(n)) with
width O(tn3). In phase estimation for QPF, it is sufficient to take t = O(n) [13, 9]. There-
fore our total depth is O(log3(n)) and our total width is O(n4), as desired. At this point,
combined with the parallel phase estimation procedure of [9], we have a complete factoring
implementation in our 2D nearest-neighbor architecture in polylogarithmic depth.

We will now calculate numerical constants to upper bound circuit resources.
According to the Kitaev-Shen-Vyalyi parallelized phase estimation procedure [9], for a

constant success probability of 3/4, it is sufficient to multiply together t′ = 2867n quantum
integers, controlled on the qubits |pj〉, in parallel.

In Section 7.1, we describe the last step of modular exponentiation in CSE. In Section
7.2, we state the final circuit resources for the entire modular exponentiation circuit, and
therefore, our quantum period-finding procedure.
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Fig. 13. Parallel modular exponentiation: multiplying t quantum integers in a O(log (t) log (n))-

depth binary tree. Arrows indicate modular multiplication.

7.1 Converting Back to a Unique Conventional Number

The final product of all t quantum integers is in CSE which is not unique. As stated in
Gossett’s original paper [19], this must be converted back to a conventional number using,
for example, the quantum carry-lookahead adder (QCLA) from [39]. We can convert this to
a nearest-neighbor architecture by using the qubit reordering construction of [8]. We now
compute the resources needed for this last step.

To add two (n + 2)-bit numbers in a QCLA, we have a circuit width of k = (4(n + 2) −
2 log2 n − 1). The depth is at most 4 log2 n + 2 gates, and some of them act on qubits that
are not nearest-neighbors. Therefore, we add in between each gate a reordering circuit that
takes k2 (reusable) ancillae qubits and uses two rounds of constant-depth teleportation to
rearrange the qubits into a new order where all the gates are nearest-neighbor. Adding in the
teleportation circuit resources from Table 1, we can calculate the following resources.

The circuit depth is O(log n):

56 log2 n+ 28. (33)

The circuit size is O(n2 log n):

96 log3
2 n − (384n+ 624) log2

2 n

+ (384n2 + 1152n+ 840) log2 n

+ (192n2 + 672n+ 588). (34)
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The circuit width is O(n2):

4 log2
2 n− (16n+ 30) log2 n+ 16n2 + 60n+ 56. (35)

7.2 Circuit Resources for Modular Exponentiator

This leads to the following circuit resource upper bounds for a modular exponentiator. There-
fore, these are the total resources for running a single round of parallel QPF as part of Shor’s
factoring algorithm.

The circuit depth is O(log3 n):

DME = 3.4 log3
2 n+ 1337 log2

2 n+ 23070 log2 n+ 86279. (36)

The module depth is O(log n):

DME = 3 log2 n+ 24 (37)

The circuit size is O(n4 log n):

SME = 96 log3
2 n+

(34400n3 + 1846079n2 + 824937n− 288) log2
2 10n+

(212129n4 + 1737086n3 + 836442n2 + 117239n− 41) log2 10n+

3520185n4 + 29097629n3 + 41260290n2 + 13300960n− 4645. (38)

The module size is O(n2):

SME = 5749n2 + 8725n+ 175. (39)

The circuit width is O(n4):

WME = 94598n4 + 799749n3 + 1246692n2 + 415222n− 145. (40)

The module width is O(n):

WME = 1434n. (41)

8 Asymptotic Results

The asymptotic resources required for our approach, as well as the resources for other nearest-
neighbor approaches, are listed in Table 3, where we assume a fixed constant error probability
for each round of QPF. Not all resources are provided directly by the referenced source.

Resources in square brackets are inferred using Equation 2. These upper bounds are
correct, but may not be tight with the upper bounds calculated by their respective authors.
In particular, a more detailed analysis could give a better upper bound for circuit size than
the depth-width product. Also note that the work by Beckman et al. [32] is unique in that it
uses efficient multi-qubit gates inherent to linear ion trap technology which at first seem to be
more powerful than 1D NTC. However, use of these gates does not result in an asymptotic
improvement over 1D NTC.
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We achieve an exponential improvement in nearest-neighbor circuit depth (from quadratic
to polylogarithmic) with our approach at the cost of a polynomial increase in circuit size
and width. Similar depth improvements at the cost of width increases can be achieved using
the modular multipliers of other factoring implementations by arranging them in a parallel
modular exponentiator. Our approach is the first implementation for factoring on 2D NTC,
augmented with a classical controller and parallel, communicating modules (2D CCNTCM).

Implementation Architecture Depth Size Width
Vedral, et al. [27] AC [O(n3)] O(n3) O(n)

Gossett [19] AC O(n log n) [O(n3 log n)] O(n2)
Beauregard [2] AC O(n3) O(n3 log n) O(n)

Zalka [28] AC O(n2) [O(n3)] O(n)
Takahashi & Kunihiro [29] AC O(n3) O(n3 log n) O(n)

Cleve & Watrous [34] AC O(log3 n) O(n3) [O(n3/ log3 n)]
Beckman et al. [32] Ion trap O(n3) O(n3) O(n)
Fowler, et al. [12] 1D NTC O(n3) O(n4) O(n)

Van Meter & Itoh [4] 1D NTC O(n2 log n) [O(n4 log n)] O(n2)
Kutin [3] 1D NTC O(n2) O(n3) O(n)

Current Work 2D CCNTCM O(log3 n) O(n4 log n) O(n4)
Table 3. Asymptotic circuit resource usage for quantum factoring of an n-bit number.

9 Conclusions and Future Work

In this paper, we have presented a 2D architecture for factoring on a quantum computer
using a model of nearest-neighbor, concurrent two-qubit interactions, a classical controller,
and communication between independent modules. We call this new model 2D CCNTCM.
Using a combination of algorithmic improvements (carry-save adders and parallelized phase es-
timation) and architectural improvements (irregular two-dimensional layouts, constant-depth
communication, and parallel modules), we conclude that we can run the central part of Shor’s
factoring algorithm (quantum period-finding) with asymptotically smaller depth than previ-
ous implementations.

A natural extension of the current work is to improve its depth to be sub-logarithmic on
2D CCNTCM using the approach outlined in [36, 40], generalizing the carry-save adder to a
block-save adder using threshold gates. It would also be beneficial to determine lower bounds
for the time-space tradeoffs involved in Shor’s factoring algorithm. These results would tell
us whether we have found an optimal nearest-neighbor circuit.
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