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A topological quantum computer should allow intrinsically fault-tolerant quantum com-
putation, but there remains uncertainty about how such a computer can be implemented.
It is known that topological quantum computation can be implemented with limited
quasiparticle braiding capabilities, in fact using only a single mobile quasiparticle, if

the system can be properly initialized by measurements. It is also known that mea-
surements alone suffice without any braiding, provided that the measurement devices
can be dynamically created and modified. We study a model in which both measure-
ment and braiding capabilities are limited. Given the ability to pull nontrivial Fibonacci

anyon pairs from the vacuum with a certain success probability, we show how to sim-
ulate universal quantum computation by braiding one quasiparticle and with only one
measurement, to read out the result. The difficulty lies in initializing the system. We

give a systematic construction of a family of braid sequences that initialize to arbitrary
accuracy nontrivial composite anyons. Instead of using the Solovay-Kitaev theorem, the
sequences are based on a quantum algorithm for convergent search.
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1 Introduction

In a topological quantum computer, universal quantum computation can be simulated by

braiding quasiparticle excitations around each other on a two-dimensional surface [1]. Pro-

vided the quasiparticles are kept well apart, the computation is intrinsically highly resilient

to errors. Topological quantum computers can be implemented, or simulated, in a variety of

ways [2]. For example, we might find lattice spin systems in which certain necessary local in-

teractions arise naturally [1, 3], or the interactions could be artificially engineered [4]. Physical

quantum systems that may more directly allow for universal topological quantum computa-

tion include fractional quantum Hall systems [2] and topological insulators with topologically

nontrivial surfaces [5, 6].

There has been steady progress in fabricating these substrates and then studying their

quantum properties to verify conjectured theories. However, engineering a topological quan-

tum computer based on such a system remains a formidable challenge. A direction of the-

oretical research has therefore been to design topological quantum computational schemes

that minimize the required resources. For example, moving quasiparticles appears to be
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Fig. 1. Composite anyon distillation: For initializing the anyon system, we allow a basic operation
that attempts to pull from the vacuum a nontrivial anyon pair. It succeeds with probability p > 0,

but the success or failure (solid or dashed lines, respectively) is not revealed. By weaving a single,
nontrivial mobile quasiparticle (marked ⋆) around the others, we distill across a partition (dotted
line) a composite anyon that is nontrivial with high probability. Entropy is unchanged by this
unitary operation, but remains localized in the higher portion of the fusion diagram.

difficult—the technology is speculative [7]. Simon et al. [8] showed how to implement univer-

sal quantum computation by weaving only a single mobile quasiparticle through an array of

stationary quasiparticles. Bonderson, Freedman and Nayak [9, 10] developed a scheme that

requires no quasiparticle braiding. Instead, their approach relies only on certain collective

anyon measurements to teleport anyons around each other. They envision using dynamic

deformations of the fractional quantum Hall medium in order to place interferometers around

the anyons to be measured. Limited deformations have been experimentally achieved [11],

but a full implementation of these measurements may be as difficult as braiding quasiparti-

cles. For example, in the Ising model, it may be difficult to calibrate the interferometers to

distinguish trivial charge from charge ψ [10].

In this paper, we consider the case in which both measurement and quasiparticle braiding

operations are difficult. In a model meant as a compromise between references [8] and [9],

we allow for weaving only a single mobile quasiparticle, and also restrict measurement to the

fusion channel of only one anyon pair. This measurement is used exactly once at the very end

of the computation, to read out the result. However, limited measurement capability makes

initializing the system a problem. It disallows the standard approach of preparing anyons:

trapping stray quasiparticles, and then measuring interferometrically to check for the presence

of a nontrivial anyon charge and break entanglement inside the system. Therefore our model

instead supposes that nontrivial quasiparticle pairs can be created from the vacuum each with

a constant probability above zero, independently.

Quasiparticles that stochastically may or may not be trivial are not directly useful for

computation. To separate this entropy and create effective pure states, we use the method

of composite anyon distillation, introduced in [12]. In composite anyon distillation, sketched

in Fig. 1, a collection of unentangled quasiparticles, each of which has a certain probability

independently of being nontrivial, is manipulated in order to create a composite anyon that

with high probability is nontrivial. In further computation, the collection of quasiparticles is

then treated as a single entity. (If the physical model allows it, they can be fused together.)

Our contribution is in giving a scheme for distilling composite anyons by weaving only a single

mobile quasiparticle. Once composite anyons can be created with high probability, they can

be manipulated by braiding the single quasiparticle to implement the desired computation

following [8], and finally the outcome of the computation can be read out using a measurement.

Besides extending König’s distillation scheme to the case of a single mobile quasiparticle,

we also improve the efficiency of the scheme. In particular, in the original model, in which

nontrivial anyon pairs can be created with probability p, König’s method uses O
(

1
p2 (log

1
ǫ )

5+δ
)
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physical braids to distill a composite anyon with probability 1 − ǫ, where δ > 0 can be any

constant. The improved implementation uses only O
(

1
p2 (log

1
ǫ )

3
)

physical braids for the same

accuracy. This improvement is made possible by giving a more efficient braid sequence for

achieving the same operations.

Although the Fibonacci model is universal, it does not allow the exact implementation of

every desired operation [13]. Instead, desired operations must be approximated by sequences

of available gates each corresponding to an elementary quasiparticle braiding operation. Braid

sequences are generally found by brute-force search, sometimes after using dimensionality-

reduction ideas to simplify the search for two-qubit operations [14, 15, 16, 17, 18, 19]. After

the initial search achieves a certain constant accuracy, an appeal is made to the Solovay-

Kitaev theorem [20, 21] to constructively derive arbitrarily accurate braids, with the number

of braids required to achieve an error ǫ scaling as O
(

(log 1
ǫ )

3+δ
)

, where δ > 0 can be any

constant. There are indications that the Solovay-Kitaev theorem may be too pessimistic for

the Fibonacci model [22, 23], but no stronger convergence guarantee is yet known [24].

Instead of relying on search and the Solovay-Kitaev theorem, we give a completely explicit

distillation braid sequence for which the error can be analyzed exactly. A systematic, iterative

procedure allows for achieving arbitrarily small error. The number of braids required to realize

an error ǫ > 0 scales as only O(log 1
ǫ ). A brute-force search can be used to initialize the

procedure, possibly improving the hidden constant in the big-O notation, but such a search

is unnecessary.

This more efficient gate compilation procedure is inspired by Grover’s convergent search

quantum algorithms [25]. This algorithm applies phases of π/3 to the source and target states,

instead of π as in Grover’s original search algorithm [26]. Unlike the original algorithm, it

does not give a square-root speedup for unstructured database search. However, when run

iteratively, it is a convergent procedure, that converges to the target, instead of rotating past

it. Previous work has used this to design higher-order-accurate composite pulse sequences for

qubit control [27]. Here we apply generalizations of this technique to design braid sequences

for controlling Fibonacci anyons. The construction takes advantage of two properties. First,

we do not need to approximate arbitrary unitaries. In fact, distillation can be reduced to im-

plementing certain 2× 2 matrices, either the identity or the Pauli X matrix, acting between

certain anyon fusion basis states. Second, braids in the Fibonacci model allow for easily ap-

plying phases that are multiples of π/5. Although the phase-π/3 convergent search algorithm

does not apply, a phase-π/5 generalization does.

Regarding possible applications, there are at least two major caveats to our approach.

First, as in [12], our scheme works for the Fibonacci anyon theory, also known as SO(3)3.

The Fibonacci theory allows for universal quantum computation, and is the non-abelian part

of one of the candidates for the anyon model for fractional quantum Hall liquids at filling

fraction ν = 12/5 [28]. However, the form of the ν = 12/5 state has not been resolved [29].

The Ising anyon theory, related to SU(2)2, may be more easily accessible in experiments,

likely appearing for example in the less fragile ν = 5/2 fractional quantum Hall state and

possibly in topological insulators. Unfortunately, composite anyon distillation is impossible

for the Ising model in the plane, since allowed quantum operations can be simulated by

Clifford gates [2, 30]. In any case, the Fibonacci model is worth studying as it is the simplest

non-abelian anyon model, and has other possible realizations beyond fractional quantum Hall
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systems [4, 31, 32]. In the conclusion, we will discuss a way of extending composite anyon

distillation to anyon models SO(3)k where k + 2 is prime.

A second caveat is that the operations we allow may not be the most suitable operations

for a particular implementation of the Fibonacci theory. While interferometric measurements

have been implemented in fractional quantum Hall systems [11, 33], braiding and creation of

particle pairs from the vacuum have not. Thus it remains unclear what set of operations will

be most experimentally accessible. The current work may be seen as exploring one alterna-

tive. As experiments advance, we should obtain a better understanding of the advantages and

disadvantages of different approaches. For example, the presence of static stray quasiparti-

cles could pose a problem both for a measurement-based topological quantum computation

scheme, since the different interferometry regions must enclose the same sets of quasiparti-

cles [10, Sec. 6.4], and also for our scheme, since then regions of anyons that should fuse to the

vacuum might not. In the conclusion, we will discuss a possible solution, should this turn out

to be an issue: set up a single interferometer with one trap inside the interferometry region,

and then braid a mobile quasiparticle in and out of this trap, and around other traps, in order

to measure the anyons at other positions.

This paper is organized as follows. Section 2 begins by stating the simple matrix identity

that is the basis for our systematic construction of higher-order-accurate braid sequences.

The identity is a generalization of Grover’s convergent search algorithm. Section 3 briefly

reviews the parameters of the Fibonacci anyon model. Section 4 considers composite anyon

distillation in the case that all quasiparticles can be moved for braiding, and presents a

completely explicit braid sequence that is more efficient than the sequence given for the

same model in [12]. Section 5 shows how to distill composite anyons in the one-mobile-

quasiparticle model. Unlike the schemes in Section 4 and [12], the presented method does not

use hierarchical distillation, and is thus even simpler in certain ways. However, the limited

quasiparticle mobility also introduces some technical problems. Finally, Section 6 concludes

with a discussion of some extensions and open problems.

2 Systematic construction of higher-order-accurate 2× 2 unitaries

The explicit braid sequences we will derive are based on Grover’s convergent search algorithm,

which is a variation of the well-known amplitude amplification algorithm.

The basic matrix identity behind the amplitude amplification algorithm [34, 35] is that

for any 2× 2 unitary matrix U , the (1, 1) entry of

A(U) = U
(

−1 0
0 1

)

U †
(

−1 0
0 1

)

U (1)

equals in magnitude cos(3 arccos |U1,1|). Think of U as changing basis, from certain states

|s〉 ,
∣

∣s⊥
〉

to |t〉 ,
∣

∣t⊥
〉

, with |〈t|U |s〉| small. Then A(U) uses three calls to U or U † to amplify

the coefficient for going from the “source” |s〉 to the “target” |t〉 by about a factor of three:

|〈t|A(U) |s〉| = |sin(3 arcsin |〈t|U |s〉|)|. The probability of measuring the target is increased

by about a factor of nine. Iterating this procedure by implementing A(A(U)), A(A(A(U))),

etc., results in the well-known square-root speedup, used for example in Grover’s unstructured

database search algorithm [26, 36].

One potential problem in amplitude amplification or Grover’s search algorithm is that

running the procedure for too long results in the output state turning beyond the target.
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U †
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U
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(b)

Fig. 2. Geometrical intuition for convergent search [27]. These two diagrams show stereographic
projections of the Bloch sphere in a small neighborhood of the origin, |0〉. (a) Beginning at |0〉,
applying the small rotation U (right arrow), a π/3 rotation about |0〉, U† (left arrow), another π/3

rotation, and finally U , the state returns to its initial position up to third order. Part (b) shows
a similar geometrical argument for the third-order convergence of the sequence of Eq. (3), using
five applications of U or U†. By correcting for the curvature of the sphere, one can show that this

sequence in fact gives fifth-order convergence (Lemma 2.1).

Grover’s construction of a convergent search algorithm addresses this issue [25, 37]. In con-

vergent search, the basic iteration

U 7−→ A′(U) = U
(

eπi/3 0
0 1

)

U †
(

eπi/3 0
0 1

)

U (2)

adds phases of π/3 instead of π to the source and target. It satisfies
∣

∣

〈

t⊥
∣

∣A′(U) |s〉
∣

∣ =
∣

∣

〈

t⊥
∣

∣U |s〉
∣

∣

3
. Hence iterating the map results in the (1, 1) coefficient converging to 1 in

magnitude. Although this algorithm does not give a square-root speedup over classical search,

because of its coherency it has proved useful as a subroutine in other quantum algorithms [38,

39, 40]. The convergence property is also naturally applied to correct systematic control

errors [27].

The following lemma, remarked in [27], generalizes the convergent search algorithm to give

fifth-order accuracy based on phase rotations by multiples of π/5 in between five alternating

applications of U and U †. Fig. 2 gives some geometrical intuition for the choice of angles.

Lemma 2.1 Let U ∈ U(2) be a one-qubit unitary, i.e., a 2×2 unitary matrix in the orthonor-

mal basis {|0〉 , |1〉}. Let ω = eπi/5. Then

∣

∣〈1|U ( 1 0
0 ω )U

†
(

1 0
0 −ω−2

)

U
(

1 0
0 −ω−2

)

U † ( 1 0
0 ω )U |0〉

∣

∣ = |〈1|U |0〉|5 , (3)

and furthermore,

∣

∣〈0|U
(

1 0
0 ω−1

)

U †
(

1 0
0 −ω−2

)

U
(

1 0
0 −ω2

)

U † ( 1 0
0 ω )U |0〉

∣

∣ = |〈0|U |0〉|5 . (4)

Proof. Without loss of generality, we may assume that U =
(

cos θ sin θ
sin θ − cos θ

)

for some angle θ.

Indeed, a general 2×2 unitary matrix can be written
(

ceiθ00 seiθ01

seiθ10 ceiθ11

)

, where (c, s) = (cos θ, sin θ)

for some θ, and θ00 − θ01 = θ10 − θ11 + π mod 2π. Thus we obtain

(

ceiθ00 seiθ01

seiθ10 ceiθ11

)

=
(

1 0
0 ei(θ10−θ00)

)

( c s
s −c )

(

eiθ00 0
0 eiθ01

)

. (5)
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Since terms U and U † alternate in the matrix product on the left-hand side of Eq. (3), the

diagonal matrices to the left and right of ( c s
s −c ) above all cancel out, except for irrelevant

phases at the very beginning and very end. Eq. (3) follows from writing out the matrix

product. Eq. (4) follows from making the substitutions U → XU and ω → ω∗ in Eq. (3). �

We remark that further generalizations of convergent search are possible. Tulsi, Grover and

Patel [41, 42] defined higher-order-accurate generalizations with a more complicated structure,

using extra ancilla states. The most straightforward generalization, though, is for k ∈ N to

consider the product QkU
(−1)kPk, where Pj and Qj are defined inductively by P0 = Q0 = I

and

Pj+1 =
(

1 0

0 (−1)jω(−1)j(j+1)

)

U (−1)jPj

Qj+1 = QjU
(−1)j

(

1 0

0 (−1)jω(−1)j(j+1)

)

,
(6)

with ω = eπi/(2k+1). This product appears to give accuracy to order 2k + 1, which would be

optimal by a polynomial degree argument [43].

For deriving braid sequences in the Fibonacci anyon model, these further generalizations

are unnecessary, because the available phases introduced by a single braid include only mul-

tiples of π/5. However, the generalizations may be of interest for compiling braid sequences

in anyon models SO(3)k or SU(2)k for odd k > 3. Such models make available angles that

are multiples of π/(k + 2).

3 The Fibonacci anyon model

The Fibonacci anyon model [44, 45, 46], also known as SO(3)3, is perhaps the simplest

nonabelian anyon model. It is specified as follows.

There are two particle types, 0 the trivial particle type, and 1 (sometimes called, respec-

tively 1 and τ , or I and ǫ). The only nontrivial fusion rule is 1⊗ 1 = 0⊕ 1.

The braid matrix is trivial, except for braiding two 1 anyons. The effect of a counterclock-

wise exchange of two 1 anyons depends on their fusion b ∈ {0, 1}, and is given in the 0, 1 basis

by

R :=
(

e−4πi/5 0
0 e3πi/5

)

. (7)

Diagrammatically, we have

b
= 〈b|R |b〉

b
(8)

where the convention is that unlabeled edges are 1 anyons.

The F matrix, describing the associativity of fusion, is trivial except for the case of three

1 anyons fusing into a 1 anyon. In this case, it relates the bases

b =
∑

b′∈{0,1}

〈b′|F |b〉 b′ (9)

where

F :=

(

1
τ

1√
τ

1√
τ

− 1
τ

)

, (10)

and τ := (1 +
√
5)/2 is the golden ratio. The Frobenius-Schur indicators for the two particle

types are both χ0 = χ1 = 1.
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4 Systematic distillation of composite Fibonacci anyons

4.1 Creating a nontrivial composite anyon pair from two pairs of anyons, at

least one of which is nontrivial

Consider two pairs of anyons, each pair fusing to 0. We aim to apply a braid sequence that

creates a composite 1 anyon crossing from the left pair to the right pair, provided that at

least one of the pairs is initially nontrivial. That is, we want to implement the map

a1 a2 7−→































if a1 = a2 = 1

a1 a2 a1 a2

a1 + a2
otherwise

(11)

up to phases depending on a1 and a2. It is easy to generate the second part of the map, for the

case (a1, a2) 6= (1, 1); simply swap the middle two particles. However, the case a1 = a2 = 1 is

more complicated, and we will achieve it only in the limit.

The feasibility of achieving Eq. (11) asymptotically is argued in [12]. It can be seen as

follows. An arbitrary state of four 1 particles fusing to the vacuum can be written as a

superposition of diagrams of the form

b

(12)

with b ∈ {0, 1}. Recall that a pure braid is one in which each of the four particles returns

to its initial position. It is known that when a1 = a2 = 1, the pure braids generate, up to

global phases, a dense subgroup of the 2× 2 unitaries U(2), acting on the qubit b [8, 44, 47].

Therefore, for any ǫ > 0, we can find a pure braid that implements Eq. (11) for the case

a1 = a2 = 1 except for a swap of the middle two particles, up to error ǫ and up to phases.

Being pure, this braid can apply only a phase for the cases (a1, a2) 6= (1, 1). Finally, swapping

particles two and three fixes the case (a1, a2) = (1, 1), and also guarantees that there will

be a composite 1 particle crossing from left to right in the cases (1, 0) and (0, 1). While this

is only an existence argument, the Solovay-Kitaev theorem [20, 21] gives an algorithm for

constructing the desired braid sequence. For an error ǫ and any constant δ > 0, the length of

the braid sequence will be O
(

(log 1
ǫ )

3+δ
)

.

We will argue that the same accuracy can be achieved using only O(log 1
ǫ ) braid moves,

and will specify the braid moves explicitly.

Start by considering the case of two 1 anyon pairs, a1 = a2 = 1. In the basis of Eq. (12),

the effect of a counterclockwise braid of the first two anyons is given by R, while the effect of

a braid of the middle two anyons is given by S := FRF . Indeed, F changes into the basis

b

(13)

in which R is a braid of the middle two anyons, and then F † = F returns to the original basis.
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Let M0 = S, and define braid sequences M1,M2, . . . inductively by

Mj =Mj−1R
−1M†

j−1R
3Mj−1R

−3M†
j−1RMj−1 . (14)

By Eq. (4),

|〈0|Mj |0〉| = |〈0|Mj−1 |0〉|5 = · · · = |〈0|M0 |0〉|5
j

. (15)

A calculation shows that 〈1|S |0〉 6= 0. Therefore the error |〈0|Mj |0〉| in the sequence Mj

converges to 0 doubly exponentially fast in j. To be precise, since 〈0|S |0〉 = e4πi/5/τ ,

|〈0|Mj |0〉| = 1/τ5
j

. On the other hand, the length ℓj of the jth braid sequence grows

exponentially. It satisfies

ℓ0 = 1

ℓj = 5ℓj−1 + 8 = 3 · 5j − 2 .
(16)

Overall, therefore the error drops at a rate exponential in the length of the braid sequence;

achieving error ǫ requires O(log 1
ǫ ) braids. Note that that this convergence rate is faster than

that generically guaranteed by the Solovay-Kitaev theorem.

However, so far we have only considered the case a1 = a2 = 1 in Eq. (11). We need

to verify that the sequence also works in the other cases, i.e., (a1, a2) ∈ {(0, 1), (1, 0)}. (If

initially both anyon pairs are trivial, then obviously the braid sequence has no effect.) Let

σ0 ∈ S4 be the permutation (23), and inductively define σj as the four-particle permutation

implemented by Mj :

σj = σj−1(12)σ
−1
j−1(12)σj−1(12)σ

−1
j−1(12)σj−1 . (17)

This recursion is periodic, and the solution alternates between the swaps (23) and (13):

σj =

{

(23) for j even

(13) for j odd .
(18)

With either of these swaps, nontrivial particles end up on opposite sides of the left/right

partition, and hence the braid sequences always create a composite 1 anyon, satisfying Eq. (11)

exactly, up to a phase.

4.2 Hierarchical recursion to create a composite anyon with high probability

Now assume that each pair of quasiparticles begins in an independent mixture (Pr[0],Pr[1])

of 0 and 1 anyons, with Pr[1] ≥ p. Since we have satisfied Eq. (11) in all four cases, up to

error ǫ in the a1 = a2 = 1 case, we find that the probability that the braid sequence generates

a composite 1 anyon is at least

2p(1− p) + p2(1− ǫ) = 1− (1− p)2 − ǫp2 . (19)

As in [12], we can repeat the entire procedure on pairs of composite anyons. That is, start

with four pairs of quasiparticles, apply the above braid sequences to the first two pairs and

the last two pairs, and then apply the same braids to the composite anyon pairs. Iterate this

procedure. A composite anyon will be created provided that at least one of the underlying

quasiparticle pairs is nontrivial. Therefore, if our aim is to create a composite 1 anyon except
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with probability ǫ, it is necessary and sufficient to use n = Θ( 1p log
1
ǫ ) underlying quasiparticle

pairs.

The total number of braid operations on physical or composite anyons is O(n log n
ǫ ), i.e.,

O(log n
ǫ ) braids at each level, to satisfy Eq. (11) up to error ǫ/n, times n

2 + n
4 + n

8 + · · ·+1, as

there are n/2k composite pairs at iteration level k. However, implementing a single braid of

two composite anyons requires multiple physical braid operations, quadratic in the number of

physical quasiparticles comprising the composite anyons. Expanding out the composite anyon

braids, the total number of physical braid operations is O
(
∑

k
n
2k
(2k−1)2 log n

ǫ

)

= O(n2 log n
ǫ ).

This simplifies to O
(

1
p2 (log

1
ǫ )

3
)

, provided that p = Ω(ǫ log 1
ǫ )—in fact, in applications p is

typically a constant, while ǫ is polynomially small. Under the same condition, the distillation

scheme of [12] requires, for any δ > 0, O
(

n2(log 1
ǫ )

3+δ
)

= O
(

1
p2 (log

1
ǫ )

5+δ
)

physical braids for

the same accuracy. If anyon fusion is allowed, by bringing particles together, the respective

complexities of the two schemes are O
(

1
p (log

1
ǫ )

2
)

and O
(

1
p (log

1
ǫ )

4+δ
)

.

5 Systematic distillation of composite Fibonacci anyons using one mobile quasi-

particle

Simon et al. [8] considered the question of whether it is possible to achieve universal quantum

computation using Fibonacci anyons under the assumption that only one of the physical

quasiparticles can be moved. This may be a reasonable experimental constraint.

In this section, we study whether composite anyons can be distilled with high probability

if there is only one mobile quasiparticle. This is clearly impossible if the mobile quasiparticle

itself is trivial. Therefore let us study the case where the mobile quasiparticle is promised to

be nontrivial.

Assume that we are given the following two operations, implemented up to phases to

arbitrary accuracy by moving only the mobile quasiparticle marked ⋆:

⋆
7−→

⋆
(20)

⋆
7−→

⋆
(21)

Distillation can then be achieved as follows. Prepare 2n anyon pairs, each pair fusing to

the vacuum. Assume that each pair of anyons begins in an independent mixture (Pr[0],Pr[1])

of 0 and 1 anyons, with Pr[1] ≥ p. Consider the case that there is at least one nontrivial

anyon pair among the first n pairs, and another nontrivial pair among the last n. This occurs

with probability at least (1− (1− p)n)2, which for n = m/p is at least 1− 2/em.

As sketched in Fig. 3, now add using Eq. (20) all the nontrivial anyon pairs on the left,

integrating them using Eq. (21) pairwise. Then do the same for the right, resulting in a

state like the one shown in Fig. 3(d). Note that these steps do not require knowing which

anyon pairs are trivial or nontrivial; if a pair is trivial, then the braids through and around it

have no effect. Next, integrate the edge from the left with that from the right with Eq. (21),

and apply the inverse braid sequence of Eq. (20). Overall, provided that there is initially at



B. W. Reichardt 885

least one nontrivial pair on both sides, this procedure results in the creation of a nontrivial

composite anyon across the left/right partition, and restores the mobile quasiparticle to its

initial position, unentangled with the rest of the system, shown in Fig. 3(f).

It remains to show how to implement Eqs. (20) and (21). By density for pure braids,

we can achieve both of these maps asymptotically, and the Solovay-Kitaev theorem gives

an algorithm for constructing better and better approximations. We will give a systematic

construction that converges more rapidly than the guarantee provided by the Solovay-Kitaev

theorem.

For a 2× 2 matrix M0 (to be determined), define matrix products M1,M2, . . . inductively

by

Mj =Mj−1R
−1M†

j−1R
3Mj−1R

−3M†
j−1RMj−1 . (22)

By Eq. (4),

|〈0|Mj |0〉| = |〈0|Mj−1 |0〉|5 = · · · = |〈0|M0 |0〉|5
j

. (23)

For a 2× 2 matrix N0 (to be determined), define matrix products N1, N2, . . . inductively

by

Nj = Nj−1RN
†
j−1R

3Nj−1R
3N†

j−1RNj−1 . (24)

By Eq. (3),

|〈1|Nj |0〉| = |〈1|Nj−1 |0〉|5 = · · · = |〈1|N0 |0〉|5
j

. (25)

Thus the matrices Mj converge doubly exponentially fast to ( 0 1
1 0 ), up to phases on the

two basis states, while Nj converges doubly exponentially fast to the identity, up to phases.

These are the matrices needed for Eqs. (20) and (21), respectively, acting from the middle

edge of the left diagram, 0 or 1, to the middle edge of the right diagram.

There are two problems. First, these matrices need to be implemented using braids of the

mobile quasiparticle. Second, we must ensure that the braid sequence ends up in the basis

on the right-hand side of Eqs. (20) and (21), with the mobile quasiparticle in the right-most

position.

The first problem is straightforward to solve given braid implementations of M0 and N0.

Assume that we are currently in one of the fusion bases

or . (26)

In each diagram, the middle, bold edge can be either 0 or 1, i.e., absent or present. Then

regardless of the position of the mobile quasiparticle, an application of the 2 × 2 matrix R

can be implemented on the middle edge with a certain braid. In the following four cases, a

counterclockwise exchange of the mobile quasiparticle with its nearest neighbor in the fusion

diagram implements R.

⋆
←→

⋆

⋆
←→

⋆
(27)
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(a)

⋆

(b) 7−→
⋆

(c) 7−→

⋆

(d) 7−→

⋆

(e) 7−→

⋆

(f) 7−→

⋆

Fig. 3. The steps for distilling a composite anyon using a single mobile quasiparticle. (a) Begin
with an equal number of prepared anyon pairs to the left and right of a dividing line (dotted).

Some pairs may be trivial (dashed). However, the mobile quasiparticle, marked ⋆, is promised to
be nontrivial. (b) Begin by adding anyon pairs one at a time using Eq. (20). (c) After adding each
pair, integrate it with the previously added pairs using Eq. (21). (d) Continue for all the pairs on
the left side. Then, separately, add and integrate all the pairs on the right side. Braids around a

trivial particle have no effect. (e) Integrate once more across the left/right partition. (f) Finally,
apply the inverse of Eq. (20) to disentangle the mobile quasiparticle from the others. Provided
there was at least one nontrivial anyon pair on both sides, this results in a nontrivial composite

anyon crossing the partition.
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In the last two cases, a counterclockwise braid of the mobile quasiparticle about the middle

edge

⋆
←→

⋆
(28)

implements the 2 × 2 matrix
(

1 0
0 e3πi/5

)

on the middle edge. The inverse, clockwise braid

therefore implements e4πi/5R, i.e., R up to an irrelevant global phase. It is important to notice

that none of these operations require weaving the mobile quasiparticle around the leftmost

quasiparticle; the leftmost quasiparticle can be far away or even part of the environment,

making such a weave expensive or impossible.

The second problem, though, is that some applications of R change the bases between

the two possibilities in Eq. (26), and every application changes the position of the mobile

quasiparticle. This means that after implementing Mj or Nj from Eqs. (22) and (24), the

basis and the position of the mobile quasiparticle might be incorrect. Notice, moreover, that

in Eqs. (22) and (24), all powers of R are odd, meaning that intermediate braids are certainly

not pure. From Eq. (7), R applies a relative phase between 0 and 1 of e−3πi/5, which is a

primitive tenth root of unity. R2 on the other hand applies a relative phase that is a fifth

root of unity, so even powers of R allow a strictly smaller set of relative phases to be applied

than do odd powers. It does not appear to be possible to get the same convergence speed

using even powers of the R matrix.

Note from Eqs. (22) and (24) that if M0 and N0 each consist of alternating applications

of F and odd powers of R, beginning and ending with F , then Mj and Nj will have the same

form for all j. Moreover, if M0 and N0 include m0 and n0 F terms, respectively, then Mj

and Nj include 5jm0 and 5jn0 F terms, respectively.

Consider an alternating matrix product F . . . FRα2FRα1F , with the αi odd integers. By

implementing this product on the middle edge by braiding the mobile quasiparticle, the initial

basis
⋆

transforms as

⋆
F−→

⋆
Rα1−→

⋆

F−→
⋆

Rα2−→
⋆

F−→
⋆

Rα3−→
⋆

(29)

after which the sequence repeats. Therefore, provided that the number of F terms in the

product is a multiple of three, the basis returns to the beginning after one final application
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(a)

(b)

Fig. 4. (a) Braid sequence for M1; the highlighted areas correspond to M0 = M†
0
. Note that some

adjacent braids cancel, allowing a modest simplification. Two final braids, to implement either R
or R−1, will return the mobile quasiparticle to its initial position. (b) Braid sequence for N1.

of R. Similarly, the initial basis
⋆

transforms as

⋆
F−→

⋆
Rα1−→

⋆

F−→
⋆

Rα2−→
⋆

F−→
⋆

Rα3−→
⋆

(30)

after which the sequence repeats. Therefore, provided that the number of F terms in the

product is 1 mod 3, the basis finishes as
⋆

.

We deduce that by settingM0 = FR−1FRF , somj = 0 (mod 3),Mj will converge doubly

exponentially fast to ( 0 1
1 0 ) up to phases—|〈0|Mj |0〉| = 1/τ2·5

j

—and its implementation will

finish in the correct basis position, therefore asymptotically implementing Eq. (20). (We have

chosen to start with FR−1FRF since 〈0|FRFRF |0〉 = 1.) By setting N0 = F , Nj will

converge doubly exponentially fast to the identity up to phases—|〈1|Nj |0〉| = 1/
√
τ
5j
—and

its implementation will finish in the correct basis position for j even, therefore asymptotically

implementing Eq. (21). In either case, the length of the braid sequence is O(5j); hence

achieving error ǫ requires O(log 1
ǫ ) braids. The braid sequences for M1 and N1 are given

explicitly in Fig. 4.

Therefore, to create a composite anyon except with probability ǫ, it suffices to use n =

Θ( 1p log
1
ǫ ) anyon pairs and O(n2 log n

ǫ ) = O
(

1
p2 (log

1
ǫ )

3
)

total braids, assuming p = Ω(ǫ log 1
ǫ ).

This matches the asymptotics found in Section 4.2. In practice, though, it should require

about twice as many anyon pairs as the earlier scheme, since not one but two nontrivial

anyon pairs are needed for this catalyzed distillation scheme to succeed.

6 Conclusion

The cooling and initialization of a topological quantum computer present interesting chal-

lenges. In this article, we have improved the efficiency of implementing certain gates useful
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for distilling composite anyons, in a model with limited quasiparticle mobility. Instead of

relying on the Solovay-Kitaev theorem, the gate compilation scheme is based on an explicit

recursion, developed from a generalization of Grover’s convergent search algorithm.

One natural question is whether this systematic method of compiling gates can be extended

to a larger gate set, yielding faster convergence more generically [24]. We have only shown how

to implement the identity gate (between different bases) and the NOT gate, up to phases. Of

course, as we use pure braids, an implementation of the CNOT gate up to phases immediately

follows.

A second question is whether this approach, or composite anyon distillation more generally,

can be extended to more anyon models. It appears likely that composite anyon distillation

can be implemented for the SO(3)k theory, provided that k+2 is prime or k = 7. A first step

is to generalize the Solovay-Kitaev theorem to work in multiple sectors simultaneously. It is

known that if ρ and σ are unitary group representations of different dimensions, that are each

separately dense, then the representation ρ⊕ σ is also dense [48, Lemma 4.2]. Using that the

outer automorphism group of SU(n) has at most two elements, the lemma can be extended

to the case that ρ and σ have the same dimension. The condition k + 2 prime or k = 7

then arises from asking that the braid representations with different boundary conditions be

dense and inequivalent. Composite anyon distillation for k = 7 would extend the Turaev-Viro

invariant BQP-completeness result of [49]. However, it is more practical to study the Ising

model, SU(2)2. One case of interest is the model on a surface with nontrivial topology but

with only an imperfect ability to distinguish 0 from 1. Another case to consider is the plane

with noisy non-Clifford gates; can magic states distillation [50, 51, 52] be combined with

composite anyon distillation?

As mentioned in the introduction, one practical concern for schemes including ours is the

possible presence of stray anyons trapped at surface defects. Such anyons are particularly a

problem for a measurement-based scheme where the interferometry regions change, or for any

scheme that combines measurements with braiding. The issue is that different operations may

involve different subsets of anyons that should be treated collectively. We will briefly sketch

one possible solution. Assume that we are granted a mobile anyon and one interferometer.

Assume moreover that the total charge in the interferometry region is nontrivial when the

mobile anyon is outside, and is trivial when the anyon is moved inside. (Provided that the

mobile anyon is in fact nontrivial, the trivial measurement outcome can be forced [10] by

repeatedly measuring with the mobile anyon outside and inside the interferometer.) Then

there must be a pair of nontrivial anyons that fuse to the vacuum, one half of which is mobile

and the other half trapped within the interferometer. The mobile anyon can then be used to

measure anyons in other regions of the device by braiding it around the other region, returning

it to the interferometer and measuring the total charge. With repetition, this measurement

can reach arbitrarily high accuracy. Static stray anyons do not pose a problem provided that

the mobile anyon is moved along the same routes, away from any strays. After initializing

enough nontrivial anyon pairs in this way, universal quantum computation can be simulated

following [8].
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