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Entanglement does not describe all quantum correlations and several authors have shown

the need to go beyond entanglement when dealing with mixed states. Various different
measures have sprung up in the literature, for a variety of reasons, to describe bipar-
tite and multipartite quantum correlations; some are known under the collective name

quantum discord. Yet, in the same sprit as the criteria for entanglement measures, there
is no general mechanism that determines whether a measure of quantum and classical
correlations is a proper measure of correlations. This is partially due to the fact that
the answer is a bit muddy. In this article we attempt tackle this muddy topic by writ-

ing down several criteria for a “good” measure of correlations. We breakup our list
into necessary, reasonable, and debatable conditions. We then proceed to prove several
of these conditions for generalized measures of quantum correlations. However, not all
conditions are met by all measures; we show this via several examples. The reasonable

conditions are related to continuity of correlations, which has not been previously dis-
cussed. Continuity is an important quality if one wants to probe quantum correlations
in the laboratory. We show that most types of quantum discord are continuous but none

are continuous with respect to the measurement basis used for optimization.
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1. Introduction

Quantum systems can have correlations different than those of classical systems. These cor-

relations act as a resource for some tasks and an obstacle for others. Examples of the tasks

that benefit from quantum correlations are quantum teleportation of unknown states [1] and

dense coding [2]. The speed up associated with quantum computation has often been at-

tributed to the ability to create stronger than classical correlations [3]. On the other hand,

quantum correlations are also responsible for decoherence and dissipation of quantum sys-

tems [4]. Further, the quantum nature of multipartite systems makes some tasks very hard
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or even impossible; the examples range from the impossibility to distinguish ensembles using

local operations and classical communications (LOCC) [5] to the impossibility of implement-

ing most quantum gates using LOCC [6]. Some of these obstacles can be overcome by using

correlated quantum systems, while others remain impossible. For example the instantaneous

non-demolition measurements of some nonlocal observables violates causality [7]. Most of

these obstacles can be used as an advantage for some tasks such as cryptography.

The difference between correlations in quantum and classical systems tempt us to divide

correlations into quantum and classical parts. Recently, a class of measures for quantum,

classical, and total correlations based on the effects of measurements on a system have been

explored [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], often these measures are collective

named quantum discord. A great deal of work has been done on quantum discord and related

measures of correlations in the last decade (see [22, 23] and references within). Unlike the

earlier work on this subject, these measures account for quantum correlations other than

entanglement. They can also be extended easily to quantify multipartite correlations. Many

of these measures have been related to various tasks in quantum information and quantum

computation, e.g. The DQC1 model [24, 25, 26], no broadcasting [27, 28, 29], quantum

metrology [30], quantum state merging [31, 32, 33], and quantum thermodynamics [34, 35].

There have also been several proposal to experimentally detect discord and other experimental

investigations relating to discord [36, 37, 38, 39, 40, 41, 42].

While some of these measures have an operational interpretation in terms of various

tasks [27, 28, 32, 33, 43, 44, 45], most of the work on the subject did not include an in-depth

analysis of the correlation measures from an information theoretic prospective. Most measures

are not judged according to any information theoretic criteria like the criteria for entangle-

ment measures [46]. The exception is the seminal paper by Henderson and Vedral [9] where

five different criteria for a measure of classical information were presented. The Henderson-

Vedral measure of classical correlations was designed to meet four of those criteria, namely:

(a) product states are uncorrelated, (b) classical correlations are invariant under local unitary

operations, (c) classical correlations are non increasing under local operations (without com-

munication), and (d) for pure states the classical correlations are the entropy of the reduced

local states. The fifth criteria, symmetry under the interchange of the local subsystems was

conjunctured but was later found to be inconsistent with their measure.

In this article we present a general method for creating meaningful discord-like measures

of classical, quantum, and total correlations. In the spirit of [13] the quantum and classical

correlations are defined via some change in the state before and after a measurement. We

present a set of criteria which could be applied to test these measures and discuss the various

known measures in terms of these criteria. We divide these criteria into different categories:

Necessary; Reasonable and Debatable, and suggest that any measure which does not meet

the necessary criteria is not a valid measure of correlations. The importance of the remaining

criteria is discussed but we leave the questions of which ones should be adopted and which

should be dropped open. The reasonable conditions are related to continuity, a property

which has so far not been discussed in relation to quantum discord. We explore this property

in detail, proving continuity for some measures and showing discontinuity for others, we also

discuss the role of continuity in the scenario of Maxwell’s demons extracting work from a heat

bath.
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The paper is organized as follows: In Sec. 2 we define a generalized function, set of

measurements, and measurement strategies that give a measure of generalized correlations.

In Sec. 3 we lay out further constrains on generalized correlations measures. In the following

three Sections we discuss these conditions in detail. In Sec. 7 we discuss some standard

measures and whether they follow the conditions of Sec. 3. In Sec. 8 we discuss the role of

continuity using the important case of Maxwell’s demon in light of our results followed by the

conclusions in Sec. 9.

2. Quantum, classical and total correlations

Quantum discord is often used as a measure of quantum correlations. There are several other

schemes for quantifying quantum correlations (see Sec. 7), e.g. measurement induced distur-

bance (MID) and geometric discord (based on the Hilbert-Schmidt distance). Each of these

schemes require different methods of identifying the total, quantum, and classical correlations.

Noting the commonalities among the different schemes we can quantify correlations in the

most general sense via a positive-real valued function and a set local measurements.

Definition 1 The generalized-discord function K[ρ1, ρ2] is defined over all quantum states ρ1
and ρ2 with properties K[ρ1, ρ2] ∈ R

+ and K[ρ, ρ] = 0.

Definition 2 The set of measurements {M} is a set of general quantum-operations that are

trace preserving (complete).

Definition 3 M(ρ) is a classically correlated state.

Classical states can be defined through M(ρ) or the other way around. Usually {M} is a

full set of positive operator values measurements (POVM) on one or more of the subsystems

with or without communication. However, most of the time we will only need only local rank-1

POVM or orthogonal measurements, which are included. This is not essential for most of our

general claims as long as the properties of Def. 2 are satisfied.

The measurement will typically depend on the quantum state ρ, and is therefore labeled

as Mρ. The method for choosing Mρ can be classified into four different strategies.

• S1: The measurement is the same for all ρ so {M} = Mχ.

• S2q: Mρ will minimize the quantum correlations.

• S2c: Mρ will maximize classical correlations.

• S3: The measurement does not change the marginals Mρ(πρ) = πρ.

The subscript χ represents a fixed basis for S1 and a subscript ρ says that M depends on the

state.

Within this scheme there are four fundamental states that we have to deal with [47]: ρ

, M(ρ), and their marginals: πρ ≡ ⊗

i ρ
i and M(πρ) ≡ ⊗

i[M(ρ)]i, where ρi = trī[ρ] are

the local marginals. We can now use the generalized-discord function K to define classical

quantum and total correlations.

• The generalized quantum discord (quantum correlations) of a state ρ is defined as the

distance‡between the state ρ and the classical state M(ρ).

Q(ρ) ≡ K[ρ,Mρ(ρ)]. (1)

‡The term distance is to be used lightly as K may not be a proper distance.
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• Classical correlations of a state ρ are defined as the distance between the classical state

M(ρ) and the reduced product state after the same measurement M(πρ).

C(ρ) ≡ K[M(ρ),M(πρ)]. (2)

• The total correlations of a state ρ are defined as the distance between that state ρ and

the reduced product πρ
T (ρ) ≡ K[ρ, πρ]. (3)

• For completeness we can also define a forth quantity

L(ρ) ≡ K[πρ,M(πρ)]. (4)

The last equation quantifies the amount of coherence lost in the local states, i.e. ρi, when

a quantum state is measured. This quantity is always zero for S3 since the measurements

do not disturb the local states.

3. General properties for correlations

Whatever method we use correlations must satisfy more than just the basic properties stated

above. The purpose of this paper is to comment on these properties. In the spirit of the

conditions on entanglement measures [48] we present a set of conditions for correlations in-

dependent of any specific function K. These could be re-defined as conditions on K, M or

the measurement strategy. However apart from 2(b) and 2(c) they are general conditions

that should be satisfied by any method used to define correlations, including entanglement

monotones. The conditions we present below are divided into three types. The necessary

conditions are those that cannot be violated by any measure of correlations. The reasonable

conditions, related to continuity, would be welcome byproducts of any measure even if they

are not enforced, especially in light of experimental limitations. The last set of are the debat-

able conditions ; they arrive from some preconceived notions about the nature of correlations.

Most of the conditions presented below are based on those of entanglement measures [48] and

those on classical correlations defined in [9].

1. Necessary conditions

(a) Product states have no correlations: T (π) = Q(π) = C(π) = 0.

(b) All correlations are invariant under local unitary operations.

(c) All correlations are non-negative: C ≥ 0 and Q ≥ 0 and T ≥ 0.

(d) T is non-increasing under local operations.

(e) Classical states have no quantum correlations. Q(Mχ(ρ)) = 0 for all ρ and Mχ.

2. Reasonable conditions

(a) Continuity under small perturbations.

(b) Strong continuity of Mρ under small perturbations (SCM).
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(c) Weak continuity of Mρ under small perturbations (WCM).

3. Debatable conditions

(a) For pure bipartite states total, quantum, and classical correlations can be defined

by the marginals: T (ρ) = Gt(ρ
A), Q(ρ) = Gq(ρ

A), C(ρ) = Gc(ρ
A).

(b) Correlations are additive: T = C +Q.

(c) C and/or Q are non increasing under local operations.

(d) Symmetry under interchange of the subsystems.

A detailed discussion of these conditions using the scheme presented in Sec. 2 follows.

4. Necessary conditions

4.1. No correlation in product states

Proposition 1 Condition 1(a) is satisfied for T and C for all strategies.

Proof. By definition of K, T (π) = K[π, π] = 0 and C(π) = K[M(π),M(π)] = 0. However, if

T is defined differently we must be careful as these condition may be violated 2.

Proposition 2 For strategies S2q, S2c, and S3 Condition 1(a) for Q is satisfied.

Proof. Let us begin with S3, where M is a projective measurement in the basis of π with

M(π) = π. The value of quantum correlations is Q(π) = K[π, π] = 0, which minimizes Q
thus satisfying the criteria S2q. For S2c C is always 0 due to Prop. 1 for any M. Thus, if

M must be chosen carefully, we may choose the one satisfying M(π) = π, then Q too will

vanish 2.

Proposition 3 For strategies S1 Condition 1(a) for Q may fail.

Proof. We show this by an explicit example. Let us use the Hilbert-Schmidt distance as the

function K: K[ρ1, ρ2] = tr[(ρ1−ρ2)2]. Let π be diagonal in the computational basis and make

M a measurement in a basis different from the computational basis for each system. Then

we get: M(π) 6= π and Q(π) = tr[(π −M(π))2] > 0 2.

We note that for discord based on mutual information or conditional entropy condition

1(a) is satisfied since both quantities vanish for product states.

4.2. Invariance under local unitary

To have invariance under local unitary, UL ≡ ⊗

i u
i, we have to restrict ourselves to functions

that are invariant under local unitary.

Definition 4 Function K is called a unitary-invariant function if it satisfies

K[ρ1, ρ2] = K[uρ1u
†, uρ2u

†]. (5)

Proposition 4 Under Eq. (5) Condition 1(b) for T is satisfied for all strategies.

Proof. By Def. 4 of K, T (ULρU
†
L) = K[ULρU

†
L, ULπρU

†
L] = K[ρ, πρ] 2.
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Proposition 5 For strategies S2q, S2c, and S3 Condition 1(b) for Q and C is satisfied.

Proof. Under a local unitary we get ρ → ULρU
†
L, πρ → ULπρU

†
L. To maintain the mini-

mization (maximization) for S2q (S2c) and for S3 the basis of πρ changes, the measurement

in each case, must also changes unitarily: M → ULMU
†
L. Therefore, we have Q(ULρU

†
L) =

K[ULρU
†
L, ULM(ρ)U †

L] = Q(ρ) and C(ULρU
†
L) = K[ULM(ρ)U †

L, ULM(πρ)U
†
L] = C(ρ) 2.

Proposition 6 For strategy S1 Condition 1(b) for Q and C may fail.

Proof. We show this by using a similar example as in the proof for Prop. 3. Let ρ =
1

2
{|00〉 〈00| + |11〉 〈11|} be a state diagonal in the computational basis and fix M in the

computational basis. Now let UL be a rotation in the x−z plane by an angle θ for each qubit,

i.e. |0〉 → cos(θ) |0〉 + sin(θ) |1〉 and |1〉 → sin(θ) |0〉 − cos(θ) |1〉. Then we get: Q(ULρU
†
L) =

1

4
(1 + cos2(2θ)) sin2(2θ) and C(ULρU

†
L) =

1

4
cos4(θ). Both Q and C are functions of θ 2.

4.3. All correlations are positive and total correlations are non-increasing under

local operation

The next two conditions turn out to be easy to satisfy, but further restrict the types of function

K can be. Positivity of K[ρ1, ρ2] ∈ R
+ gives Condition 1(c) for all strategies.

To ensure Condition 1(d) we can restrict the function K to be contractive under a local

operation (without classical communication) ΛL =
⊗

i Γi, where Γi is a generalized operation

on the ith subsystem.

Definition 5 Function K is called a contractive function under a local operation if it satisfies

K[ρ1, ρ2] ≥ K[Γ(ρ1),Γ(ρ2)], (6)

Condition 1(d) is always satisfied when K is contractive, but this is not a necessary condition.

4.4. Classical states have no quantum correlations

Definition 6 Mχ does not change the classically correlated states in its basis {χ}: Mχ[Mχ(ρ)] =

Mχ(ρ).

Condition 1(e) is always satisfied from the definition of classical states (Def. 3) and the

above (Def. 5). However, the number of classical states under S1 is much smaller than those

of other strategies since they do not remain classical under local unitary transformations as

we showed in Prop. 6.

We have shown above that strategy S1 does not satisfy several of the necessary conditions.

All of these conditions are satisfied by rest of the strategies. However, in meeting these criteria

we had to restrict K to be a positive, unitary invariant Eq. (5), and contractive Eq. (6) under

generalized operations. For {M} we use Def. 6 and also assume the set {M} contains all the

necessary elements required to meet the above conditions. This is true if for example {M}
contains (but is not necessarily restricted to) all local orthogonal measurements. We have

summarized the results of this section in Table 1.

5. Reasonable conditions (continuity of correlations)

Continuity is an important property for any measure on quantum states both from a purely

mathematical perspective and a more practical experimental perspective. That is, making

small perturbations on a state should not change its correlations by too much [49, 50]. From
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N.C. S1 S2q S2c S3

T yes yes yes yes
(a) Q no yes yes yes

C no yes yes yes
T yes yes yes yes

(b) Q no yes yes yes
C no yes yes yes

(c) yes yes yes yes
(d) yes yes yes yes
(e) yes yes yes yes

Table 1. The necessary conditions for various strategies. If we restrict K to be invariant under local
unitary operations Eq. (5) and contractive Eq. (6) all strategies except S1 meet all the necessary
criteria. Additionally we had to put some restriction on the action M by Def. 6. Above yes

indicates that the property was proved to hold and no indicates that at least one counterexample
was presented.

an experimental perspective, the measurement used to minimize the correlations should be

able to get very close to minimizing the correlations in any nearby state. That is, if due

to some noise the state is slightly changed, the measurement used to minimize correlations

before the perturbation should not give a very different value for the correlations. A stronger

requirement is that the measurement used to minimize correlations before the perturbation

should be close to the measurement used after the perturbation.

We note that the following results for continuity is independent of how the set {M} is

chosen. In particular the results are valid for both the case when only orthogonal projective

measurements are allowed and for the case where all POVMs are allowed.

5.1. Continuity of states and correlations

Suppose we have a state that is slightly perturbed

ρ→ σ = (1− ǫ)ρ+ ǫτ, (7)

with ǫ being very small. We would like to know how discord changes as the state changes. In

fact, as we argued above we would like this change to be continuous.

Corollary 1 When a state is changed continuously the marginal state also changes con-

tinuously:

πρ → πσ = (1− ǫ)πρ + ǫπτ . (8)

Corollary 2 When a state is changed continuously the post-measurement state also change

continuously:

M(ρ) → M(σ) = (1− ǫ)M(ρ) + ǫM(τ). (9)

Definition 7 We call K continuous when it satisfies the following inequalities:

|K[ρ1, ρ1]−K[ρ1, (1− ǫ)ρ2 + ǫτ ]| ≤ f(ǫ), (10)

|K[ρ1, ρ2]−K[(1− ǫ)ρ1 + ǫτ, ρ2]| ≤ f(ǫ), (11)
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for all ρ2 and ρ2 with arbitrary τ and f(0) = 0. In the following we assume that K is

continuous.

Lemma 1 Total correlations are continuous: |T (σ)− T (ρ)| ≤ g(ǫ), with g(0) = 0.

Proof. We start with T (ρ) = K[ρ, πρ]. Let us perturb ρ while keeping πρ fixed and then the

converse. By continuity of K we have

|K[σ, πρ]−K[ρ, πρ]| ≤ f(ǫ) and |K[σ, πσ]−K[σ, πρ]| ≤ f(ǫ). (12)

Adding the two terms and using the fact that |A|+ |B| ≥ |A+B| we get

|K[σ, πσ]−K[ρ, πρ]| ≤ g(ǫ), (13)

where g(ǫ) = 2f(ǫ) 2.

Theorem 1 Quantum and classical correlations for strategy S1 are continuous: |Q(σ) −
Q(ρ)| ≤ g(ǫ), with g(0) = 0.

Proof. If state ρ changes according Eq. (7), using Eqs. (9)-(11) with variation in the first

term first and second term second,

|K[σ,M(σ)]−K[ρ,M(σ)]| ≤ f(ǫ) and |K[ρ,M(σ)]−K[ρ,M(ρ)]| ≤ f(ǫ). (14)

Adding the two terms and using triangle inequality, |A+B| ≤ |A|+ |B|, we have

|Q(σ)−Q(ρ)| ≤ g(ǫ), (15)

with g(ǫ) = 2f(ǫ). The exact argument can be carried out for classical correlations 2.

Theorem 2 Quantum (classical) correlations for strategy S2q (S2c) are continuous: |Q(ρ)−
Q(σ)| ≤ g(ǫ).

Proof. First note the following inequality: 0 ≤ QMσ
(ρ)−Q(ρ), where subscript Mσ denotes

measurement in the basis that minimizes discord for σ. Without loss of generality we assume

Q(ρ) > Q(σ), which means 0 ≤ Q(ρ)−Q(σ). After adding the last two inequalities we have

Q(ρ)−Q(σ) ≤ QMσ
(ρ)−Q(σ) ≤ g(ǫ). (16)

We used the result of Thm. 1 to get the final step. If Q(ρ) > Q(σ) was not true then we

simply interchange ρ and σ and we get the same result. The same argument can be carried

out for classical correlations for strategy S2c 2.

Thm. 2 only applies to the continuity of quantum (classical) correlations for strategy S2q

(S2c). It is, however, unclear if continuity for classical (quantum) correlations still works if we

use strategy S2q (S2c). We leave this as an open question. In this respect it is also interesting

to ask how L changes when we change strategies this is again still open. Further, Thm. 2 does

not say anything about the smoothness of correlations. In fact, there are known phenomena

that show that quantum discord does not change smoothly [37, 38].

Proposition 7 Continuity may fail for strategy S3.

Proof. Once again we rely on an example to prove the proposition. Take a state matrix

ρ =
1

4
{I⊗ I+

1

2
σx ⊗ σz +

1

2
σx ⊗ σx}, (17)
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which is locally completely mixed and unitarily transform it into one of three states which

are not degenerate locally on the second subsystem using the transformation:

Uj = cos (ǫ) I⊗ I− i sin (ǫ)σx ⊗ σj ≈ I⊗ I− iǫσx ⊗ σj, (18)

with j = {x, y, z}. The perturbed states

ρj = UjρU
†
j ≈ ρ− iǫ

8
I⊗ {[σj, σz] + [σj, σx]} (19)

are ǫ close to each other.

ρx = ρ− ǫ

4
{I⊗ σy}, ρy = ρ+

ǫ

4
{I⊗ (σz − σx)}, ρz = ρ+

ǫ

4
{I⊗ σy}. (20)

For most reasonable types of S3 measures the discord will be very different for the above

states because ρ is more sensitive to decoherence in the y direction. For bipartite 2 × 2

systems, an asymmetric measure like the measurement induced non locality (MINL) has a

simple analytical expression [21]. In this case K[ρ,M(ρ)] = |tr(ρ2) − tr[M(ρ)2]| and M is

an orthogonal rank-1 projective measurement on system A. The resulting MINL is given by:

N(ρ) = 1

32
, N(ρx,z) =

1

32
, and N(ρy) =

1

64
. This is independent of ǫ for arbitrarily small ǫ 2.

Another example for discontinuity in S3 using MID and Werner states can be found in [17].

5.2. Strong continuity

We may wonder if the measurement basis, and consequently the classical state, changes con-

tinuously under a perturbation: We call this strong continuity of M (SCM). This will not

be an issue with strategy S1, since SCM is enforced by keeping M fixed. Strong continuity

would be nice but may not be reasonable condition (rather desirable) as we are interested in

the correlations not the specifics of M.

Proposition 8 Strong continuity of M (and consequently the continuity of the classical state)

does not hold in general for correlation measures for strategies S2q, S2c, and S3. SCM fails

for all well-known measures.

Proof. We construct a proof by example again. Take a state that has marginals very close

to the maximally mixed state

ρ =
∣

∣ψ+
〉 〈

ψ+
∣

∣ , (21)

where |ψ+〉 = 1√
2
[|00〉+ |00〉] and perturb it in the direction of the state |φφ〉 with φ arbitrary

σφ = (1− ǫ)
∣

∣ψ+
〉 〈

ψ+
∣

∣+ ǫ |φφ〉 〈φφ| . (22)

After a measurement in some basis m̂, on the first system only, we will get

Mm̂(ρn̂) =
1− ǫ

2
[|00〉m̂ 〈00|m̂ + |11〉m̂ 〈11|m̂]

+ǫ (p0 |0〉m̂ 〈0|m̂ ⊗ |φ〉 〈φ|+ p1 |1〉m̂ 〈1|m̂ ⊗ |φ〉 〈φ|) , (23)

where p0 and p1 are the probabilities of the respective measurement outcomes. It is easy to

see that for the more standard choices of K and M the discord is minimized for measurement

in the basis of |φ〉. If we take two states σx̂ and σŷ, both ǫ close to ρ and therefore each
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R.C. S1 S2q S2c S3

T yes yes yes yes
(a) Q yes yes ? no

C yes ? yes no
(b) enforced no no no
(c) - yes yes no

Table 2. Continuity using various strategies: S2q and S2c are continuous and WCM, S3 is neither.
All strategies except the trivially continuous S1 fail strong continuity. Above yes indicates that
the property was proved to hold, no indicates that at least one counterexample was presented,

and ? indicates that neither was found.

other, we will get the minimum discord in two very different basis, and therefore two very

different classical states in basis x̂ and ŷ respectively. However, these two states, M(σx̂) and

M(σŷ), are not close to each other under certain choices of K: mutual information, conditional

entropy, relative entropy, Hilbert-Schmidt distance. In fact, for this example discord, relative

entropy of discord, and MID are all equivalent to each other. This means that SCM fails for

all well-know measures: discord, relative entropy of discord, MID, geometric discord, MINL

2.

A side note: the states above (ρ and σ) are not connected to each other by a unitary

transformation. However, a similar argument can be made for unitary perturbations, the

calculations is more messy but gives the same results. In fact, for S3 the example of Prop. 7,

where the perturbation is unitary, shows that the local eigenbasis of the second subsystem in

ρy is very different from the that of the other two giving a discontinuity in SCM.

5.3. Weak continuity

If strong continuity is violated, we would still like the correlations of the perturbed state to

be close to the correlations of the unperturbed state, even if the wrong basis of measurement

is applied to measure the correlations: We call this weak continuity of M (WCM). Suppose

two quantum states are very close to each other but the measurement basis that minimize

respective discords are very different from each other. Then we ask, does discord change

drastically if we minimize using the wrong basis?

Theorem 3 Weak continuity of measurement basis is satisfied for S2q (S2c) QMσ
(ρ) −

Q(ρ) ≤ h(ǫ) (CMσ
(ρ)− C(ρ) ≤ h(ǫ)).

Proof. Adding the final results of Thms. 1 and 2 and using the triangle inequality, |A+B| ≤
|A|+ |B|, we get

|Q(ρ)−Q(σ)|+ |Q(σ)−QMσ
(ρ)| ≤ 2g(ǫ)

|Q(ρ)−Q(σ) +Q(σ)−QMσ
(ρ)| ≤ 2g(ǫ)

|Q(ρ)−QMσ
(ρ)| ≤ h(ǫ), (24)

where h(ǫ) = 2g(ǫ). The same logic will give the same results for C 2.

Proposition 9 WCM may fail for strategy S3.

Proof. Using the example of Prop. 7 Eqs. (20) one can see that WCM fails 2.

We have summarized the results of this section in Table 2. We should also point out that
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the analytical results in this and previous section apply just as well for the continuous variable

case [51, 52].

6. Debatable conditions

6.1. Conditions for bipartite pure states

For a pure bipartite state we can use the Schmidt decomposition |Ψ〉 = ∑

i

√
λi

∣

∣ψA
i φ

B
i

〉

where

{
∣

∣ψA
i

〉

} and {
∣

∣φBi
〉

} form an orthonormal basis on their respective spaces. The marginal states

ρA =
∑

i λi
∣

∣ψA
i

〉 〈

ψA
i

∣

∣ and ρB =
∑

i λi
∣

∣φBi
〉 〈

φBi
∣

∣ are defined by the Schmidt coefficients λi.

It is then natural to expect that the correlations will also be defined by these coefficients. In

which case they can be determined by some function on the local reduced marginals. Here we

note that this makes it very natural to assume MΨ does not change the marginals for pure

states. Indeed for most types of discord on pure states S2 and S3 give the same measurement

basis. In fact, for bipartite pure states the entropic discord is same as the entanglement

measure, i.e. entropy of one of the reduced state. This does not hold true for multipartite

systems [18].

6.2. Additivity of correlations

It is reasonable to expect the total correlations are the sum of classical and quantum, correla-

tions. We can do this either by imposing constraints on K and M, or by redefining one type

of correlation as a function of the others. A byproduct of this property is that S2q and S2c

are equivalent.

Theorem 4 If T = C +Q then S2q and S2c are equivalent.

Proof. Since T is the same for all strategies minimizing Q will maximize C and vice versa 2.

One can also think of some correlations being simultaneously quantum and classical leading

to an inequality

T ≤ C +Q ≤ 2T . (25)

We call the last condition 3(b′). Where we assume that neither the classical nor the quantum

correlations can exceed the total correlations (see Sec. 7 for an example). Another, weaker

version of this condition has an equality for bipartite pure states only. We will call this

condition 3(b′′): T = C +Q for pure states. These conditions are only of interest if all three

quantities have the same dimensions.

6.3. C and/or Q are non increasing under local operations

In [9] the above condition was presented as a necessary condition for C. With the addition

of classical communication it is also a condition for entanglement measures. Since C can

(classically) be increased under communications, it is clear that the condition requiring that

C is non-increasing under LOCC is unreasonable. Q can both increase and decrease under

local operations in most measures of correlations. For this reason there is no analogue of the

distillation process which is used in entanglement theory. Two weaker versions of the property

read:

3(c′) - C and/or Q are non increasing under partial trace.

3(c′′) - C and/or Q are non increasing under the addition of a subsystem.
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The importance of 3(c′′) is shown by a remarkable application given in [53]. There it is

shown that if a measure of correlation is monogamous and satisfies conditions 1(b), 1(c), and

3(c′′) then this measure vanishes for all separable states.

Theorem 5 If {M} includes all local POVMs then C is non-increasing under local operations

ΛL for S2c.

Proof. Any local operation followed by a measurement could be replaced by a different

measurement M(ΛL(ρ)) = MΛL
(ρ). Since we are optimizing over all possible measurements

a local operation could not increase the classical correlations 2.

One might also think that we can increase classical correlations at the expense of quantum

correlations using local operations. It is not an unreasonable assumption but it is tricky since

it suggests possible violations of causality. Using S3 it is possible to show that we can have

an interpretation of classicality increasing at the expense of quantumness.

Proposition 10 For S3 local operations can increase classical correlations at the expense of

quantum correlations.

Proof. We prove this with an example: Starting with the state

ρ =
1

4
{I⊗ I+ ǫ(I⊗ σz + σz ⊗ I) + cσx ⊗ σx}, (26)

with very small ǫ. The measurement basis for S3 will be in the ẑ basis on both sides and the

resulting state will be

M(ρ) =
1

4
{I⊗ I+ ǫ(I⊗ σz + σz ⊗ I)} (27)

Which is an uncorrelated state so C(ρ) = 0.

However, if both parties were to perform a local measurement in the x̂ basis and with

some very low probability ǫ locally turn their state to a + eigenstate of σx they will have a

state.

ρlo =
1

4
{I⊗ I+ ǫ(I⊗ σx + σx ⊗ I) + cσx ⊗ σx} (28)

In which case we get the same total correlations (up to ǫ) but the S3 discord will be zero since

the measurement basis would be x̂ so the correlations are all classical. Using local operations

and no communications we gain an increase in classical correlations at the expense of quantum

correlations 2.

6.4. Symmetry under interchange of the subsystems

The set of measurements {M} can sometimes be asymmetric with respect to the subsystems,

for example it could be a set of local measurements on only one subsystem. In this case swap-

ping the subsystems around may change the classical and quantum correlations. It is often

natural to assume that the correlations do not depend on which subsystem is being observed.

However, if the correlations are related to the ability to perform some task, this assump-

tion can be inappropriate. In this respect some choose to classify bipartite systems as being

classical-classical, quantum-classical, classical-quantum, and quantum-quantum. See [45] for

such an application of classical-quantum correlated state.

6.5. Relation to entanglement measures
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The criteria proposed in this section are based on the criteria for entanglement measures.

It is important to stress that the general method described here cannot be used to describe

entanglement measures. In general the operation M would have to be non completely positive

if we wanted to use it for a measure of entanglement [54, 14].

Another requirement may be added so that quantum correlations should be greater than

or equal to entanglement measured using the same type of metric. For instance, the relative

entropy of discord is always greater than or equal to relative entropy of entanglement [18]. If

we define entanglement in the same way as we defined generalized discord, i.e. the distance to

the closest separable state then this will always be satisfied, as the closest classical state is also

a separable state. It is not reasonable to expect this kind requirement to hold when comparing

two different types of correlations, e.g. in [55] an example is given where entanglement of

formation is greater than quantum discord. On the other hand we can also require that when

Q > 0, C > 0 (quantum correlations cannot exist without classical correlations). This is

always the case with quantum discord, however relative entropy of discord (see Sec. 7) and

quantum zero-way deficit do not satisfy this. An example where quantum correlations exist

even when classical correlations are absent is given in [56].

Entanglement can be defined operationally in terms of formation, distillation, etc. These

notions do not exists for generalized quantum discord. On the other hand quantum discord

and other similar measures are intimately related to entanglement. Some of these relationships

arise when considering the mixed state as a part of some larger pure state. These relationships

between discord and entanglement translate some of the properties of entanglement to discord.

Below we give a brief review of such relationships.

One of the strongest relations between entanglement and discord is given by the Koashi-

Winter formula [57]. Using this formula a conservation law for discord is derived in [26]

and discord is shown to be equivalent to the consumption of entanglement in a protocol

called extended state merging [32]. Further regularized version of discord is shown to be

the difference in entanglement cost and entanglement of distillation [58]. In two independent

but similar studies quantum discord, quantum deficit, and relative entropy of discord are

related to entanglement generation in measurement and entanglement activation [43, 44].

Based on monogamy of entanglement, monogamy of discord is analyzed in [59, 60]. From an

operational point of view, manipulating quantum correlations may require entanglement in

some scenarios [6]

6.6. Relation to criteria for genuine multipartite correlations

The general method presented above can be used for quantifying multipartite correlations,

however it may not be ideal for capturing genuine multipartite correlations. That is, given

some value for the classical or quantum correlations, there is very little information about the

number of states that play an active part in these correlations. Bennett et al. [16] present three

criteria for genuine multipartite correlations and three criteria for quantifying the degree of

correlations in terms of the number of parties that play (a genuine) part in the correlations. Of

these criteria one is similar to the criteria presented above. Local operations and postselection

cannot increase the degree of correlations which can be compared with criteria 3(c). However

this criteria is a stricter vesion of 3(c) which reads Local operations and postselection cannot

create correlations in other words correlations cannot be increased if they are zero unless some
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communication is used. Even this stricter version does not hold for all measures. It usually

fails for quantum correlations since they can be created locally from classical correlations.

However it always holds for total correlations due to 1(a) and 1(c).

7. Compatibility of various methods and correlation measures

Without having gone into details about the exact form of K[ρ,M(ρ)] we showed that S1 and

S3 fail to meet some of the requirements to be measures of quantum and classical correlations.

S1 fails to meet even the minimum requirements of local unitary invariance, and zero discord

for product states. S3 is at some points not continuous and does not follow the weak continuity

for measurement. Interestingly S2 is only weakly continuous for M. The requirement that

classical correlations do not increase under local operations does not hold either for S3. Below

we briefly discuss some of the well known types of discord in light of the results above.

7.1. Forms of K and M
There are (infinitely) many different functions K one can choose to define a measure for

correlations. In [61], the authors describe different types of entropic-discords by using different

functions for K.

(a) Mutual information KI [ρ,M(ρ)] = |I(ρ)− I(M(ρ))|;

(b) Conditional entropy KD[ρ,M(ρ)] = |S(ρB |A)− S(M(ρ)B |A)|;

(c) von Neumann entropy KS [ρ,M(ρ)] = |S(M(ρ))− S(ρ)|;

(d) Geometric KG[ρ, χ] = ‖ρ−M(ρ)‖.

We have added another option to the list above, option (d). This is a geometric measure

based on the Hilbert-Schmidt distance: where ‖χ‖ = tr[χχ†] [19]. The absolute values in

(a-c) are unnecessary since the arguments are always positive, we keep them as a formality to

comply with Def. 1. The functions (a) and (b) are defined for bipartite states while (c) and

(d) can be used for multipartite correlations.

We adopt the requirement Mχ(Mχ(ρ)) = Mχ(ρ) of (Def. 6) which limits our choice of

M to orthogonal projective measurements§. However in the entropic cases (a-c) , a POVM

can be achieved using Neumark’s extension and the results remain equally valid. In general

measurements can be of different ranks, but usually rank-1 measurements will give the desired

results (see [61] for a detailed discussion). There is however more freedom in what kind of

measurements are allowed, for example measurements on only some (or one) of the subsystems,

or measurements on one system first and then on another etc. In any minimization procedure

S2q and S2c we must assume that the minimization is done by an “all knowing” observer. If

this is not the case we must restrict M or K or use a different strategy such as S1 or S3.

Restricting to orthogonal measurements has fundamental consequences. In the case where

a minimum can be achieved by a non-orthogonal rank-1 POVM, one may introduce an ancilla

system and work with orthogonal measurements. In this case the correlations may be changed

§One might come up with some set of POVMs which will meet the requirement Mχ(Mχ(ρ)) = Mχ(ρ) for all
ρ and χ but it is unlikely that such a set will meet the necessary conditions or produce meaningful classical
states.
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simply by adding the new ancilla system. However this is acceptable if we drop condition

3(c), since it can only increase classical correlations at the expense of quantum correlations,

the total correlations T will remain unaffected.

7.2. A short discussion on known measures

We can now look at some measures used in recent literature. The measurement set {M} here

is a set of POVMs, usually but not necessarily rank-1 orthogonal measurements. First we

point out which function the measure is based on and which strategic category it belongs to.

When necessary we will discuss the form of {M}.

7.2.1. Discord (D)

The quantum discord [8, 9, 10] is defined using KD and strategy S2q or S2c. For orthogonal

measurements this is the same as using KI and both S2q and S2c give the same results. In

general one may add a pure ancilla as the initial state to get the same result for general

POVMs.

Discord meets all the necessary conditions as shown in the early papers on the subject.

It also meets the reasonable (continuity) conditions, except 2(b) (SCM). To prove continuity

we can use Fannes’ inequality [62] for continuity of entropy

S(ρ)− S(σ) ≤ tr‖ρ− σ‖ log d+ h(tr‖ρ− σ‖). (29)

in our general proofs for continuity.

Additionally, conditional entropy is defined by the Schmidt coefficients for pure states

so 3(a) is satisfied. Condition 3(b) is satisfied since the conditional entropy of π is the

entropy of the reduced marginal that has not been measured, from Thm. 4 S2q and S2c

are equivalent for discord. Cond. 3(c) is satisfied for classical correlations [9], but not for

quantum correlations [6]. Finally, 3(d) is not satisfied since this is an asymmetric measure of

bipartite states (meaning {M} acts on one party only).

Discord may also be defined using strategy S1; [10]. Due to the nature of mutual infor-

mation, this measure still satisfies Cond. 1(a), but fails for 1(b). Since it is S1, it satisfies

the reasonable conditions for continuity. Finally, it is the same as the S2 discord for the

conditions 3(a-d).

7.2.2. Measurement induced disturbance (MID)

Using KI , strategy S3 and measurements on all subsystems Rajagopal and Rendell and in-

dependently Luo [12, 15] introduced MID. It satisfies all necessary conditions. But since it

is a S3 measure, it fails all continuity conditions, as we have shown using several examples

above. For bipartite pure states, MID is the same as the discord. Therefore, it satisfied

3(a). It satisfies all other debatable conditions, except 3(c) since both quantum and classical

correlations can be increased using local operations. It is also a symmetric measure satisfying

Cond. 3(d). An asymmetric version of MID (equivalent to the S3 discord) was introduced

in [35].

7.2.3. Relative entropy of discord (RED)
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RED [11, 34, 18] is defined using KS and S2q. This can be a symmetric or asymmetric

measure. RED satisfies all necessary and reasonable conditions, except 2(b). For bipartite

pure states, RED is the same as the discord. Therefore, it satisfies 3(a). For 3(b), we have

T +L = Q+C. It satisfies 3(d) when the symmetric version is considered, but otherwise not.

Another equivalent way of defining RED is using the (lowest) relative entropy from the

state ρ to a classical state. Surprisingly the optimal classical state is given by an orthogonal

projective measurement on ρ [18].

7.2.4. Geometric discord (GD)

GD is defined using KG and S1, S2q or S2c with either a symmetric or asymmetric measure-

ment. When S1 is considered, conditions 1(a) and (b) may fail. They will not fail for S2q or

S2c. For S1, S2q, and S2c, all other necessary conditions and the conditions for continuity

are satisfied by GD. It also satisfies the additivity condition for bipartite pure states 3(b)

and therefore 3(a) as well (see below). Using Thm. 5 condition 3(c) is satisfied for classical

correlations if we use S2c. The geometric measures have the advantage of an analytic formula

for bipartite states [19, 63].

Proposition 11 The geometric discord of bipartite pure states satisfies conditions 3(a) and

3(b).

Proof. Let ρ =
∑

ij

√

λiλj
∣

∣ψA
i φ

B
i

〉 〈

ψA
j φ

B
j

∣

∣. Then the corresponding classical state is

M(ρ) =
∑

λi
∣

∣ψA
i φ

B
i

〉 〈

ψA
i φ

B
i

∣

∣, πρ = πA ⊗ πB =
∑

λiλj
∣

∣ψA
i

〉 〈

ψA
i

∣

∣ ⊗
∣

∣φBj
〉 〈

φBj
∣

∣. By direct

computation of different correlations we have

T = tr
[

(ρ− πρ)
2
]

= 1 + tr(π2
ρ)− 2

∑

i

λ3i (30)

Q = tr
[

(ρ−M(ρ))2
]

= 1− tr
[

M(ρ)2
]

(31)

C = tr
[

(M(ρ)− π)2
]

= tr
[

M(ρ)2
]

+ tr
(

π2
ρ

)

− 2
∑

i

λ3i . (32)

Each function above is a function of λi, therefore 3(a) is satisfied. Adding the last two

functions gives the first: T = Q+ C 2.

In all references to the geometric discord we only consider S2q and S2c. We note that

the classical state obtained by M(ρ) is also the closest classical state overall [64], i.e using

minχ |ρ− χ| where χ is a classical state.

7.2.5. Measurement induced nonlocality (MINL)

MINL [21] is a generic asymmetric S3 strategy with an optimization process for degenerate

marginals. However this optimization process does not overcome the discontinuities associated

with S3. One may use KG to obtain an analytic formula. In general it meets the same criteria

as MID except symmetry.

The results of this section are summarized in Table 3.

8. Demons, basis, and continuity

Maxwell’s demon and work deficit paradigms are some of the most interesting physical inter-

pretations of quantum correlations beyond entanglement. These paradigms often involve some
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D MID/MINL RED GD

N.C. yes yes yes yes
R.C. (a) yes no yes yes

(b) no no no no
(c) yes no yes yes

D.C. (a) yes yes yes yes
(b) yes yes yes yes
(c) C no ? C
(d) no yes/no yes/no yes/no

Table 3. Comparing some known versions of discord using the criteria for correlations. Above yes

means it is satisfied and no means we gave a counterexample in the previous sections. For 3(b)
either 3(b) or 3(b′) is satisfied. For 3(c) C means it is satisfied only for classical correlations. For
3(d) yes/no means yes for the symmetric version and no for the asymmetric version.

limitations on what local demons can do, usually by restricting their communications [65].

However we can also restrict the knowledge of the demons [35] and/or their apparatus. In the

following we do both, first we show that when the demons lack knowledge the best strategy

might be S3, and that there is some physical basis for the non-continuous nature of these

measures. Next we examine the situation when there is imperfect knowledge of the state

due to some uncertainties and/or the apparatus is imperfect. In this case, which is close

to the realistic situation in a lab, we see that continuity is necessary to make any sense of

correlations.

8.1. Basis agreement

Imagine the following scenario for Szilard’s engine [66, 67]. Alice and Bob share a quantum

state ρ but each only knows his own density matrix. They must extract as much work out of

the system as possible with no communication (they can communicate later to maximize the

efficiency of erasing their records). The difference between the amount of work Alice and Bob

can generate and the amount of work a nonlocal all knowing demon can generate is related to

the MID [35, 61], but this only applies in the case where the local states are not degenerate.

To understand this we note that the best measurement strategy in this case is a measurement

in the local eigenbasis. Since Alice and Bob have no knowledge the total state their best

guess would be to maximize their own work. If there are degeneracies however, there is some

ambiguity as to which is the best measurement basis, and they must choose some arbitrary

direction. In the worst case scenario the work is related to the MINL, because in MINL a

maximization is required when the local basis are unknown.

8.1.1. Example 1: Ambiguous local basis

Let the system be in a classical state ρ = 1

2
{|00〉 〈00| + |11〉 〈11|}. The reduced states are

maximally mixed, and therefore there is no well-defined local basis. In the best case scenario

the measurement is made in the computational basis and the maximal amount of work is

extracted from the engine giving a work deficit of 0. The reason they can get any work out of

the system, once all accounting has been done, is that they can use the correlations to improve

the efficiency of the erasure process. In the worst case scenario there are no correlations and
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the total amount of work gained is zero giving a work deficit of kbT . However, in the slightly

modified case of ρ = 1

2
{(1+ ǫ) |00〉 〈00|+(1− ǫ) |11〉 〈11|}, there is no ambiguity and the work

deficit is 0. This is an example of a possible interpretation for MID despite the discontinuity.

8.1.2. Example 2: No communication with prior knowledge

In this respect it is interesting to note that if Alice and Bob are not allowed to communicate

but have some prior knowledge of the state, they can choose the optimal strategy in all cases,

removing the ambiguity [35]. In fact the best strategy is often not to measure in the eigenbasis

but in some other basis. Moreover if Alice and Bob were allowed to discuss their strategy

ahead of time they could get more work out of the system. For example, if they shared a

singlet state it would be better if they both measured in the same basis, although that basis is

completely arbitrary. In the case when Alice measures in the z basis and Bob in the x basis,

they wind up with maximally mixed state rather than a maximally classically correlated state.

8.2. Choosing a basis in symmetric and asymmetric measures

The asymmetric versions of discord have been justified in a number of scenarios like state

merging [32, 33] and work deficit [65, 34]. It is interesting to note that when optimizing, the

optimal basis used by one side and the optimal basis used by the other side can be different

than the optimal basis used by both even when no communication is allowed.

8.2.1. Example 3: Symmetric measures and prior communication

We give the following example using Hilbert-Schmidt distance as K and rank-1 orthogonal

projective measurements as M. Again we define |ψ+〉 = 1√
2
[|00〉+ |11〉].

ρ = (1− c)
∣

∣ψ+
〉 〈

ψ+
∣

∣+ c |0+〉 〈0+| , (33)

in which case the optimal strategy for an asymmetric measure would be measure in the ẑ (x̂)

basis for a measurement on A (B). But a symmetric measure would be optimized if both used

the same basis.

8.3. Imperfect demons

One of the main reasons to require correlations to be continuous and to have upper bounds on

how they change for nearby states is that in real life experimental apparatus is never perfect.

For example when tomography is used to determine the state, any small uncertainties could

cause a big difference in the amount of work that can be extracted from the system. This is

clear in the examples given in Sec. 8 and in (Prop. 7). The S3 measure of work deficit in this

case would not be a good measure of the quantumness of the state.

Another example is where the demon requires to run some kind of numerical approximation

in order to find the optimal strategy. Here again continuity will be of major importance as

will the weak continuity of the measurement basis.

9. Conclusions

The nature of quantum correlations makes them hard to quantify in a consistent manner.

Different physical scenarios lead to different measures of correlations. It is however interesting
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to ask if a measure which is associated with a certain physical paradigm is indeed a measure of

correlations. We built a set of criteria to judge all possible measures of correlations. Of these

criteria five were identified as more fundamental than the rest. A physical quantity which fails

to meet them cannot be considered a ‘proper’ measure of correlations. The various measures

of discord used in recent literature were found to be consistent with these criteria.

Continuity on the other hand is more elusive, no measure of correlations was found to be

compatible with SCM and the S3 based measures fail all continuity criteria. The measures

of discord with S2 such as discord, RED, and geometric discord are however continuous and

WCM. As are the set of S2 based measures based on a continuous discord function K. This

is the first proof of continuity for measures of quantum correlations beyond entanglement.

The last set of criteria dubbed debatable are related to the interplay between classical and

quantum correlations. Surprisingly most measures of correlations meet most of these criteria

or at least some variation on them. We leave the question of their relevance open.

Of the known measures of correlations, discord, relative entropy of discord, and other

entropic discord are compatible with the majority of requirements. A symmetric version of

discord using orthogonal measurements and KI is consistent with all requirement and the

symmetric versions of the other two is consistent with a slightly weaker version of 3(b) and

with all the others (with the possible exception of 3(c) for S2c measures). We did not find a

measure which satisfies SCM, such a measure might exist and make sense in some scenarios.

One may try to use a different optimization strategy than those presented above to overcome

this obstacle. From a physical point of view, SCM makes the classical state Mρ(ρ) associated

with ρ more relevant. However, this has little bearing on the quantifiers of the correlations.

They remain relevant even when SCM fails.

While the search for measures of quantum, classical, and total correlations continues it is

clear that some measures should not be considered as quantifiers of correlations. The criteria

presented in this paper should be used as a general guideline for measures of correlations. The

points at which some of these criteria fail for some measures might also have some physical

relevance as in the highly symmetric states where continuity and WCM for S3 breaks down.
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