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A central problem in quantum computation is to understand which quantum circuits are
useful for exponential speed-ups over classical computation. We address this question in the
setting of query complexity and show that for almost any sufficiently long quantum circuit
one can construct a black-box problem which is solved by the circuit with a constant number
of quantum queries, but which requires exponentially many classical queries, even if the
classical machine has the ability to postselect.

We prove the result in two steps. In the first, we show that almost any element of an
approximate unitary 3-design is useful to solve a certain black-box problem efficiently. The
problem is based on a recent oracle construction of Aaronson and gives an exponential sep-
aration between quantum and classical post-selected bounded-error query complexities.

In the second step, which may be of independent interest, we prove that linear-sized
random quantum circuits give an approximate unitary 3-design. The key ingredient in the
proof is a technique from quantum many-body theory to lower bound the spectral gap of
local quantum Hamiltonians.
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1 Introduction

Quantum computation holds the promise of solving certain problems substantially faster

than classical computation. The most famous example is arguably Shor’s polynomial-time

quantum algorithm for factoring [2], a task which is believed to require exponential time

in a classical computer. Other problems for which quantum algorithms appear to be give

exponential speed-ups include simulating quantum systems [3], solving Pell’s equation [4],

approximating the Jones polynomial [5, 6], and estimating certain properties of sparse sys-

tems of linear equations [7]. Unfortunately, the apparent computational superiority of quan-

tum mechanics is presently only conjectural. In fact, one cannot hope to separate the class of

problems solved in polynomial time by quantum and classical computation without settling

major open questions in computational complexity theorya.

asuch as P
?
= PSPACE.
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902 Exponential quantum speed-ups are generic

A setting for which quantum computation is provably superior to classical is the one of

query complexity (also known as decision tree complexity or black-box complexity). There

one is given the ability to query a black-box function and the goal is to determine a certain

property of the function. The complexity of the problem is measured by the minimum num-

ber of queries needed to determine such property. In the quantum case, one is able to query

the black-box in superposition, a feature which potentially renders it more powerful than

the classical one.

The first example of a black-box problem exhibiting a superpolynomial separation of

quantum and randomized classical query complexities was the recursive fourier sampling

(RFS) problem of Bernstein and Vazirani [8]. Soon after it, Simon presented a black-box prob-

lem with an exponential quantum-classical separation [9]; Simon’s problem is also a good

example of the usefulness of the query complexity model for the development of new algo-

rithms: its quantum solution was both a motivation for and an important element in Shor’s

quantum algorithm for factoring [2]. Many other oracle separations have since been found,

see e.g. [10, 11, 12, 13, 14, 15]. In terms of complexity classes, these query complexity results

show the existence of an oracle U for which BQP
U 6= BPP

U .b

Having collected evidence that quantum computation is superior to randomized classical

computation, it is interesting to get insight about where exactly does BQP sit in the zoo of

classical complexity classes. For example, are there problems that a quantum computer can

solve efficiently, but which a classical computer cannot even check a potential solution in

reasonable time? This is the question whether BQP ⊆ NP and already in the seminal paper

[8], the RFS problem was used to build an oracle U such that BQPU * NP
U . One can go

even further and ask for an oracle for which BQP is not contained in the entire polynomial

hierarchy (PH). In [8] it was conjectured that the RFS problem also gives an oracle relative to

which BQP * PH, but whether this is indeed the case remains an open question.

Recently, Aaronson [1] proposed an interesting new oracle problem as a candidate to put

BQP outside PH.cAlthough the usefulness of this oracle for the BQP vs. PH question still

has to be elucidated, the problem was shown to have a huge separation of quantum and

classical query complexities: it can be solved by a constant number of quantum queries,

while it requires exponentially many queries by a classical machine, even if we give the

classical machine the – extremely powerful – ability to postselect on a given result of the

computation. This is the strongest separation of quantum and classical query complexities

to date. It also implies oracles relative to which BQP * BPPpath
dand BQP * SZK, which

supersedes all previous oracle separations for BQP.

Aaronson’s problem, named FOURIER CHECKING, is the following: We are given two

boolean functions f, g : {0, 1}n → {−1, 1} with the promise that either

• f and g are chosen uniformly at random, or

• for a vector v ∈ R2n with entries vx drawn independently from a normal distribution of

bsee the complexity zoo (http://qwiki.stanford.edu/wiki/Complexity Zoo) for definitions of the standard com-
plexity classes.
cIn [1] it was shown that the separation would follow from a certain generalization of the Linial-Nisan conjecture
[16] recently settled by Braverman [17]. However this generalization was later falsified in [18].
dHere BPPpath is defined as the class of problems which can be solved in polynomial time, with high probability,
by a randomized classical computer which can postselect on given outcomes of the computation [19].
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mean 0 and variance 1, the functions are chosen as f(x) = sgn(vx) and g(x) = sgn(v̂x)
e. Here the vector v̂ is the Fourier transform over Zn2 of v and is given by

v̂x =
∑

y∈{0,1}n

(−1)x.yvy. (1)

The task is to decide which is the case. In words, we should determine if the two functions

are not correlated at all or if one of them is well correlated with the Fourier transform of the

other.

The quantum algorithm proposed in [1] to solve the problem is particularly simple. One

prepares the uniform superposition over the computational basis, queries f , applies the

quantum Fourier transform (QFT), queries g, and checks if the final state is again in a uniform

superposition over the computational basis. If the functions are independent, then there is

only an exponential small chance of getting the right outcome in the final measurement,

while in the case where they are correlated, this happens with constant probability.

Considering how well this problem fleshes out the superiority of quantum computation

to classical, it is worthwhile to try to understand what exactly gives its strength. For instance,

what is the role played by the Fourier transform, both the the definition of the problem and

in the quantum algorithm solving it? Can we replace it by some other transformation? One

of the goals of this paper is to shed light on these questions.

From a broader perspective, we will be concerned with the following question, central to

our understanding of the computational capabilities offered by quantum mechanics: What

is the set of quantum circuits which provide large quantum speed-ups? More precisely,

for which quantum circuits can we construct black-box problems which are solved by the

circuit with only a few queries to the black-box, but which require a large number of queries

for randomized classical computation? This question is in a sense a converse to the well-

studied problem of characterizing the class of black-box functions allowing for significant

quantum speed-ups (see e.g. [20, 21]). While the latter deals with the determination of

which computational problems are suited for quantum computing, the former contributes to

the classification of which quantum algorithmic techniques are useful for solving problems

efficiently.

For instance, all the early examples of quantum algorithms offering superpolynomial

speed-ups [22, 23, 8, 9] were based on the quantum Fourier transform and this led to the

speculation that it could be the defining aspect of quantum computation behind quantum

speed-ups. Subsequently, other black-box problems showing a quantum advantage were

found having no relation to the QFT [15, 6, 24], hence extending the scope of techniques for

constructing quantum algorithms.

Of particular note in this context, and for this paper, is the work of Hallgren and Harrow

[24] on generalizations of Bernstein and Vazirani’s RFS problem. The RFS classical–quantum

separation is built in two steps: first one construct a black-box problem requiring a constant

number of quantum queries, but Ω(n) classical queries. Then one uses recursion to boost

the separation to a nO(1) quantum versus nlog(n) classical queries. The oracle problem in the

first part is based on the Fourier transform and solved by the QFT. In [24] it was shown that

this problem could be modified to have almost any quantum circuit (from a natural measure

eThe sign function is defined as: sgn(x) = 1 for x ≥ 0, and sgn(x) = −1 otherwise.
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on circuits) in the place of the Fourier transform and still achieve the constant versus linear

separation, as in the original formulation. Moreover, any such problem could also be boosted

by recursion to provide a black-box problem with a superpolynomial quantum-to-classical

gap in query complexity.

1.1 Our results

In this paper we generalize Aaroson’s FOURIER CHECKING problem [1] and show that the

Fourier transform, both in the definition of the problem and in the quantum algorithm solv-

ing it, can be replaced by a large class of quantum circuits. These include both the Fourier

transform over any (possibly non-abelian) finite group and almost any sufficiently long quan-

tum circuit from a natural distribution on the set of quantum circuits, which we discuss later

on. We obtain exponential separations of quantum and postselected classical query com-

plexities for all such circuits.

Flat circuits imply exponential separation: In more detail, we first introduce a simple mea-

sure of flatness, or dispersiveness, of a unitary U on n qubits, denoted C(U) . It is defined as

the minimal min-entropyf(over j ∈ {0, .., 2n − 1}) of the outcome probability distribution of a

computational basis measurement applied to U |j〉. For N := 2n,

C(U) := min
j∈[N ]

hmin

(
{|〈0|U |j〉|2, ..., |〈N − 1|U |j〉|2}

)
, (2)

with [N ] := {0, ..., N − 1}. It thus measures the worst-case dispersiveness of states obtained

by applying U to computational basis states.

In section 2.1 we define, for a unitary U , the black-box problem U-CIRCUIT CHECKING, a

variant of FOURIER CHECKING in which the Fourier transform in the definition of the vector

v̂ (given by Eq. (1)) is replaced byU . The problem is constructed so that a quantum computer

can easily solve it with access to a few realizations of the unitary U , while it is classically hard

for any U with large C(U).

In detail, on one hand we prove a lower bound of 2Ω(C(U)) on the classical query com-

plexity with postselection of U-CIRCUIT CHECKING (see section 4). Following the ideas of

[1], we do so by showing that the discretized version of the random vector (v, Uv) – for a vec-

tor v composed of independent elements vx each drawn from a normal distribution of mean

0 and variance 1 – is kO(1)2Ω(C(U))-almost k-wise independent (a fact which was shown to

imply the previous exponential lower bound on the postselected classical query complexity

[1]).

On the other hand, on a quantum computer we can solve U-CIRCUIT CHECKING by the

following simple modification of Aaaroson’s algorithm: we prepare each qubit in the |+〉 :=
(|0〉 + |1〉)/

√
2 state, forming the uniform superposition over the computational basis. Then

we query the f function, apply the circuit U , query the g function, and measure each qubit in

the Hadamard basis, accepting if all of them are found in the |+〉 state. Therefore we obtain:

Theorem I For any circuit U acting on n qubits with C(U) = Ω(n), the problem

U-CIRCUIT CHECKING shows an exponential separation of quantum and postselected classical query

complexities.

We then proceed by giving two classes of unitaries with C(U) = Ω(n).

fFor a probability distribution p(x) we define its min-entropy as hmin(p) := − logmaxx p(x)
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Theorem II

(i) LetUQFT(G) be the quantum Fourier transform over the finite groupG. ThenC(UQFT(G)) ≥
1
2 log |G|.

(ii) Given any 2−3tn-approximate unitary t-design on n qubits, all but a 2−(t(1−β)−2)n+1 frac-

tion of its elements have C(U) ≥ βn.

In particular, we find that for 2−9n-approximate unitary 3-designs, all but a 2−n/2+1 frac-

tion of its element have C(U) ≥ n/6. We note that the result of the theorem does not appear

to hold true for unitary 2-designs and thus we seem to have the first application of unitary

t-designs for t > 2.

The proofs of both statements of Theorem II are elementary and are given in section 3.

Random circuits are unitary 3-designs: A unitary t-design is an ensemble of unitaries

{µ(dU), U}, for a measure µ on the set of unitaries, such that the average (over µ) of any

t-degree polynomial on the entries of U and their complex conjugates is equal to the average

over the Haar measure. An approximate unitary t-design is a relaxed version of the previous

definition, in which we only require that the averages are close to each other (see section 2.3

for a precise definition) [25, 26].

In a series of papers [27, 28, 29, 30, 31] it was established that polynomially long random

quantum circuits constitute an approximate unitary 2-design. The random quantum circuit

model used is the following: in each step a random pair of qubits is chosen and a gate

from a universal set of gates, also chosen at random, is applied to them. Although there is

evidence that random quantum circuits of polynomial lenght are unitary t-design for every

t = poly(n) [32, 33], this has not been rigorously proved so far, even for the 3-design case.

Here we prove that random quantum circuits are indeed approximate unitary 3-designs.

We show it both for the random circuit model of the previous paragraph and for a different

one, introduced in [34] as a toy model for the evolution of black holes, which is more suited

for the methods we employ. In this model, which we call local random quantum circuit model,

the qubits are arranged in a circle and in each step a random two-qubit gate is applied to two

neighbouring qubits.

Theorem III 5n log(1/ε)-size local random quantum circuits form an ε-approximate unitary

3-design.

The proof of Theorem III is based on a reduction, first put forward by Brown and Viola

[33], connecting the convergence rate of moments of the random quantum circuit to the

spectral gap (the difference of the lowest and second lowest eigenvalues) of a quantum local

Hamiltonian. Our main contribution is to show in section 6 that we can obtain a lower bound

on this spectral gap employing a technique from quantum many-body theory used e.g. in

[35, 36, 37, 38].

In particular, using this technique we are able to reduce the problem of bounding the

spectral gap of the random walk on n qubits induced by the random circuit, to bounding the

spectral gap of the same random walk, but now defined only on three neighbouring qubits.

Then it suffices to bound the convergence time of the second and third moments of the latter

random walk in order to prove that the random circuit constitute a 3-design. We believe

our approach is promising also for higher values of t and might pave the way to a proof that
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random quantum circuits are approximate unitary t-designs for all t = poly(n). We however

leave such possibility as an open problem for future work.

Combining Theorems III and II we obtain our main result that almost any polynomial

quantum circuit is useful for exponential quantum speed-ups.

Theorem IV For the distribution induced by the local random quantum circuit model, all but a

2−Ω(n) fraction of quantum circuits U with more than O(n2) gates are such that

U-CIRCUIT CHECKING shows an exponential gap in the quantum and the postselected classical

query complexities.

The role ofC(U) and classical efficient solution for sparse unitaries: We have seen that dis-

persive unitaries U with large C(U) give an exponential speed-up in U-CIRCUIT CHECKING.

Is a large C(U) always required for a speed-up? We present two results indicating that this

is indeed the case.

First we show that with a modified notion of oracle access (we call it the independent query

model), in which a different independent realization of the random parameters of the oracle

is chosen in each query, a linear C(U) is necessary for an exponential speed-up.

Theorem V In the independent query model of oracle access, the randomized classical query

complexity of U-CIRCUIT CHECKING is equal to 2Θ(C(U)).

Second we consider the circuit checking problem for approximately-sparse U , defined as

unitaries which can be approximated (in operator norm) by a sparse matrix with only poly-

nomially many non-zero entries in each row and column. Then we show the following.

Theorem VI For approximately-sparse U the randomized classical query complexity of

U-CIRCUIT CHECKING is polynomial.

We prove Theorem VI by showing how a recent result of Van den Nest [39] on the classical

simulability of certain quantum states and operations implies that the quantum algorithm

for U-CIRCUIT CHECKING with a sparse U can be efficiently simulated with only polynomial

many classical queries to f and g.

1.2 Related Work

This paper has a similar flavor to Hallgren and Harrow’s work on the RFS problem [24]. The

idea of considering the dispersiveness of quantum circuits as a resource for oracle speed-

ups also first appeared in [24], where a different, but related, notion of dispersive circuits

was proposed and a constant versus linear separation in query complexity was shown for

all such dispersive circuits; in section 2.2 we discuss it in more detail and show that our

definition of a dispersive circuit is somewhat more demanding than theirs (although not

completely comparable). In [24] it was shown that both the Fourier transform over any fi-

nite group and almost any sufficiently long quantum circuit are dispersive. Implicit in their

work is also the statement that most elements of an approximate unitary 2-design are disper-

sive. Although their definition of dispersiveness is weaker than ours and therefore broader,

the separations we obtain are much stronger. While we get an exponential separation of

quantum and postselected classical query complexities, they get a superpolynomial versus

polynomial separation of quantum and classical query complexities, and only by using re-

cursion (which itself can be seen as the responsible for the superpolynomial speed-up).

There has been a series of work [25, 26, 40, 30, 42] on unitary t-designs (and on the closely

related quantum expanders [43, 44, 45, 46, 47, 48]) and on their connection to random quan-
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tum circuits [25, 26, 27, 28, 29, 30, 31, 32, 33]. An important problem in this area is to de-

rive efficient constructions on a quantum computer of approximate unitary t-designs. While

there are several efficient constructions for 2-designs [25, 43, 46, 47], there is only a single one

(based on the QFT) for unitary t-design on n qubits with t > 2 (going up to t = Ω(n/ log(n)))

[41]. Our proof that random quantum circuits constitute a 3-design gives an alternative effi-

cient construction for the t = 3 case.

Recently Brown and Viola [33] proposed an interesting approach to the problem of ran-

dom quantum circuits as unitary t-designs, based on mapping the convergence time of mo-

ments of the random circuit to the spectral gap of a mean-field quantum Hamiltonian. Con-

ditioned on an unproven, but reasonable, conjecture about the low-lying eigenstates of the

Hamiltonian, they showed that random quantum circuits of linear length are t-designs for

every fixed t and sufficiently large n. Our approach also starts by a reduction of the problem

to lower bounding the spectral gap of quantum Hamiltonians. However, in our case, we find

a local quantum Hamiltonian, consisting of nearest-neighbor terms only. We are also able to

rigorously lower bound such spectral gap for t ≤ 3, therefore obtaining a complete proof in

this case.

After the completion of our work, we learned about a recent paper by Fefferman and

Umans [49], in which the problem U-CIRCUIT CHECKING is also considered. Their focus is

to study the usefulness of this problem in constructing an oracle separation of BQP and PH,

by relating such possibility to a conjecture [50] about the capacity of the Nisan-Wigderson

pseudorandom generator [51] to fool AC0. To this aim only unitaries of a very special struc-

ture are consired in U-CIRCUIT CHECKING. Our approach has the advantage that we can

show an exponential gap of quantum and postselected-classical query complexities for a

generic polynomial quantum circuit (a task not considered in [49]), but has the drawback

that we fail to give evidence that there are circuits providing a separation of BQP to PH.

2 Preliminaries

2.1 The oracle problem and its quantum solution

Given a unitary U ∈ U(N) (with U(N) the group of N ×N unitary matrices) we consider the

following extension of the FOURIER CHECKING problem [1]:

U-CIRCUIT CHECKING: We are given access to two black-box functionsgf, g : {0, 1}n →
{1,−1} with the promise that either

• (independent and random) f and g are chosen independently and uniformly at ran-

dom, with each of their entries drawn from a random unbiased coin, or

• (U -correlated) for a vector v ∈ CN with entries vx drawn independently from a com-

plex normal distribution vx = vx,r + ivx,i, with vx,r and vx,i normal real variables of

mean 0 and variance 1, the functions are chosen as f(x) = sgn(Re(vx)) and g(x) =

sgn(Re((Uv)x))
h. The vector Uv is given explicitely by

(Uv)x =
∑

y∈[N ]

Uxyvy. (3)

gIn this work we consider the phase-oracle model for quantum queries. Namely, let Uf be the oracle unitary of f

and |x〉 a computational basis state. Then Uf |x〉 = (−1)f(x)|x〉 (and likewise for g).
hhere Re(z) is the real part of the complex number z.
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The problem is to decide which is the case.

Consider the following quantum algorithm for solving U-CIRCUIT CHECKING, where U

acts on n qubits:
Quantum Algorithm for U-CIRCUIT CHECKING:
(i) Prepare each of the n qubits in the |+〉 state.
(ii) Query the f oracle.
(iii) Apply the unitary U .
(iv) Query the g oracle.
(v) Measure each qubit in the Hadamard basis {|+〉, |−〉} and accept
if all qubits are in the |+〉 state.

Let

|f〉 := 1

2n/2

∑

x∈{0,1}n

(−1)f(x)|x〉 (4)

and

|g〉 := 1

2n/2

∑

x∈{0,1}n

(−1)g(x)|x〉 (5)

Then it follows that the acceptance probability of the algorithm is given by

pU (f, g) := |〈g|U |f〉|2. (6)

The next proposition shows the quantum algorithm above can distinguish the cases of cor-

related (by the action of U) and independent f and g.

Proposition 1 If f and g are drawn independently and uniformily at random,

E (pU (f, g)) =
1

2n
(7)

while if f and g are U-correlated,

E (pU (f, g)) ≥ 0.07 (8)

Proof. In [1] Aaronson proved the proposition for the case in which U is the quantum

Fourier transform over Zn2 , which appeared as Theorem 9 in [1]. A closer inspection at his

proof shows that the only property of the quantum Fourier used is the fact that it is a uni-

tary. Therefore the reasoning of [1] can be applied here without any modification. We omit

reproducing the full argument and instead refer the reader to [1] 2.

2.2 Dispersing Circuits

We now define a notion of dispersive, or flat, circuits which will play a central role in this

work. Let hmin be the min-entropy defined as

hmin(p) = − logmax
x

p(x). (9)

Definition 2 For a unitary U we define:

C(U) := min
j∈[N ]

hmin

(
{|〈0|U |j〉|2, ..., |〈N − 1|U |j〉|2}

)
(10)

= − log

(
max
i,j∈[N ]

|Ui,j |2
)
. (11)
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It is interesting to compare this definition of a dispersive circuit with Harrow and Hall-

gren’s [24]:

Definition 3 (HH-dispersiveness [24]) A unitary U ∈ U(2n) is (α, β)-dispersing if there exists a

set A ⊆ {0, 1}n with |A| ≥ 2αn and

∑

x∈{0,1}n

|〈a|U |x〉| ≥ β2
n
2 (12)

for all a ∈ A.

Thus while Def. 2 looks at the infinity norm of the outcome probability distribution of

measurements in the computational basis, maximized over all initial computational basis

states, HH-dispersiveness (Def. 3) is concerned with the 1-norm of such probability distri-

bution, and the maximum taken only over a constant-size fraction of all the computational

basis states.

In [24] it was shown that (α, β)−dispersing circuits, for α, β = O(1), are useful for speed-

ups in the variant of the RFS problem there defined. If we allow for lower values of β than

a constant (but still requiring the circuit to be fairly flat), then a dispersive unitary according

to Def. 2 is also HH-dispersive. Indeed, a simple calculation (which we omit here) shows

that if U is such that C(U) ≥ γn, then U is also (1, 2(γ−1)n/2)-dispersive according to Def. 3.

2.3 Approximate Unitary Designs

We start defining a norm on quantum operations which we will use to compare two super-

operators. For X ∈ B(Cd) we define the p-Schatten norms ‖X‖p := tr(|X|p) 1

p . Then for a

superoperator Λ : B(Cd) → B(Cd′) we define the p→ q induced Schatten norm as

‖Λ(X)‖p→q := sup
X 6=0

‖Λ(X)‖p
‖X‖q

. (13)

Finally, the diamond norm is defined as the CB-completion of the 1 → 1 norm,

‖Λ‖⋄ := sup
d

‖Id ⊗ Λ‖1→1. (14)

There are several different definitions of ε-approximate unitary t-designs. A convenient

one for us is the following.

Definition 4 (Approximate unitary t-design) Let {µ,U} be an ensemble of unitary operators from

U(d). Define

Gµ,t(ρ) =
∫

U(d)

U⊗tρ(U †)⊗tµ(dU) (15)

and

GH,t(ρ) =
∫

U(d)

U⊗tρ(U †)⊗tµH(dU), (16)

where µH is the Haar measure. Then the ensemble is a ε-approximate unitary t-design if

‖Gµ,t − GH,t‖2→2 ≤ ε. (17)

The following Lemma from [52] shows that the previous notion of an approximate uni-

tary design implies two others, which will also be relevant in this work.
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Lemma 1 (Lemma 2.2.14 of [52]). Let {µ,U} be an ε-approximate unitary t-design on U(d) accord-

ing to Def. 4. Then

(a) For Gµ,t and GH,t given by Def. 4,

‖Gµ,t − GH,t‖⋄ ≤ dtε. (18)

(b) For every balanced monomial M = Up1q1 ...UpkqkU
∗
r1s1 ...U

∗
rksk

of degree k ≤ t,

|EU∼µ (M(U))− EU∼µH
(M(U)) | ≤ d2tε. (19)

3 Families of Flat Unitaries

In this section we prove Theorem II showing two examples of families of unitaries which are

highly dispersing.

Quantum Fourier Transforms: Let G be a finite group with irreducible unitary representa-

tions {Vλ}λ∈Ĝ, where rλ(g) is the unitary matrix representation of the group element g ∈ G

in the irrep Vλ and Ĝ labels all inequivalent irreps of G. Let also {|g〉}g∈G be an orthogonal

basis for C|G|. The quantum Fourier transform over G is given by

UQFT(G) =

√
dimVλ
|G|

∑

g∈G

∑

λ∈Ĝ

dimVλ∑

i,j=1

rλ(g)ij |λ, i, j〉〈g|. (20)

We now prove the first part of Theorem II .

Proof. (Theorem II part (i)) The statement is a simple application of the following basic

relation, valid for any finite group [53]:

∑

λ∈Ĝ

dim(Vλ)
2 = |G|. (21)

Indeed, Eq. (21) implies dimVλ ≤ |G| 12 for every λ ∈ Ĝ and thus

|〈λ, i, j|UQFT(G)|g〉|2 =
dimVλ
|G| |rλ(g)ij |2 ≤ |G|− 1

2 , (22)

which implies C(UQFT(G)) ≥ log |G|
2 2.

Unitary 3-designs:

Lemma 2 For every ε-approximate t-design {µ(dU), U} on U(d),

Pr
U∼µ

(C(U) ≤ ν) ≤ d22νt
(
d−tt! + d2tε

)
. (23)

Proof. By Markov’s inequality

Pr
U∼µ

(
|〈i|U |j〉|2 ≥ λ

)
= Pr

U∼µ

(
|〈i|U |j〉|2t ≥ λt

)

≤ EU∼µ
(
|〈i|U |j〉|2t

)

λt
. (24)
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Since {µ(dU), U} is an ε-approximate unitary t-design, Lemma 1 gives

EU∼µ
(
|〈i|U |j〉|2t

)
≤ EU∼µH

(
|〈i|U |j〉|2t

)
+ d2tε. (25)

We have

EU∼µH

(
|〈i|U |j〉|2t

)
= EU∼µH

(
(〈i|U |j〉〈j|U †|i〉)t

)

= tr

(∫

U

µH(dU)U⊗t|j〉〈j|⊗t(U †)⊗t (|i〉〈i|)⊗t
)

=

(
d+ t− 1

t

)−1

tr
(
Psym,t (|i〉〈i|)⊗t

)
=

(
d+ t− 1

t

)−1

, (26)

for Psym,t the projector onto the
(
d+t−1
t

)
-dimensional symmetric subspace of (Cd)⊗t.

Then, from Eqs. (24), (25), (26) and the union bound,

Pr
U∼µ

(
max
i,j∈[d]

|〈i|U |j〉|2 ≥ λ

)
≤ d2

λt

((
d+ t− 1

t

)−1

+ d2tε

)
. (27)

Now we set λ = 2−ν , use the bound
(
d+ t− 1

t

)
=

(d+ t− 1)...(d+ 1)d

t!
≥ dt

t!
, (28)

and we are done 2.

Proof. (Theorem II part (ii))

Let {µ(dU), U} be a 2−3tn-approximate unitary t-design on U(2n). Then applying Lemma

2 with ν = βn, PrU∼µ (C(U) ≤ βn) ≤ 22n2βnt2−tn+1(1 + t!) 2.

4 Classical lower bounds

In this section we prove an exponential lower bound on the postselected classical query com-

plexity of U-CIRCUIT CHECKING for dispersive circuits. Following [1], our strategy will be to

show that the distribution in the U-CIRCUIT CHECKING problem in the case of U-correlated

strings is approximately k-wise independent. Then the result follows from the following

proposition from [1], relating this property to bounds on the postselected query complexity

of distinguishing such distribution from the uniform one:

Proposition 5 (Lemma 20 of [1]) Suppose a probability distribution D over oracle strings is δ-almost

k-wise independent. Then no bounded-error postselected classical machine running in less than k

steps can distinguish D from the uniform distribution with bias larger than 2δ.

Proof. (Theorem I) Propositions 7 and 5 give a lower bound of 2C(U)/7 on the classi-

cal query complexity with postselection of U-CIRCUIT CHECKING. Together with the O(1)

queries quantum algorithm for the problem from section 2.1 implies Theorem I 2.

For a string {x1, ..., xM} ∈ {−1, 1}M we call a term of the form 1±xi

2 a literal and define a

k-term as a product of k-literals, which equals 1 if all the literals are 1 and 0 otherwise. Then

an approximate k-wise independent distribution is defined as follows.

Definition 6 A distribution D over {−1, 1}M is ε-almost k-wise independent if for every k-term C,

1− ε

2k
≤ Pr

D
(C) ≤ 1 + ǫ

2k
. (29)
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In words, D is ε-almost k-wise independent if the probability of every k-term is ε-multiplicatively

close to its value on the uniform distribution (which is simply 2−k).

Consider the vector ωv,U ∈ {−1, 1}2N given by

ωv,U := (sgn(v1), ..., sgn(vN ), sgn(Re(Uv)1), ..., sgn(Re(Uv)N )) (30)

and let DU be the distribution over ωv,U when the vector v := (v1, ..., vN ) is composed of

independent entries vk, each drawn from a complex normal distribution vk = vk,r + ivk,i
with vk,r, vk,i real normal variables of mean 0 and variance 1. Then we have

Proposition 7 DU is (6k32−C(U)/2)-almost k-wise independent.

Proof. Define

zj =

{
vs(j) if 0 ≤ j ≤ m

(Uv)r(j) if m < j ≤ k.
(31)

for injective functions s : [m] → [N ] and r : [k−m] → [N ]. Consider the following probability

P := Pr (sgn(Re(z1)) = a1, sgn(Re(z2)) = a2, ..., sgn(Re(zk)) = ak) , (32)

for a tuple a := (a1, ..., ak) ∈ {−1, 1}k. In the remainder of the proof we show that the prob-

ability in Eq. (32) is (6k32−C(U)/2)-multiplicatively close to 2−k for every choice of the tuple

a, functions s, r, and integer m ≤ k, which readily implies the statement of the proposition.

First we note that the probability of Eq. (32) is equal to

P = Pr (a1Re(z1) ≥ 0, a2Re(z1) ≥ 0, ..., akRe(zk) ≥ 0) (33)

and that y := (a1z1, ..., akzk) is a (circular symmetric complex) multivariable normal distri-

bution with mean zero. That is, there is a matrix M ∈ Ck×N such that y := Mv, where

v ∈ RN is a vector of independent normal variables of mean 0 and variance 1.

It is a standard fact of multivariate normal distributions that they are are completely

specified by the mean vector µ and the covariance matrix Σ of the distribution, i.e. the

probability density function of y is given by

1

πk|Σ|k exp
(
−y†Σ−1y + µ†y

)
. (34)

In our case µ = 0, while the covariance matrix Σi,j = E (y∗i yj) is given by

Σ =

(
Im Q
Q† Ik−m

)
, (35)

with

Qi,j = aiajE
(
vs(i)(Uv)r(j)

)
= aiajUs(i)r(j). (36)

Thus ‖Σ− I‖∞ ≤ k2 maxi,j∈[N ] |Ui,j | ≤ k22−
1

2
C(U), which implies

(1− k22−
1

2
C(U))I ≤ Σ ≤ (1 + k22−

1

2
C(U))I (37)

and

(1 + k22−
1

2
C(U))−1I ≤ Σ−1 ≤ (1− k22−

1

2
C(U))−1I. (38)
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For k much smaller than 2C(U) we thus see that the covariance matrix Σ is close to the iden-

tity, which means that the distribution over y is close to the uniform. In the rest of the proof

we make this observation quantitative.

We have

P = Pr (Re(y1) ≥ 0,Re(y2) ≥ 0, ...,Re(yk) ≥ 0)

= |Σ|−kπ−k
∫

Re(y1)≥0,...,Re(yk)≥0

exp
(
−y†Σ−1y

)
dy1...dyk

≤ |Σ|−kπ−k
∫

Re(y1)≥0,...,Re(yk)≥0

exp
(
−(1 + k22−

1

2
C(U))−1y†y

)
dy1...dyk

≤
(

1 + k22−
1

2
C(U)

1− k22−
1

2
C(U))

)k
π−k

∫

Re(y1)≥0,...,Re(yk)≥0

exp
(
−y†y

)
dy1...dyk

=

(
1 + k22−

1

2
C(U)

1− k22−
1

2
C(U))

)k
2−k, (39)

where the two inequalities in the Eq. (39) above follow from the two sides of Eq. (38). Then

using the bound (
1 + a

1− a

)k
≤ 1 + 6ka, (40)

valid for all 0 ≤ a ≤ 1, we get

P ≤ (1 + 6k32−C(U)/2)2−k. (41)

By a completely similar argument (using again the two sides of Eq. (38) and Eq. (40)) we

also find

P ≥
(

1− k22−
1

2
C(U)

1 + k22−
1

2
C(U))

)k
2−k ≥ (1− 6k32−C(U)/2)2−k, (42)

and we are done 2.

5 Classical upper bounds

In this section we prove Theorems V and VI.

Proof. (Theorem V)

Let (i, j) be such that |Ui,j | = 2−C(U)/2. Assuming that Re(Ui,j) ≥ Im(Ui,j)
i, we get

Re(Ui,j) ≥ 2−C(U)/2+1.

The algorithm for U-CIRCUIT CHECKING in the independent query model works as fol-

lows: One queries fr(i) and gr(j) over N = ⌈Re(Ui,j)
−2 log(1/ǫ)⌉ independent realizations

of the oracle (labelled by r) and computes

EN :=
1

N

N∑

r=1

fr(i)gr(j), (43)

deciding that the functions are U-correlated if EN ≥ Re(Ui,j)/4.

i Otherwise we consider instead the unitary
√
−1U
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In the case of independent f and g, we have E(f(i)g(j)) = 0. In the remainder of the proof

we show that for U-correlated f and g, E(f(i)g(j)) ≥ Re(Ui,j)/2. Then Chernoff bound gives

that the algorithm fails with probability at most ǫ.

Let us turn to the lower bound on E(f(i)g(j)) in the case of U-correlated f and g. We

have

E(f(i)g(j)) = E(sgn(Re(vi))sgn(Re(Uv)j)). (44)

Note that E(Re(vi)Re(Uv)j)) = Re(Ui,j) ≥ 2−(C(U)/2+1). So all we have to do is to check that

the discretized version given by Eq. (44) has a similar expectation value.

First we write

E(sgn(Re(vi))sgn(Re(Uv)j)) = Pr (Re(vi)Re(Uv)j ≥ 0)− Pr (Re(vi)Re(Uv)j < 0)

= 2Pr (Re(vi)Re(Uv)j ≥ 0)− 1

= 4Pr (Re(vi) ≥ 0 and Re(Uv)j ≥ 0)− 1. (45)

Now define the bivariate normal variable w := (w1, w2) with w1 = vi and w2 := (Uv)j .

The probability distribution of w is completely characterized by the covariance matrix with

entries Σk,l := E(wkw∗
l ), which reads

Σ =

(
1 Ui,j
U∗
i,j 1

)
. (46)

Then,

Pr (Re(vi) ≥ 0 and Re(Uv)j ≥ 0)

= |Σ|−2π−2

∫

Re(w1)≥0,Re(w2)≥0

exp
(
−w†Σ−1w

)
dw1dw2

= |Σ|−2π−2

∫

Re(w1)≥0,Re(w2)≥0

exp
(
−(1− |Ui,j |)−1w†w + 2Re(w∗

1w2Ui,j)
)
dw1dw2

≥ |Σ|−2π−2

∫

Re(w1)≥0,Re(w2)≥0

exp
(
−(1− |Ui,j |)−1w†w

)
(1 + 2Re(w∗

1w2Ui,j)) dw1dw2

= π−2

∫

Re(w1)≥0,Re(w2)≥0

exp
(
−w†w

) (
1 + 2Re(w∗

1w2Ui,j)(1− |Ui,j |)2
)
dw1dw2

=
1

4

(
1 +

Re(Ui,j)(1− |Ui,j |)2
8

)
. (47)

where we used basic facts of Gaussian integrals and that ex ≥ 1 + x, for x ≥ 0 2.

We now turn to the proof of Theorem VI, which is largely based on recent techniques

of Van den Nest for the efficient classical simulation of certain types of quantum states and

operations [39]. We will make use of the notion of computational tractable states, which are

defined below in a slightly more general way than in [39], in order to accommodate for oracle

queries.

Definition 8 [39] A state on n qubits |ψ〉 is f -computational tractable given access to the oracle

function fψ : {0, 1}m → {0, 1} (with m = poly(n)) if the following holds
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(a) it is possible to sample from the probability distribution Pr(x) := |〈x|ψ〉|2 on the set of n-bit

strings in poly(n) time in a classical computer with poly(n) many queries to fψ , and

(b) upon input of any bit of x, the coefficient 〈x|ψ〉 can be computed in poly(n) time on a

classical computer with poly(n) queries to fψ .

Then we have:

Proposition 9 [39] Let |ψ〉 and |φ〉 be f -computational tractable states (given access to oracle f ) of

n qubits each and let A be an efficiently computable sparse n-qubit operation with ‖A‖∞ ≤ 1. Then

there exists an efficient classical algorithm to approximate 〈φ|A|ψ〉 with polynomial accuracy in n,

given access to the oracle f .

In [39] Van den Nest proved Proposition 9 in the non-oracular case. However, it is easy

to check that his proof carries through without any modification to cover the statement of

Proposition 9.

Proof. (Theorem VI)

Let Ũ be the sparse approximation of U with only poly(n) many non-zero entries in each

row and column and such that ‖U − Ũ‖∞ ≤ 0.03. Let |f〉 and |g〉 be the states given by

Eqs. (4) and (5). Note that |f〉 and |g〉 are f - and g-computational tractable, respectively.

Indeed any of their coefficients can be read directly from the oracles f and g, while the

probability distribution Pr(x) := |〈x|f〉|2 (and analogously |〈x|g〉|2) is uniform and therefore

easily samplable.

From Proposition 1 we see it suffices to calculate |〈g|U |f〉|2 to accuracy < 0.07 in order to

solve U-CIRCUIT CHECKING with high probability and, indeed,

||〈g|U |f〉|2 − |〈g|Ũ |f〉|2| = |〈f |
(
U |g〉〈g|U † − Ũ |g〉〈g|Ũ †

)
|f〉|

≤
∥∥∥U |g〉〈g|U † − Ũ |g〉〈g|Ũ †

∥∥∥
1

=
∥∥∥U |g〉 − Ũ |g〉

∥∥∥ .
∥∥∥U |g〉+ Ũ |g〉

∥∥∥

≤ 2
∥∥∥U − Ũ

∥∥∥
∞

≤ 0.06 (48)

2.

6 Random Circuits are approximate 3-designs

In this section we prove that random quantum circuits of linear length form an approximate

unitary 3-design, which is the main technical contribution of the paper.

We consider two classes of random quantum circuits, both defined as random walks on

U(2n):

• uniform random circuit: in each step two indices i 6= j are chosen uniformly at random

from [n] and a two-qubit unitary gate Ui,j drawn from the Haar measure on U(4) is

applied to qubits i and j.

• local random circuit: in each step of the walk an index i is chosen uniformly at random

from [n] and a two-qubit gate Ui,i+1 drawn from the Haar measure on U(4) is applied

to the two neighbouring qubits i and i + 1 (we arrange the qubits on a circle, so we

identify the (n+ 1)-th qubit with the first).
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Throughout this section we will focus on local random circuits and then show how our

results can be extended to uniform random circuits.

We will make use the folllowing well-known correspondence of superoperators and op-

erators, which allow us to evaluate the eigenvalues of the former by computing the eigen-

values of the latter. Given a superoperator G given by

G(X) :=
∑

k

AkXB
†
k, (49)

we define the operator

G :=
∑

k

Ak ⊗Bk, (50)

with X the complex conjugate of X .

Let X be such that tr(XX†) = 1 and G(X) = λX , for a complex number λ, i.e. X is an

eigenoperator of G with eigenvalue λ. Then defining |X〉 := X ⊗ I|Φ〉, with

|Φ〉 :=
∑

k

|k〉 ⊗ |k〉, (51)

it holds that G|X〉 = λ|X〉, i.e. |X〉 is an eingenvector of G with eingenvalue λ.

A direct implication of this correspondence is that

‖G‖2→2 = ‖G‖∞. (52)

Proof. (Theorem III)

Let {µ(dU), U} be the distribution of unitaries after one step of the random walk accord-

ing to the local random circuit model. Following Eq. (49), define

Gµ∗k,t :=

∫

U(d)

µ∗k(dU)U⊗t ⊗ U
⊗t
. (53)

where µ∗k is the k-fold convolution of µ with itself, i.e.

µ∗k :=

∫
δU1...Uk

µ(dU1)...µ(dUk). (54)

In the sequel we show that for t = 2, 3,

‖Gµ∗k,t −GµH ,t‖∞ ≤
(
1− 1

5n

)k
, (55)

with µH is the Haar measure on U(2n). Then by Def. 4 and Eq. (52) we find that

{µ∗5n log(1/ǫ)(dU), U} is an ǫ-approximate unitary 3-design, which is the statement of the

theorem.

Following [33], we have Gµ∗k,t = (Mt,n)
k, with

Mt,n :=
1

n

n∑

i=1

Pi,i+1 (56)
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and

Pi,i+1 :=

∫

U(4)

µH(dU)U⊗t
i,i+1 ⊗ U

⊗t
i,i+1. (57)

Moreover the projector onto the eigenvalue-one subspace of Mt is equal to GµH ,t, since [30,

33]

lim
k→∞

‖Gµ∗k,t −GµH ,t‖∞ = 0. (58)

Therefore

‖Gµ∗k,t −GµH ,t‖∞ = (λ2 (Mt,n))
k
, (59)

with λk(X) the k-th largest eigenvalue of X .

Lemma 3 and Lemma 6 gives that λ2(Mt,n) ≤ 1 − 1
5n . Then Eq. (55) is a consequence of

this bound and Eq. (59) 2.

The next proposition is the key part of the argument. It shows that in order to upper

bound λ2(Mt,n) it is enough to obtain a sufficiently strong upper bound on λ2(Mt,3). The

latter is associated to the convergence time of a random walk on only three qubits and,

therefore, can be more easily analysed.

Lemma 3

λ2 (Mt,n) ≤ 1− 3− 4λ2 (Mt,3)

n
. (60)

Proof. Define Hi,i+1 := I− Pi,i+1 and

H :=

n∑

i=1

Hi,i+1 = n(I−Mt,n). (61)

The operator H is a quantum local Hamiltonian (i.e. a sum of terms which act non-

trivially only on neighbouring sites), composed of local projectors Hi,i+1, with the following

properties:

• periodic boundary conditions: the (i+ 1)-th site is identified with the first.

• zero gound-state energy: λmin(H) = 0, with λmin(H) the minimum eigenvalue of H .

• frustation-freeness: every state |ψ〉 in the grounstate manifold, composed of all eigen-

vectors with eigenvalue zero, is such that Hi,i+1|ψ〉 = 0, for all i.

Let ∆(X) be the spectral gap of X , i.e. the difference of the second lowest to the lowest

eigenvalues. Then from Lemma 4 we get

λ2 (Mt,n) = 1− ∆(H)

n

≤ 1− 2∆ (H1,2 +H2,3)− 1

n

= 1− 4∆ (I−Mt,3)− 1

n

= 1− 3− 4λ2 (Mt,3)

n
. (62)

2.

The next lemma appeared e.g. in [35].
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Lemma 4 [35] Let H =
∑N
i=1Hi,i+1 be a local Hamiltonian with periodic boundary conditions,

with Hi,i+1 projectors and λmin(H) = 0. Then the spectral gap of H satisfies

∆(H) ≥ 2 min
i∈1,...,N

∆(Hi,i+1 +Hi+1,i+2)− 1 (63)

Proof. Let γ := 2mini∈1,...,N ∆(Hi,i+1 +Hi+1,i+2)− 1. Then by Lemma 5

(Hi,i+1 +Hi+1,i+2)
2 ≥ γ + 1

2
(Hi,i+1 +Hi+1,i+2) . (64)

Rearranging terms in the equation above we get

1

2
Hi,i+1 +Hi,i+1Hi+1,i+2 +Hi+1,i+2Hi,i+1 +

1

2
Hi+1,i+2 ≥ γ

2
(Hi,i+1 +Hi+1,i+2) . (65)

We have

H2 ≥
N∑

i=1

(
1

2
Hi,i+1 +Hi,i+1Hi+1,i+2 +Hi+1,i+2Hi,i+1 +

1

2
Hi+1,i+2

)

≥ γ

N∑

i=1

(
1

2
Hi,i+1 +

1

2
Hi+1,i+2

)
= γH, (66)

where the first inequality follows from

H2 =
N∑

i=1

(
1

2
Hi,i+1 +Hi,i+1Hi+1,i+2 +Hi+1,i+2Hi,i+1 +

1

2
Hi+1,i+2

)

+
∑

|k−l|>1

Hk,k+1 ⊗Hl,l+1, (67)

and the positivity ofHi,i+1, and the second one from Eq. (66). Then, by Lemma (5), ∆(H) ≥ γ

2.

Lemma 5 For a positive semi-definite matrix M with λ1(M) = 0,

λ2(M) = max
γ∈R

γ :M2 ≥ γM (68)

Proof. Let (0, λ2, λ3, ...) be the vector of ordered eigenvalues of M . Then (0, λ22, λ
2
3, ...) are

the ordered eigenvalues of M2 and M2 ≥ γM holds true if, and only if, λ2k ≥ γλk for all k,

which is equivalent to λ2 ≥ γ 2.

The second result we need in the proof of Theorem III is the following upper bound on

λ2(Mt,3), valid for t = 2, 3:

Lemma 6 For t ∈ {2, 3},

λ2(Mt,3) =
7

10
. (69)

Proof.

The operator Mt,3 has the following form

Mt,3 =
1

2
(P12 ⊗ I3 + I1 ⊗ P23) (70)
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In analogy to the definition of Pi,i+1, we define the projectors Pi as follows

Pi :=

∫

U(2)

µH(dU)U⊗t
i ⊗ U

⊗t
i . (71)

We also consider the associate superoperator

Pi(X) :=

∫

U(2)

µH(dU)U⊗t
i X(U †

i )
⊗t. (72)

From Schur duality we find that all operators X invariant under Pi can be written as a

sum of permutation operators. In more detail, consider the representation Vπ,i of the sym-

metric group St acting on H⊗t
i given by

Vπ,i|k1〉 ⊗ ...⊗ |kt〉 = |kπ−1(1)〉 ⊗ ...⊗ |kπ−1(t)〉, (73)

for every π ∈ St and |kl〉 ∈ Hi. Then it follows that any X satisfying Pi(X) = X is such that

X =
∑

π

cπVπ,i, (74)

for complex numbers cπ . Moreover, the subspace defined by Pi is spanned by the (overcom-

plete) basis given by the non-normalized vectors |Vπ,i〉 := Vπ,i ⊗ I|Φ〉.
Likewise we define

Pi,i+1(X) :=

∫

U(4)

µH(dU)U⊗t
i,i+1X(U †

i,i+1)
⊗t, (75)

and again we find that anyX invariant under Pi,i+1 can be written as a sum of permutartion

operators Vπ,(i,i+1), now permuting the t copies of the Hilbert space H⊗t
i,i+1.

Since Vπ,(i,i+1) = Vπ,i ⊗ Vπ,i+1 it follows that Pi,i+1 ⊂ Pi ⊗ Pi+1 and thus

P12 ⊗ I3 + I1 ⊗ P23 = (P12 ⊗ P3 + P1 ⊗ P23)⊕ (P12 ⊗ P⊥
3 )⊕ (P⊥

1 ⊗ P23) (76)

Since the last two terms in the direct sum above have eigenvalues 0 and 1, it follows that

λ2(Mt,3) = λ2(X)/2, with X given by

X = P12 ⊗ P3 + P1 ⊗ P23. (77)

Note that the support of X is contained in P1 ⊗ P2 ⊗ P3.

Now, for any Hilbert space H, in a subspace spanned by swaps acting on H⊗t one can

construct a basis of operators which is orthonormal in Hilbert-Schmidt scalar product:

Rk =
∑

π

bkπVπ (78)

where the coefficients bkπ do not depend on the dimension of H, but only on t (we do not

write this dependence explicitly). Note that depending on the dimension of H, someRk may

vanish. Using the operators Rk we can write:

Pi,i+1 =
∑

k

|R(i,i+1)
k 〉〈R(i,i+1)

k |, Pi =
∑

k

|R(i)
k 〉〈R(i)

k |. (79)
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To diagonalize the operator X we need to represent P1,2 and P2,3 in terms of product basis

R
(1)
k ⊗R

(2)
k and R

(2)
k ⊗R

(3)
k , respectively. To this end we use (78), which in our case read

R
(1,2)
k =

∑

π

bkπVπ,1 ⊗ Vπ,2

R
(1)
k =

∑

π

bkπVπ,1

R
(2)
k =

∑

π

bkπVπ,2. (80)

(81)

A simple calculation gives

R1,2
k =

∑

s,u

r(k)s,uRs ⊗Ru (82)

where the coefficients r
(k)
s,u form a matrix given by

r(k) = (B−1)TA(k)B−1 (83)

with B defined as the matrix with entries bkl and A(k) the diagonal matrices

A
(k)
ij = δijbki. (84)

In this way, from the matrix B we can obtain the matrix elements of the projectors P1,2

and P2,3 in the product bases R
(1)
k ⊗R

(2)
l and R

(2)
k ⊗R

(3)
l , respectively. These, in turn, allow

us to obtain the matrix elements of X and to compute its eigenvalues. In the following we

perform the analysis for t = 2 and t = 3.

2-design. For t = 2, the basis is given by (suitably normalized) projectors onto the sym-

metric and the antisymmetric subspace. The matrix B is then given by

B =

[ 1√
3

1√
3

1
2 − 1

2

]
(85)

where the basis of swaps was ordered as {(), (12)} j, while the matrices r(k) are given by

r(1) =
1

2




0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


 , r(2) =

1

2




α 0 0
√
αβ

0 0 0 0
0 0 0 0√
αβ 0 0 β


 . (86)

with α = 9
5 , β = 1

5 . Diagonalizing X , we obtain that it has the second largest eigenvalue 7/5
k, which gives λ2(M3,t) = 7/10 for t = 2.

jHere () labels the trivial permutation and (12) the swap of systems 1 and 2.
kWe have diagonalized the matrix X using the symbolic manipulation program Mathematica.
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3-design. Here we exploit the orthonormal basis constructed in [54]:

R+ =
1

12
(I+ V(12) + V(13) + V(23) + V(123) + V(132)),

R− =
1

12
(I− V(12) − V(13) − V(23) + V(123) + V(132)),

R0 =
1

2
(I−R+ −R−),

R1 =
1

6
(2V(23) − V(13) − V(12)),

R2 =
1

2
√
3
(V(12) − V(13)),

R3 =
i

2
√
3
(V(123) − V(132)). (87)

where permutations are written by means of cycles. The related matrix B is given by

B =
1

2




2
3 0 0 0 − 1

3 − 1
3

0 − 1
3

2
3 − 1

3 0 0
0 1√

3
0 − 1√

3
0 0

0 0 0 0 i√
3

− i√
3

1
6

1
6

1
6

1
6

1
6

1
6

1
6 − 1

6 − 1
6 − 1

6
1
6

1
6




(88)

where the basis of swaps is ordered as follows {(), (12), (23), (13), (123), (132)}. Since we

work with qubits, R3 = 0 and hence we have 5 basis elements and X is a 125 × 125 matrix.

We have computed its matrix elements and then its eigenvalues11, and found that again the

second largest eigenvalue is equal to 7/5 2.

Lastly, let us discuss the case of uniform random circuits. We have:

Proposition 10 5n2 log(1/ǫ)-sized uniform random circuits form an ǫ-approximate unitary 3-design.

Proof. Following the proof of Theorem III is suffices to show that for t = 3,

λ2(Nt,n) ≤ 1− 1

5n2
(89)

with

Nt,n :=
1

n2

∑

i<j

Pi,j (90)

and

Pi,j :=

∫

U(4)

µH(dU)U⊗t
i,j ⊗ U

⊗t
i,j . (91)

Defining

H̃ :=
∑

i,j

Hi,j = n2(I−Nt,n) (92)

with Hi,j = I− Pi,j , we find Eq. (89) to be equivalent to ∆(H̃) ≥ 1/5.
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Both H̃ and H (given by Eq. (61)) have the same groundspace S0. Furtermore, H̃ ≥ H .

Then

∆(H̃) ≥ min
|ψ〉⊥S0

〈ψ|H̃|ψ〉 ≥ min
|ψ〉⊥S0

〈ψ|H|ψ〉 = ∆(H) ≥ 1

5
, (93)

where the last inequality follows from Lemmas 3 and 6 2.
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