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1 Introduction

There exist many researchers and consequently several works available in the literature dealing

with constructions of quantum error-correcting codes (QECC) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12]. As it is well known, the techniques more utilized for this purpose are the Calderbank-

Shor-Steane (CSS) [1, 4], the Hermitian [1, 8] and the symplectic quantum code constructions

[1, 2]. In fact, the theory of stabilizer codes has been extensively investigated throughout the

last two decades.

In contrast with this subject of research one has the theory of (in general, unit-memory)

quantum convolutional codes (QCC) [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Cer-

tainly the latter class of quantum codes has received less attention. To be more precise,

Ollivier and Tillich [13, 14] were the first to develop the stabilizer structure for these codes.

Almeida and Palazzo Jr. construct an [(4, 1, 3)] quantum convolutional code [15]. Grassl

and Rötteler [16, 17, 18] constructed new QCC as well as they provide algorithms to obtain

non-catastrophic encoders for such class of codes. Forney, in a joint work with Guha and

Grassl, constructed rate (n− 2)/n QCC. Wilde and Brun [22, 23] constructed entanglement-

assisted quantum convolutional coding and Tan and Li [24] constructed QCC derived from

LDPC codes. Recently, in [25], the authors have constructed minimal-memory encoders for

quantum convolutional codes. They have introduced a new definition of quantum memory for

QCC, which is more natural than the previous definitions. However, we adopt the definition

of quantum (convolutional) memory presented in [19], since we have to compare the new code

parameters with the ones shown in [19] because, to our best knowledge, the latter paper and
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the present one are the only works available in the literature dealing with constructions of

nonbinary QCC derived from (classical) BCH codes by means of algebraic methods.

As can be seen, there exist few works in the literature addressing the construction of QCC.

Additionally, in many of them, there is no algebraic technique employed for this purpose.

Because of these facts, in this paper the attention is focused on the construction of more

families of QCC by means of algebraic methods. More precisely, we apply the well known

method proposed by Piret [26] which was generalized by Aly et al. [19], which consists in the

construction of classical convolutional codes derived from block codes.

The families of QCC constructed in this paper consist of codes whose parameters are

better than the ones available in the literature. In other words, fixing the code length and

the free distance, our codes have greater dimension than the dimension of QCC available in

the literature. It is a consensus that constructions of codes with better parameters than the

existing ones is a useful task; in particular, constructions of QCC with better parameters by

means of algebraic methods are very difficult and useful tasks. Therefore, the first aim of

the present paper is attained. A second contribution of this work is the construction of new

families of multi-memory QCC, once multi-memory QCC are not much investigated in the

literature. Additionally, as already mentioned, our constructions are performed algebraically

and not by computation search, providing therefore (new) families of QCC and not only few

specific codes.

The first construction generates quantum convolutional codes of length n = q4 − 1, where

q ≥ 3 is a prime power, derived from the Hermitian construction, with parameters

• [(n, n− 4(i− 2)− 2, 1; 2, df ≥ i+ 1)]
q
, 3 ≤ i ≤ q2 − 1;

• [(n, n− 4i− 2, 1; 2j, df ≥ i+ j + 2)]
q
, 1 ≤ i = j and 2 ≤ i+ j ≤ q2 − 2.

The second one generates quantum convolutional codes of length n = q2m − 1, where

q ≥ 4 is a prime power and m = ordn(q
2) ≥ 3, derived from the Hermitian construction,

with parameters

• [(n, n− 2m(2q2 − 3)− 2, 1;m, df ≥ 2q2 + 2)]
q
;

• [(n, n− 2mi− 2, 1;mj, df ≥ i+ j + 2)]
q
, where 1 ≤ i = j ≤ q2 − 2;

• [(n, n− 2m(i− 1)− 2, 1;m, df ≥ i+ 2)]
q
, where 1 ≤ i < q2 − 1;

• [(n, n− 2m(q2 − 2)− 2, 1;m, df ≥ q2 + 2)]
q
;

• [(n, n− 2m(i+ q2 − 2)− 2, 1;m, df ≥ i+ q2 + 2)]
q
, where 1 ≤ i < q2 − 1;

• [(n, n− 2m(i− 2)− 2, 2; 2m, df ≥ i+ 2)]
q
, where 3 ≤ i < q2 − 1;

• [(n, n− 2m(i− µ)− 2, µ;mµ, df ≥ i− µ+ 4)]
q
, where µ ≥ 3 and µ+ 1 ≤ i < q2 − 1.

Finally, the third construction proposed here generates convolutional stabilizer codes of

length n = qm − 1, where q ≥ 4 is a prime power and m = ordn(q) ≥ 3, derived from the

Euclidean construction, with parameters

• [(n, n− 2m(c− 1)− 2, 1;m, df ≥ c+ 2)]
q
, where 2 ≤ c = i+ j ≤ q − 2 and i, j ≥ 1;
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• [(n, n− 2mi− 2, 1;mj, df ≥ i+ j + 2)]
q
, where 1 ≤ i = j ≤ q − 2;

• [(n, n− 2m(q − 2)− 2, 1;m, df ≥ q + 2)]
q
;

• [(n, n− 2m(q − 1), 1;m+ 1, df ≥ q + 3)]
q
;

• [(n, n− 2m(q − 1)− 2, 1;mj, df ≥ q + j + 2)]
q
, where 1 ≤ j < q − 1;

• [(n, n− 2m(2q − 3), 1;m, df ≥ 2q + 1)]
q
.

As can be seen above, we construct new families of unit-memory as well as multi-memory

QCC, although we focus the attention on the construction of unit-memory codes, since they

have parameters better than the multi-memory ones [27].

This paper is structured as follows. Section 2 presents a brief review of cyclic codes.

Section 3 presents a review of convolutional codes. In Section 4, the structure of convolutional

stabilizer codes is reviewed. In Section 5, we construct algebraically new families of quantum

convolutional codes. In Section 6, we compare the new code parameters with the ones available

in the literature. Finally, in Section 7, a summary of this paper is given.

2 Review of Cyclic codes

Notation. Throughout this paper, we assume that q 6= 2 is a prime power and Fq is a

finite field with q elements. The code length is denoted by n and we always consider that

gcd(q, n) = 1. As usual, the multiplicative order of q modulo n is denoted by m = ordn(q),

α denotes a primitive element of some extension field Fqm (or Fq2m , in the Hermitian case)

and the minimal polynomial (over Fq) of an element αj ∈ Fqm is denoted by M (j)(x). The

notation C[a] denotes the cyclotomic coset containing a, where a is not necessarily the smallest

number in the coset C[a].

Let C be a cyclic code of length n over Fq. Then there exists only one monic polynomial

g(x) with minimal degree in C and g(x) is a generator polynomial of C; g(x) is a factor of

xn − 1. The dimension of C equals n− deg g(x).

Definition 1 [36, pg. 202] Let α be a primitive n-th root of unity. A cyclic code C of length

n over Fq is a BCH code with designed distance δ if, for some integer b ≥ 0, we have

g(x) = l.c.m.{M (b)(x),M (b+1)(x), . . . ,M (b+δ−2)(x)},

that is, g(x) is the monic polynomial of smallest degree over Fq having αb, αb+1, . . . , αb+δ−2

as zeros. Therefore c ∈ C if and only if c(αb) = c(αb+1) = . . . = c(αb+δ−2) = 0. Thus the

code has a string of δ − 1 consecutive powers of α as zeros. It is well known that from the

BCH bound, the minimum distance of a BCH code is greater than or equal to its designed

distance δ. A parity check matrix for C is given by

Hδ,b =











1 αb α2b · · · α(n−1)b

1 α(b+1) α2(b+1) · · · α(n−1)(b+1)

...
...

...
...

...
1 α(b+δ−2) · · · · · · α(n−1)(b+δ−2)











,

where each entry is replaced by the corresponding column of m elements from Fq, where

m = ordn(q). The rows of the resulting matrix over Fq are the parity checks satisfied by C.
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Note that after replacing each entry by columns with m elements from Fq one must remove

any linearly dependent rows. If n = qm−1 then the BCH code is called primitive and if b = 1

it is called narrow-sense. In this paper we will construct convolutional stabilizer codes derived

from non-narrow-sense (classical) BCH codes.

3 Review of Convolutional Codes

Constructions of (classical) convolutional codes as well as their properties have been investi-

gated in the literature [28, 29, 30, 31, 32, 33, 34]. As usual, we utilize the module theoretic

approach to describe such class of codes. For more details the reader can consult [26, 35].

Recall that an (n, k, γ)q convolutional code C of length n, dimension k and overall con-

straint length γ over Fq is a free module of rank k that is a direct summand of Fq[D]
n
. A

matrix G = (gij) ∈ Fq[D]
k×n

such that C = im G = {uG | u ∈ Fq[D]
k
} is called a basic

generator matrix of C (similarly, one says that G is basic if G has a polynomial right inverse

[32]). The overall constraint length γ is defined as γ =
k

∑

i=1

γi, where γi = max1≤j≤n{deg gij}.

The memory µ of a convolutional code is the maximal value of γi. A basic generator matrix

of a convolutional code C is called reduced (or minimal, see [32, 34]) if the overall constraint

length γ =
k

∑

i=1

γi has the smallest value among all basic generator matrices of C. In this case

one says that γ is the degree of the code.

In this paper we write the generator matrix in the form G = G0 + G1D + . . . + GµD
µ,

where Gi ∈ F k×n
q . More precisely, we construct families of unit-memory [27] as well as

multi-memory QCC.

Next we recall the free distance of a convolutional codes. For this, consider Fq((D)) to be

the field of Laurent series whose elements are given by v(D) =
∑

iviD
i, where vi ∈ Fq and

vi = 0 for i ≤ r, for some r ∈ Z. One can associate with a convolutional code C another

module of the form C∞ = {u(D)G | u(D) ∈ Fq((D))
k
}. Let v(D) = (v1(D), . . . , vn(D))

∈ Fq((D))
n
, where vi(D) =

∑

jvijD
j . Then one can identify v(D) with an element in

Fn
q ((D)) of the form

∑

jvjD
j , where vj = (v1j , . . . , vnj) ∈ Fn

q . The weight of v(D) is

defined as wt(v(D)) =
∑

Z
wt(vi). A generator matrix G is called catastrophic if there exists

a u(D) ∈ Fq((D))
k
of infinite Hamming weight such that u(D)G ∈ C∞ has finite Hamming

weight.

The free distance df of a convolutional code C is defined as

df = wt(C) = min{wt(v(D)) | v(D) ∈ C,v(D) 6= 0}.

A rate k/n convolutional code (over Fq) with memory µ, degree γ and free distance df is

denoted by (n, k, γ;µ, df )q.

Recall that the Euclidean inner product of two n-tuples u(D) =
∑

iuiD
i and v(D) =

∑

jvjD
j in Fq[D]

n
is defined as 〈u(D) | v(D)〉 =

∑

iui · vi. If C is a convolutional code

then C⊥ = {u(D) ∈ Fq[D]
n
| 〈u(D) | v(D)〉 = 0 for all v(D) ∈ C} denotes its Euclidean

dual code. Similarly, the Hermitian inner product is defined as 〈u(D) | v(D)〉h =
∑

iui · v
q
i ,

where ui,vi ∈ Fn
q2 and v

q
i = (vq1i, . . . , v

q
ni), and the Hermitian dual of C is denoted by

C⊥h = {u(D) ∈ Fq2 [D]
n
| 〈u(D) | v(D)〉h = 0 for all v(D) ∈ C}.
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3.1 Convolutional Codes Derived from Block Codes

In this section we recall some known results available in the literature for performing the

desired construction proposed here. The following results can be found in [19].

Assume that [n, k, d]q is a block code with parity check matrix H and split the matrix H

into µ+ 1 disjoint submatrices Hi, each of which has n columns, such that

H =











H0

H1

...
Hµ











, (1)

obtaining therefore the polynomial matrix

G(D) = H̃0 + H̃1D + H̃2D
2 + . . .+ H̃µD

µ, (2)

where the number of rows of G(D) equals the maximal number κ of rows among the matrices

Hi. The matrices H̃i are obtained from the matrices Hi by adding zero-rows at the bottom

such that the matrix H̃i has κ rows in total. Then G(D) generates a convolutional code.

The following result shown in [19] generalizes the well-known result by Piret [26] that

constructs convolutional codes derived from block codes:

Theorem 1 [19, Theorem 3] Let C ⊆ Fn
q be an [n, k, d]q linear code with parity check

matrix H ∈ F
(n−k)×n
q . Assume that H is partitioned into submatrices H0, H1, . . . , Hµ as in

eq. (1) such that κ = rkH0 and rkHi ≤ κ for 1 ≤ i ≤ µ. Define the polynomial matrix G(D)

as in eq. (2). Then we have:

(a) The matrix G(D) is a reduced basic generator matrix.

(b) If the code C contains its Euclidean dual C⊥, respectively its Hermitian dual C⊥h , then

the convolutional code V = {v(D) = u(D)G(D) | u(D) ∈ Fn−k
q [D]} is contained in its dual

V ⊥, respectively its Hermitian dual V ⊥h .

(c) Let df and d⊥f respectively denote the free distances of V and V ⊥. Let di be the minimum

distance of the code Ci = {v ∈ Fn
q | vH̃t

i = 0}, and let d⊥ denote the minimum distance of

C⊥. Then the free distances are bounded by min{d0 + dµ, d} ≤ d⊥f ≤ d and df ≥ d⊥.

4 Review of Quantum Convolutional Codes

We begin this section by describing the concept of quantum convolutional codes. For more

details the reader can consult [14, 21, 19, 20]. The stabilizer formalism presented here can be

found in [19].

The stabilizer is given by a matrix of the form

S(D) = (X(D) | Z(D)) ∈ Fq[D]
(n−k)×2n

satisfying the symplectic orthogonality condition X(D)Z(1/D)
t
− Z(D)X(1/D)

t
= 0. If C

is a quantum convolutional code defined by a stabilizer matrix given above, then n is called

the frame size, k the number of logical qudits per frame, and k/n the rate of C. C can be

utilized to encode a sequence of blocks with k qudits in each block (that is, each element in
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the sequence consists of k quantum systems each of which is q-dimensional) into a sequence

of blocks with n qudits.

As already mentioned, in this paper we adopt the definition of memory of a QCC according

to [19], that is,

µ = max1≤i≤n−k,1≤j≤n{max(degXij(D), degZij(D))},

as already explained in the introduction. However, we acknowledge the fact that the notion

of memory of QCC has been redefined recently, in order to make the concept more natural

[25]. Moreover, this new definition can be extended similarly to nonbinary alphabets (in [25],

the authors consider the binary alphabet).

The notation [(n, k, µ)]q denotes a quantum convolutional code where the parameters

are defined above. One can identify S(D) with the generator matrix of a self-orthogonal

(classical) convolutional code over Fq (Euclidean case) or Fq2 (Hermitian case), in order to

construct convolutional stabilizer codes in a natural way. The free distance df and the degree

γ are defined similarly as in the case of classical convolutional codes, generating the notation

[(n, k, µ; γ, df )]q. The following two lemmas show how to construct convolutional stabilizer

codes derived from classical convolutional codes:

Lemma 1 [19, Proposition 1] Let C be an (n, (n− k)/2, γ;µ)q convolutional code such that

C ⊂ C⊥. Then there exists an [(n, k, µ; γ, df )]q convolutional stabilizer code, where df =

wt(C⊥\C).

Lemma 2 [19, Proposition 2] Let C be an (n, (n− k)/2, γ;µ)q2 convolutional code such that

C ⊂ C⊥h . Then there exists an [(n, k, µ; γ, df )]q convolutional stabilizer code, where df =

wt(C⊥h\C).

5 Code Constructions

In this section we present the contributions of this paper. As we will see in the following,

several new families of good quantum convolutional codes derived from classical Hermitian

as well as Euclidean self-orthogonal BCH codes are constructed. These families consist of

codes generated algebraically and not by computational search. Additionally, these new QCC

have parameters better than the ones available in the literature. Moreover, they have non-

catastrophic encoders and encoder inverses since the corresponding generator matrices are

basic.

Our constructions differ from the constructions given in [19] at least in two aspects: 1) in

this paper we construct unit-memory and also multi-memory QCC, whereas in [19] only unit-

memory QCC were constructed; 2) we make use directly of minimal polynomials in defining

the BCH codes.

Our main strategy is given as follows. In order to construct families of unit-memory QCC,

we construct a BCH code C with parity check matrix H (according with the notation of

Subsection 3.1), a BCH code C0 with parity check H0 and a BCH code C1 with parity check

matrix H1, in such a way that H splits into H0 and H1, that is,

H =

[

H0

H1

]

, (3)
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and after this procedure we apply Theorem 1. Similarly, for the construction of 2-memory

QCC, we construct a BCH code C with parity check matrix H (according with the notation

of Subsection 3.1), a BCH code C0 with parity check H0, a BCH code C1 with parity check

matrix H1 and a BCH code C2 with parity check matrix H2, in such a way that H splits into

H0, H1 and H2, that is,

H =





H0

H1

H2



 , (4)

and after this procedure we apply Theorem 1. The construction of multi-memory QCC is

similar to these ones.

The first construction makes use of Hermitian self-orthogonal cyclic codes of length q4−1;

the second one deals with Hermitian self-orthogonal cyclic codes of length q2m − 1 and, the

third one makes use of Euclidean self-orthogonal cyclic codes. Although the first and the

second constructions are similar, we prefer to consider these two cases separately because the

corresponding Lemmas 3 and 5 (shown [11]) used in the construction of QCC have different

hypothesis.

5.1 Construction I - Codes of length q4 − 1 over Fq2

Here we focus on the construction of convolutional stabilizer codes of length q4 − 1 over Fq2 .

Let us now begin the construction of the new QCC. To proceed further we need some results

available in [11].

Lemma 3 Let n = q4 − 1, where q ≥ 3 is a prime power, and consider the (q2 − 1) q2-ary

cyclotomic cosets modulo n given by

C[q2+1],

C[q2+2] = {q2 + 2, 1 + 2q2},

...

C[2q2−1] = {2q2 − 1, 1 + (q2 − 1)q2}.

Then the following results hold:

a) the q2-ary coset C[q2+1] contains only one element;

b) each one of the other cosets contains two elements;

c) all these q2-ary cyclotomic cosets are mutually disjoints.

Proof. See [11, Lemma 3.2.].

Lemma 4 Let n = q4 − 1 where q ≥ 3 is a prime power. Let C be the cyclic code of length

n over Fq2 generated by the product of the minimal polynomials

M (q2+1)(x)M (q2+2)(x) . . .M (q2+j)(x),

1 ≤ j ≤ q2 − 1. Then C is Hermitian self-orthogonal.
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Proof. See [11, Theorem III.1.].

At this point we are ready to show Theorem 2, one of the main results of this subsection.

Theorem 2 Let n = q4 − 1, where q ≥ 3 is a prime power. Then there exist quantum

convolutional codes with parameters [(n, n−4(i−2)−2, 1; 2, df ≥ i +1)]q, where 3 ≤ i ≤ q2−1.

Proof. We know the equalities gcd(q, n) = 1 and ordn(q) = 2 hold. Assume first that C is the

BCH code of length n = q4−1 over Fq2 , generated by the product of the minimal polynomials

C = 〈M (q2+1)(x)M (q2+2)(x) · . . . . . . ·M (q2+i−1)(x)M (q2+i)(x)〉,

where 3 ≤ i ≤ q2 − 1. A parity check matrix of C is obtained from the matrix

Hi+1,q2+1 =

















1 α(q2+1) α2(q2+1) · · · α(n−1)(q2+1)

1 α(q2+2) α2(q2+2) · · · α(n−1)(q2+2)

...
...

...
...

...

1 α(q2+i−1) · · · · · · α(n−1)(q2+i−1)

1 α(q2+i) · · · · · · α(n−1)(q2+i)

















by expanding each entry as a column vector (in this case, containing 2 rows) over some

Fq2−basis β of Fq4 and then removing any linearly dependent rows. We denote this new

matrix by H. From Lemma 3, C has parameters [n, n− 2(i− 1)− 1, d ≥ i+ 1]q2 . Moreover,

since C has dimension n− 2(i− 1)− 1, H has 2(i− 1) + 1 linearly independent rows.

We next consider that C0 is the BCH code of length n = q4 − 1 over Fq2 , generated by

the product of the minimal polynomials

C0 = 〈M (q2+1)(x)M (q2+2)(x) · . . . . . . ·M (q2+i−2)(x)M (q2+i−1)(x)〉.

Analogously, C0 has a parity check matrix derived from the matrix

Hi,q2+1 =

















1 α(q2+1) α2(q2+1) · · · α(n−1)(q2+1)

1 α(q2+2) α2(q2+2) · · · α(n−1)(q2+2)

...
...

...
...

...

1 α(q2+i−2) · · · · · · α(n−1)(q2+i−2)

1 α(q2+i−1) · · · · · · α(n−1)(q2+i−1)

















by expanding each entry as a column vector (containing 2 rows) over some Fq2−basis β of Fq4

and then removing any linearly dependent rows. After these operations the new matrix is de-

noted byH0. Applying again Lemma 3, the code C0 has parameters [n, n− 2(i− 2)− 1, d0 ≥ i]q2 .

Since C0 has dimension n− 2(i− 2)− 1, H0 has 2(i− 2) + 1 linearly independent rows.

Let C1 be the BCH code of length n = q4−1 over Fq2 , generated by the minimal polynomial

M (q2+i)(x)

C1 = 〈M (q2+i)(x)〉.

C1 has parameters [n, n− 2, d1 ≥ 2]q2 and a parity check matrix of C1 is given by expanding

each entry of the matrix

H2,q2+i =
[

1 α(q2+i) α2(q2+i) · · · α(n−1)(q2+i)
]
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with respect to β. The new matrix is denoted by H1 and since C1 has dimension n − 2, H1

has 2 linearly independent rows.

We know that rkH0 ≥ rkH1. Then we form the convolutional code V generated by the

reduced basic (according to Theorem 1 Item (a)) generator matrix

G(D) = H̃0 + H̃1D,

where H̃0 = H0 and H̃1 is obtained from H1 by adding zero-rows at the bottom such that

H̃1 has the number of rows of H0 in total. By construction, V has dimension 2(i − 2) + 1

and degree δV = 2, so V has parameters (n, 2(i − 2) + 1, 2; 1, df∗)q2 . The Euclidean dual

V ⊥ of the convolutional code V has dimension n − 2(i − 2) − 1 and degree 2. Let us now

compute the free distance d⊥f of V ⊥. By Theorem 1 Item (c), the free distance of V ⊥

is bounded by min{d0 + d1, d} ≤ d⊥f ≤ d, where di is the minimum distance of the code

Ci = {v ∈ Fn
q | vH̃t

i = 0}. From construction one has d ≥ i + 1, d0 ≥ i and d1 ≥ 2,

so d⊥f ≥ i + 1 and V ⊥ has parameters (n, n − 2(i − 2) − 1, 2;µ, d⊥f ≥ i + 1)q2 for each

3 ≤ i ≤ q2 − 1. The codes V ⊥ and V ⊥h have the same degree as code (see the proof of

Theorem 7 in [20]). Since wt(V ⊥)=wt(V ⊥h), the convolutional code V ⊥h has parameters

(n, n − 2(i − 2) − 1, 2;m∗, d⊥h

f ≥ i + 1)q2 . From Lemma 4 and from Theorem 1 Item (b),

one has V ⊂ V ⊥h . Applying Lemma 2, there exists an [(n, n− 4(i− 2)− 2, 1; 2, df ≥ i+ 1)]
q

convolutional stabilizer code, for each 3 ≤ i ≤ q2 − 1.

The next theorem generates more new QCC:

Theorem 3 Let n = q4 − 1 where q ≥ 3 is a prime power. Then there exist quantum

convolutional codes with parameters [(n, n − 4i − 2, 1; 2j, df ≥ i + j+ 2)]q, where 1 ≤ i = j

and 2 ≤ i+ j ≤ q2 − 2.

Proof. Let C be the BCH code of length n = q4 − 1 over Fq2 , generated by the product of

the minimal polynomials

C = 〈M (q2+1)(x)M (q2+2)(x) · . . . . . . ·M (q2+i+j)(x)M (q2+i+j+1)(x)〉,

where 1 ≤ i = j and 2 ≤ i + j ≤ q2 − 2. C has a parity check matrix H. Suppose that

C0 is the BCH code of length n = q4 − 1 over Fq2 , generated by the product of the minimal

polynomials

C0 = 〈M (q2+1) . . .M (q2+i)(x)M (q2+i+1)(x)〉,

where 1 ≤ i = j and 2 ≤ i + j ≤ q2 − 2; C0 has parity check matrix H0. Suppose that C1

is the BCH code of length n = q4 − 1 over Fq2 , generated by the product of the minimal

polynomials

C1 = 〈M (q2+i+2) . . .M (q2+i+j+1)(x)〉,

where 1 ≤ i = j and 2 ≤ i+ j ≤ q2 − 2; C1 has parity check matrix H1. Applying Lemma 3

one can easily verify that C has parameters [n, n − 2(i + j) − 1, d ≥ i + j + 2]q2 , C0 has

parameters [n, n− 2i− 1, d0 ≥ i+ 2]q2 and C1 has parameters [n, n− 2j, d1 ≥ j + 1]q2 .

The convolutional code V generated by the reduced basic generator matrix

G(D) = H̃0 + H̃1D,
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is a unit-memory convolutional code of dimension 2i + 1 and degree δV = 2j, so V has

parameters (n, 2i + 1, 2j; 1, df∗)q2 . The convolutional code V ⊥h has parameters (n, n − 2i −

1, 2j;µ, d⊥h

f ≥ i+ j + 2)q2 , where i+ j + 2 was found by applying Theorem 1 Item (c). From

Lemma 4 and from Theorem 1 Item (b), one has V ⊂ V ⊥h . Applying Lemma 2, there exists

an [(n, n− 4i− 2, 1; 2j, df ≥ i+ j + 2)]
q
convolutional stabilizer code, for each 1 ≤ i = j and

2 ≤ i+ j ≤ q2 − 2.

Let us present an illustrative example of the construction given above:

Example 5.1 In Theorem 2 consider that q = 5 and i = 8. Let C be the BCH code of length

624 over F25, generated by

C = 〈M (26)(x)M (27)(x) . . .M (32)(x)M (33)(x)〉,

C0 be the BCH code of length 624 over F25, generated by

C0 = 〈M (26)(x)M (27)(x) . . .M (31)(x)M (32)(x)〉,

and suppose also that C1 is the BCH code of length 624 over F25, generated by M (33)(x).

Applying Theorem 2 one has an [(624, 598, 1; 2, df ≥ 9)]5 quantum convolutional code.

Analogously, in Theorem 3, consider that q = 5 and i = j = 3. Let C be the BCH code of

length 624 over F25, generated by

C = 〈M (26)(x)M (27)(x) . . .M (32)(x)〉,

C0 be the BCH code of length 624 over F25, generated by

C0 = 〈M (26)M (27)(x)M (28)(x)M (29)(x)〉,

and suppose that C1 is the BCH code of length 624 over F25, generated by

C1 = 〈M (30) . . .M (32)(x)〉.

Applying Theorem 3 one can get an [(624, 610, 1; 6, df ≥ 8)]5 convolutional stabilizer code.

5.2 Construction II - Hermitian BCH codes

In this subsection we apply similar technique which was developed in the previous subsection

in order to obtain more convolutional stabilizer codes. Lemmas 5 and 6 are essentials for our

constructions:

Lemma 5 Suppose that n = q2m−1, where q ≥ 4 and m = ordn(q
2) ≥ 3. Let s =

m−1
∑

i=0

(q2)
i
.

Then the following hold:

a) the q2-ary coset C[s] has only one element;

b) the q2-ary cosets C[s+i] are mutually disjoints, where 1 ≤ i ≤ q2 − 1;

c) the q2-ary cosets C[s−j] are mutually disjoints, where 1 ≤ j ≤ q2 − 1;

d) the q2-ary cosets of the forms C[s+i] and C[s−j] are mutually disjoints, where 1 ≤ i, j ≤

q2 − 1;
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e) the cosets of the form C[s+i], where 1 ≤ i ≤ q2 − 1, contain m elements;

f) the cosets of the form C[s−j] contain m elements, where 1 ≤ j ≤ q2 − 1.

Proof. See [11, Lemmas III.3, III.4. and III.5.].

Lemma 6 Suppose that n = q2m − 1, where q ≥ 4, gcd(q2, n) = 1 and m = ordn(q
2) ≥ 3.

Let s =

m−1
∑

i=0

(q2)
i
. If C is the cyclic code generated by the product of the minimal polynomials

M (s)(x)M (s+1)(x) . . .M (s+i)(x) ·M (s−1)(x) . . .M (s−j)(x),

for all 1 ≤ i, j ≤ q2 − 1, then C is Hermitian self-orthogonal.

Proof. See [11, Lemma III.6.].

Keeping these results in mind we are able to prove Theorems 4 and 5 and their respective

corollaries:

Theorem 4 Let n = q2m−1, where q ≥ 4 is a prime power and m = ordn(q
2) ≥ 3. Then

there exist quantum convolutional codes with parameters

[(n, n− 2m(2q2 − 3)− 2, 1;m, df ≥ 2q2 + 2)]
q
.

Proof. Clearly one has gcd(q, n) = 1. Consider first that C is the BCH code of length

n = q2m − 1 over Fq2 , generated by the product of the minimal polynomials

M (s)(x)M (s+1)(x) . . .M (s+q2−2)(x)M (s+q2−1)(x) ·

·M (s−1)(x) . . .M (s−q2+1)(x),

where s =

m−1
∑

i=0

(q2)
i
. A parity check matrix of C is obtained from the matrix

H2q2+2,s−q2+1 =



































1 α(s−q2+1) α2(s−q2+1) · · · α(n−1)(s−q2+1)

1 α(s−q2+2) α2(s−q2+2) · · · α(n−1)(s−q2+2)

...
...

...
...

...
1 α(s−1) · · · · · · α(n−1)(s−1)

1 α(s) · · · · · · α(n−1)(s)

1 α(s+1) · · · · · · α(n−1)(s+1)

...
...

...
...

...

1 α(s+q2−2) · · · · · · α(n−1)(s+q2−2)

1 α(s+q2−1) · · · · · · α(n−1)(s+q2−1)



































by expanding each entry as a column vector over some Fq2−basis β of Fq2m and then re-

moving any linearly dependent rows. We denote this new matrix by H. From Lemma 5,

C has parameters [n, n− 2m(q2 − 1)− 1, d ≥ 2q2 + 2]q2 . Moreover, since C has dimension

n− 2m(q2 − 1)− 1, H has 2m(q2 − 1) + 1 linearly independent rows.

We next consider C0 be the BCH code of length n = q2m − 1 over Fq2 , generated by the

product of the minimal polynomials

C0 = 〈M (s)(x)M (s+1)(x) . . .M (s+q2−2)(x) ·M (s−1)(x) . . .M (s−q2+1)(x)〉.
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Analogously, C0 has a parity check matrix derived from the matrix

H2q2,s−q2+1 =































1 α(s−q2+1) α2(s−q2+1) · · · α(n−1)(s−q2+1)

1 α(s−q2+2) α2(s−q2+2) · · · α(n−1)(s−q2+2)

...
...

...
...

...
1 α(s−1) · · · · · · α(n−1)(s−1)

1 α(s) · · · · · · α(n−1)(s)

1 α(s+1) · · · · · · α(n−1)(s+1)

...
...

...
...

...

1 α(s+q2−2) · · · · · · α(n−1)(s+q2−2)































by expanding each entry as a column vector over some Fq2−basis β of Fq2m and then removing

any linearly dependent rows. After performing these operations the obtained matrix is denoted

byH0. Applying again Lemma 5, the code C0 has parameters [n, n−m(2q2 − 3)− 1, d0 ≥ 2q2]q2 .

Since C0 has dimension n−m(2q2 − 3)− 1, H0 has m(2q2 − 3)+1 linearly independent rows.

Next, assume that C1 is the BCH code of length n = q2m − 1 over Fq2 , generated by the

minimal polynomial M (q2+i)(x)

C1 = 〈M (s+q2−1)(x)〉.

From Lemma 5 C1 has parameters [n, n−m, d1 ≥ 2]q2 . A parity check matrix of C1 is given

by expanding each entry of the matrix

H2,s+q2−1 =
[

1 α(s+q2−1) · · · · · · α(n−1)(s+q2−1)
]

with respect to β. The new matrix is denoted by H1 and since C1 has dimension n−m, H1

has m linearly independent rows.

We know that rkH0 ≥ rkH1. The convolutional code V generated by the reduced basic

(according to Theorem 1, Item (a)) generator matrix

G(D) = H̃0 + H̃1D,

where H̃0 = H0 and H̃1 is obtained from H1 by adding zero-rows at the bottom such that

H̃1 has the number of rows of H0 in total. By construction, V has parameters (n,m(2q2 −

3) + 1,m; 1, df∗)q2 . The Hermitian dual V ⊥h of the convolutional code V has dimension

n−m(2q2 − 3)− 1 and degree m.

From construction one has d ≥ 2q2 + 2, d0 ≥ 2q2 and d1 ≥ 2; so, by Theorem 1 Item (c),

the free distance of V ⊥h satisfies d⊥f ≥ 2q2 + 2. Thus V ⊥h has parameters (n, n −m(2q2 −

3)−1,m;µ, d⊥h

f ≥ 2q2+2)q2 . From Lemma 6 and by Theorem 1 Item (b), one has V ⊂ V ⊥h .

Applying Lemma 2, there exists an [(n, n− 2m(2q2 − 3)− 2, 1;m, df ≥ 2q2 + 2)]
q
QCC.

Theorem 5 also generates good QCC:

Theorem 5 Let n = q2m−1, where q ≥ 4 is a prime power and m = ordn(q
2) ≥ 3. Then

there exist quantum convolutional codes with parameters [(n, n− 2mi− 2, 1;mj, df ≥ i+ j + 2)]
q
,

for each 1 ≤ i = j ≤ q2 − 2.
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Proof. Assume the same notation used in the proof of Theorem 4. We know that gcd(q, n) = 1.

Consider first that C is the BCH code of length n = q2m−1 over Fq2 , generated by the product

of the minimal polynomials

C = 〈M (s)(x)M (s+1)(x) . . .M (s+i)(x) ·M (s−1)(x) . . .M (s−j)(x)〉,

where s =

m−1
∑

i=0

(q2)
i
, 1 ≤ i = j ≤ q2 − 2. C has a parity check matrix H.

Let C0 be the BCH code of length n = q2m − 1 over Fq2 , generated by the product of the

minimal polynomials

C0 = 〈M (s)(x)M (s+1)(x) . . .M (s+i)(x)〉,

where 1 ≤ i = j ≤ q2 − 2. C0 has parity check matrix H0.

Next, suppose that C1 is the BCH code of length n = q2m − 1 over Fq2 , generated by the

product of the minimal polynomials

C1 = 〈M (s−1)(x) . . .M (s−j)(x)〉,

where 1 ≤ i = j ≤ q2 − 2. C1 has parity check matrix H1. Applying Lemma 5 one can

easily verify that C has parameters [n, n−m(i+ j)− 1, d ≥ i+ j + 2]q2 , C0 has parameters

[n, n−mi− 1, d0 ≥ i+ 2]q2 and C1 has parameters [n, n−mj, d1 ≥ j + 1]q2 .

The convolutional code V generated by the reduced basic generator matrix

G(D) = H̃0 + H̃1D,

is a unit-memory convolutional code of dimension mi + 1 and degree δV = mj, so V has

parameters (n,mi+1,mj; 1, df∗)q2 . The convolutional code V
⊥h has parameters (n, n−mi−

1,mj;µ, d⊥h

f ≥ i+ j+2)q2 , where i+ j+2 was found by applying Theorem 1 Item (c). From

Lemma 4 and from Theorem 1 Item (b), one has V ⊂ V ⊥h . Applying Lemma 2, there exists

an [(n, n− 2mi− 2, 1;mj, df ≥ i+ j + 2)]
q
QCC, for each 1 ≤ i = j ≤ q2 − 2.

Corollary 1 Let n = q2m − 1, where q ≥ 4 is a prime power and m = ordn(q
2) ≥ 3. Then

there exist convolutional stabilizer codes with parameters

a) [(n, n− 2m(i− 1)− 2, 1;m, df ≥ i+ 2)]
q
, for each 1 ≤ i < q2 − 1;

b) [(n, n− 2m(q2 − 2)− 2, 1;m, df ≥ q2 + 2)]
q
;

c) [(n, n− 2m(j + q2 − 2)− 2, 1;m, df ≥ j + q2 + 2)]
q
, for each 1 ≤ j < q2 − 1.

Proof.

a) Let C be the BCH code of length n = q2m − 1 over Fq2 , generated by the product of

the minimal polynomials

M (s)(x)M (s+1)(x) . . .M (s+i−1)(x)M (s+i)(x),

where 1 ≤ i < q2 − 1; C has parameters [n, n−mi− 1, d ≥ i+ 2]q2 , 1 ≤ i < q2 − 1,

and parity check matrix H. Let C0 be the BCH code of length n = q2m − 1 over Fq2 ,

generated by the product of the minimal polynomials

M (s)(x)M (s+1)(x) . . .M (s+i−1)(x),
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where 1 ≤ i < q2 − 1; C0 has parameters [n, n − m(i − 1) − 1, d0 ≥ i+ 1]q2 , where

1 ≤ i < q2 − 1, and parity check matrix H0. Next, consider that C1 is the BCH code of

length n = q2m − 1 over Fq2 , generated by the minimal polynomial

M (s+i)(x);

C1 has parameters [n, n−m, d1 ≥ 2]q2 and parity check matrix H1. The convolutional

code V generated by the reduced basic generator matrix

G(D) = H̃0 + H̃1D

has parameters (n,m(i−1)+1,m; 1, df∗)q2 . The convolutional code V
⊥h has parameters

(n, n−m(i−1)−1,m;µ, d⊥h

f ≥ i+2)q2 . From Lemma 6 and by Theorem 1 Item (b), one

has V ⊂ V ⊥h . Applying Lemma 2, there exists an [(n, n− 2m(i− 1)− 2, 1;m, df ≥ i+ 2)]
q

QCC, for each 1 ≤ i < q2 − 1.

b) Let C be the BCH code of length n = q2m − 1 over Fq2 generated by the product of the

minimal polynomials

M (s)(x)M (s+1)(x) · . . . ·M (s+q2−2)(x)M (s+q2−1)(x);

C has parameters [n, n−m(q2 − 1)− 1, d ≥ q2 + 2]q2 and parity check matrix H. Con-

sider that C0 is the BCH code of length n = q2m − 1 over Fq2 generated by the product

of the minimal polynomials

M (s)(x)M (s+1)(x) . . .M (s+q2−2)(x);

C0 has parameters [n, n−m(q2 − 2)− 1, d0 ≥ q2]q2 and and parity check matrix H0.

Now let C1 be the BCH code of length n = q2m − 1 over Fq2 with parity check H1,

generated by the minimal polynomial

M (s+q2−1)(x).

Proceeding similarly as in the proof of Item a), one has an [(n, n− 2m(q2 − 2)− 2, 1;m,

df ≥ q2 + 2)]q QCC.

c) Let C be the BCH code of length n = q2m − 1 over Fq2 , generated by the product of

the minimal polynomials

M (s)(x)M (s−1)(x) . . .M (s−[j−1])(x)M (s−j)(x) ·

·M (s+1)(x) . . .M (s+q2−1)(x),

where 1 ≤ j < q2 − 1, with parameters [n, n−m(j + q2 − 1)− 1, d ≥ j+ q2 + 2]q2 . Let

C0 be the BCH code of length n = q2m − 1 over Fq2 , generated by the product of the

minimal polynomials

M (s)(x)M (s−1)(x) . . .M (s−[j−1])(x) ·M (s+1)(x) . . .M (s+q2−1)(x),
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where 1 ≤ j < q2 − 1, with parameters [n, n − m(j + q2 − 2) − 1, d0 ≥ j+ q2 + 1]q2 .

Suppose also that C1 is the BCH code of length n = q2m − 1 over Fq2 , generated by the

minimal polynomial

M (s−j)(x),

where 1 ≤ j < q2 − 1, with parameters [n, n−m, d1 ≥ 2]q2 . Proceeding similarly as in

the proofs above one can get an [(n, n− 2m(j+ q2− 2) −2, 1;m, df ≥ j+ q2+2)]q QCC

for each 1 ≤ j < q2 − 1.

Until now we only have constructed unit-memory convolutional stabilizer codes, since

these codes have parameters better than the corresponding multi-memory ones [27]. How-

ever, the technique utilized here can also be applied to generate multi-memory convolutional

codes. These constructions are possible due to Lemma 5, since such lemma provides the exact

parameters of the corresponding classical block codes utilized in the proposed construction.

Let us now present the constructions of families of multi-memory QCC.

Theorem 6 (2-memory QCC) Let n = q2m − 1, where q ≥ 4 is a prime power and m =

ordn(q
2) ≥ 3. Then there exist convolutional stabilizer codes with parameters

[(n, n− 2m(i− 2)− 2, 2; 2m, df ≥ i+ 2)]
q
, for each 3 ≤ i < q2 − 1.

Proof. Let C be the BCH code of length n = q2m − 1 over Fq2 , generated by the product of

the minimal polynomials

M (s)(x)M (s+1)(x) . . .M (s+i−2)(x)M (s+i−1)(x)M (s+i)(x),

where 3 ≤ i < q2 − 1. We know from Lemma 5 that C has parameters [n, n − mi − 1, d ≥

i+ 2]q2 , where 3 ≤ i < q2 − 1. The parity check matrix of C is the matrix H. Consider next

that C0 is the BCH code of length n = q2m − 1 over Fq2 , generated by the product of the

minimal polynomials

M (s)(x)M (s+1)(x) . . .M (s+i−2)(x),

where 3 ≤ i < q2 − 1. From Lemma 5, C0 has parameters [n, n − m(i − 2) − 1, d0 ≥ i]q2 ,

3 ≤ i < q2 − 1. The parity check matrix of C0 is H0. Assume also that C1 is the BCH code

of length n = q2m − 1 over Fq2 , generated by the minimal polynomial

M (s+i−1)(x)

and let C2 be the BCH code of length n = q2m − 1 over Fq2 , generated by the minimal

polynomial

M (s+i)(x),

where 3 ≤ i < q2 − 1. Again, from Lemma 5, the codes C1 and C2 have parameters

[n, n−m, d1 ≥ 2]q2 and [n, n−m, d2 ≥ 2]q2 , respectively. The parity check matrices of C1

and C2 are, respectively, H1 and H2.

The convolutional code V generated by the reduced basic generator matrix

G(D) = H̃0 + H̃1D + H̃2D
2
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has parameters (n,m(i−2)+1, 2m; 2, df∗)q2 . Note that γ = 2m because, from Lemma 5, since

the q2-ary coset C[s+i] contains m elements it follows that H2 have m linearly independent

rows, and each of the first m linearly independent rows of H̃2 has degree 2.

We know that rkH0 ≥ rkH1 and rkH0 ≥ rkH2. The convolutional code V ⊥h has pa-

rameters (n, n − m(i − 2) − 1, 2m;µ, d⊥h

f ≥ i + 2)q2 , where we compute the free distance

d⊥h

f by applying Theorem 1 (Item (c)). From Lemma 6 and by Theorem 1 Item (b), one

has V ⊂ V ⊥h . Applying Lemma 2, there exists an [(n, n− 2m(i− 2)− 2, 2; 2m, df ≥ i+ 2)]
q

QCC, for each 3 ≤ i < q2 − 1.

Theorem 6 can be generalized as follows:

Theorem 7 (multi-memory QCC) Let n = q2m − 1, where q ≥ 4 is a prime power

and m = ordn(q
2) ≥ 3. Then there exist convolutional stabilizer codes with parameters

[(n, n− 2m(i− µ)− 2, µ;mµ, df ≥ i− µ+ 4)]
q
QCC, where µ ≥ 3 and µ+ 1 ≤ i < q2 − 1.

Proof. Let C be the BCH code of length n = q2m − 1 over Fq2 , generated by the product of

the minimal polynomials

M (s)(x)M (s+1)(x) . . .M (s+i)(x),

where µ ≥ 3 and µ + 1 ≤ i < q2 − 1. From Lemma 5, C has parameters [n, n −mi − 1, d ≥

i+ 2]q2 , where µ+ 1 ≤ i < q2 − 1. The parity check matrix of C is the matrix H. Consider

next that C0 is the BCH code of length n = q2m − 1 over Fq2 , generated by the product of

the minimal polynomials

M (s)(x)M (s+1)(x) . . .M (s+i−µ)(x),

where µ+1 ≤ i < q2−1. From Lemma 5, C0 has parameters [n, n−m(i−µ)−1, d0 ≥ i−µ+2]q2 ,

µ+1 ≤ i < q2−1. The parity check matrix of C0 is H0. Assume also that Cj , for j = 1, . . . , µ,

is the BCH code of length n = q2m − 1 over Fq2 , generated by the minimal polynomial

M (s+i−µ+j)(x),

where µ+1 ≤ i < q2−1. The code Cj , for all j = 1, . . . , µ, has parameters [n, n−m, dj ≥ 2]
q2
.

The parity check matrix of Cj is Hj for j = 1, . . . , µ. The convolutional code V generated by

G(D) = H̃0 + H̃1D + . . .+ H̃µD
µ

has parameters (n,m(i− µ) + 1,mµ;µ, df∗)q2 . We know that rkH0 ≥ rkHj for j = 1, . . . , µ.

Moreover, V ⊥h has parameters (n, n −m(i − µ) − 1,mµ;µ∗, d⊥h

f ≥ i − µ + 4)q2 , Therefore,

applying Lemma 2, there exists an [(n, n− 2m(i− µ)− 2, µ; mµ, df ≥ i− µ+ 4)]q QCC, for

each µ ≥ 3 and µ+ 1 ≤ i < q2 − 1.

Remark Note that (see Theorem 7) we also can consider that C is generated by the product

of the minimal polynomials

M (s)(x)M (s+1)(x) . . .M (s+i)(x) ·M (s−1)(x) . . .M (s−j)(x),

for all 1 ≤ i, j ≤ q2 − 1, because from Lemma 6, C is Hermitian self-orthogonal. After this

we choose suitable range for µ (greater than displayed in Theorem 7), generating therefore

more new QCC. Consequently, also in this case, the proposed construction method holds. We

observe that we considered (in Theorem 7) C generated by M (s)(x)M (s+1)(x) . . .M (s+i)(x)

to simplify the task.
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5.3 Construction III - Euclidean BCH codes

As in the previous subsection, we will construct good convolutional stabilizer codes derived

from classical ones. Although the dual code is considered with respect to the Euclidean inner

product, the technique applied here is similar to that of the previous subsections. Because of

this fact we do not describe the totality of the proofs given below. Let us recall some results

proved in [11]:

Lemma 7 Suppose that n = qm − 1, where q ≥ 4 and m = ordn(q) ≥ 3. Let s =

m−1
∑

i=0

qi.

Then the following hold:

a) The q-ary coset C[s] has only one element;

b) Each one of the q-ary cosets C[s+i] are mutually disjoints, where 1 ≤ i ≤ q − 1;

c) Each one of the q-ary cosets C[s−j] are mutually disjoints, where 1 ≤ j ≤ q − 1;

d) The q-ary cosets of the forms C[s+i] and C[s−j] are mutually disjoints, where 1 ≤ i, j ≤

q − 1;

e) The cosets of the form C[s+i], where 1 ≤ i ≤ q − 1, have m elements;

f) The cosets of the form C[s−j] have m elements, where 1 ≤ j ≤ q − 1.

Proof. See [11, Lemmas III.7., III.8. and III.9.].

Lemma 8 Suppose that n = qm − 1, q ≥ 4, m = ordn(q) ≥ 3 and s =

m−1
∑

i=0

qi. If C is the

cyclic code generated by the product of the minimal polynomials

M (s)(x)M (s+1)(x) . . .M (s+j)(x) ·M (s−1)(x) . . .M (s−j)(x),

where 1 ≤ j ≤ q − 1, then C is Euclidean self-orthogonal.

Proof. See [11, Lemma III.10.].

Next we utilize Lemmas 7 and 8 in order to obtain more good quantum convolutional

codes, as we will see in the sequel.

Theorem 8 Let n = qm − 1, where q ≥ 4 and m = ordn(q) ≥ 3. Then there exist

quantum convolutional codes with parameters [(n, n−2m(c−1)−2, 1;m, df ≥ c+2)]q, where

2 ≤ c = i+ j ≤ q − 2 and i, j ≥ 1.

Proof. Assume that C is the BCH code of length n = qm−1 over Fq with parity check matrix

H, generated by the product of the minimal polynomials

M (s)(x)M (s+1)(x) . . .M (s+i−1)(x)M (s+i)(x) ·M (s−1)(x) . . .M (s−j)(x),

where 2 ≤ i+j = c ≤ q−2 and i, j ≥ 1. Assume that C0 is the BCH code of length n = qm−1

over Fq, with parity check matrix H0, generated by the product of the minimal polynomials

M (s)(x)M (s+1)(x) . . .M (s+i−1)(x) ·M (s−1)(x) . . .M (s−j)(x),
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where 2 ≤ i + j = c ≤ q − 2 and i, j ≥ 1. Let C1 be the BCH code of length n = qm − 1

over Fq, with parity check matrix H1, generated by the minimal polynomial M (s+i)(x). Then

there exists an [(n, n − 2m(c − 1) − 2, 1;m, df ≥ c + 2)]q QCC, where 2 ≤ c = i + j ≤ q − 2

and i, j ≥ 1.

Theorem 9 Let n = qm − 1, where q ≥ 4 is a prime power and m = ordn(q) ≥ 3. Then

there exist quantum convolutional codes with parameters [(n, n− 2mi− 2, 1;mj, df ≥ i+ j + 2)]
q

convolutional stabilizer code, for each 1 ≤ i = j ≤ q − 2.

Proof. Consider first that C is the BCH code of length n = qm − 1 over Fq generated by the

product of the minimal polynomials

C = 〈M (s)(x)M (s+1)(x) . . .M (s+i)(x) ·M (s−1)(x) . . .M (s−j)(x)〉,

where s =
m−1
∑

i=0

qi, 1 ≤ i = j ≤ q − 2. Let C0 be the BCH code of length n = qm − 1 over Fq

generated by the product of the minimal polynomials

C0 = 〈M (s)(x)M (s+1)(x) . . .M (s+i)(x)〉,

where 1 ≤ i = j ≤ q − 2, and suppose that C1 is the BCH code of length n = qm − 1 over Fq

generated by the product of the minimal polynomials

C1 = 〈M (s−1)(x) . . .M (s−j)(x)〉,

where 1 ≤ i = j ≤ q − 2. Then there exists an [(n, n− 2mi− 2, 1;mj, df ≥ i+ j +2)]q QCC,

for each 1 ≤ i = j ≤ q − 2.

Theorem 10 Suppose that n = qm − 1, where q ≥ 4 and m = ordn(q) ≥ 3. Then there

exist quantum convolutional codes with parameters

a) [(n, n− 2m(q − 2)− 2, 1;m, df ≥ q + 2)]
q
;

b) [(n, n− 2m(q − 1), 1;m+ 1, df ≥ q + 3)]
q
;

c) [(n, n− 2m(q − 1)− 2, 1;mj, df ≥ q + j + 2)]
q
, for each 1 ≤ j < q − 1;

d) [(n, n− 2m(2q − 3), 1;m, df ≥ 2q + 1)]
q
.

Proof. In all cases below, the codes are BCH of length n = qm − 1 over Fq.

a) Consider that C is the BCH code generated by the product of the minimal polynomials

M (s)(x)M (s+1)(x) . . .M (s+q−1)(x),

C0 is the BCH code generated by the product of the minimal polynomials

M (s)(x)M (s+1)(x) . . .M (s+q−2)(x)

and C1 is the BCH code generated by the minimal polynomial

M (s+q−1)(x).

Applying Lemma 1, there exists an [(n, n− 2m(q − 2)− 2, 1;m, df ≥ q + 2)]q .QCC
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b) Consider that C is the BCH code generated by the product of the minimal polynomials

M (s−1)(x)M (s)(x)M (s+1)(x) . . .M (s+q−1)(x),

C0 is the BCH code generated by the product of the minimal polynomials

M (s+1)(x) . . .M (s+q−1)(x)

and C1 is the BCH code generated by the product of the minimal polynomials

M (s−1)(x)M (s)(x).

Then the code V ⊥ has parameters (n, n − m(q − 1),m + 1;µ, d⊥f ≥ q + 3)q and there

exists an [(n, n− 2m(q − 1), 1;m+ 1, df ≥ q+ 3)]q QCC.

c) Let C be the BCH code generated by the product of the minimal polynomials

M (s)(x)M (s+1)(x) . . .M (s+q−1)(x) ·M (s−1)(x) . . .M (s−j)(x),

C0 be the BCH code generated by the product of the minimal polynomials

M (s)(x)M (s+1)(x) . . .M (s+q−1)(x)

and C1 be the BCH code generated by the product of the minimal polynomials

M (s−1)(x) . . .M (s−j)(x).

Therefore, there exists an [(n, n− 2m(q − 1)− 2, 1;mj, df ≥ q + j + 2)]q QCC for each

1 ≤ j < q − 1.

d) If C is the BCH code generated by the product of the minimal polynomials

M (s+1)(x) . . .M (s+q−1)(x) ·

·M (s−1)(x) . . .M (s−[q−2])(x)M (s−[q−1])(x),

C0 is the BCH code generated by the product of the minimal polynomials

M (s+1)(x) . . .M (s+q−1)(x) ·M (s−1)(x) . . .M (s−[q−2])(x)

and C1 is the BCH code generated by the product of the minimal polynomial

M (s−[q−1])(x),

one can obtain an [(n, n− 2m(2q − 3), 1;m, df ≥ 2q + 1)]q QCC.
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6 Code Comparison

In this section we compare the parameters of the new quantum convolutional codes with the

ones available in the literature. Since the unique families of quantum convolutional BCH

codes available in the literature are the ones shown in [19], the parameters [(n, k, µ; γ, df )]q
refer to as the parameters of convolutional stabilizer codes constructed in such paper.

The new code parameters shown in Table 1 are derived from Construction I (see Theo-

rem 3), Construction II (see Theorem 5) and from Construction III (see Theorem 9), respec-

tively.

The criterion adopted to compare the codes is as follows: if the codes have the same code

length and the same lower bound for the free distance, the code with greater dimension is bet-

ter than the other. For example, the new [(624, 598, 1; 12, df ≥ 14)]5 convolutional stabilizer

code is better than the [(624, 592, 1; γ, df ≥ 14)]5 code shown in [19] since these two codes

have same code length (624) and same lower bound for the free distance (14), but the new

code has greater dimension (598) than the dimension (592) of the [(624, 592, 1; γ, df ≥ 14)]5
code. According to the established criterion, it can be seen in Table 1 that the new code

parameters are better than the ones shown in [19]. Additionally, all the parameters of the

new convolutional stabilizer codes are determined.

7 Summary

In this paper we have constructed several new families of unit-memory as well as multi-memory

quantum convolutional BCH codes. These families consist of codes whose parameters are

better than the ones available in the literature. Moreover, our constructions are performed

algebraically and not by exhaustively computational search.
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