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In the absence of errors, the dynamics of a spin chain, with a suitably engineered local

Hamiltonian, allow the perfect, coherent transfer of a quantum state over large distances.
Here, we propose encoding and decoding procedures to recover perfectly from low rates

of systematic errors. The encoding and decoding regions, located at opposite ends of the

chain, are small compared to the length of the chain, growing linearly with the size of
the error. We also describe how these errors can be identified, again by only acting on

the encoding and decoding regions.
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1 Introduction

Quantum state transfer, i.e., the coherent transfer of an unknown quantum state between two

distant locations, plays a fundamental role in quantum information processing, facilitating the

production of entanglement between separated parties, and generating the long-range two-

qubit interactions required in a quantum computer. If the available inter-qubit interactions

only act locally, one of the most effective ways to achieve this state transfer is to use a spin

chain as a quantum wire [1, 2, 3] (see [4] for a review). In this scheme, the dynamics of a

suitably designed Hamiltonian perfectly transfer a quantum state between the two ends of

an arbitrarily long chain. Its main strength is that external control is not required during

the transfer while confining the encoding and decoding areas to the boundary regions of the

chain, so that it is far superior to the näıve solution of applying a sequence of SWAP gates.
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Since the protocol is designed to operate in the same solid-state technology that the rest of

the quantum device is fabricated in, interfacing with other technologies, such as using photons

as ‘flying qubits’ [5], is unnecessary.

One of the promising features of a spin chain is that, in only requiring interactions with

the ends of a chain, the majority of the spins can be shielded from the effects of noise. Nev-

ertheless, errors will inevitably be generated in a practical implementation by manufacturing

imprecisions and through coupling with the environment. The main effect of these errors is to

compromise the transfer by introducing unwanted excitations and destroying the coherence.

In order to reduce this effect, one can consider encoding in an error correcting code. However,

applying standard error-correcting codes to state transfer is very inefficient; any error occur-

ring during the transfer, even on a single qubit, is spread over the whole chain by the action

of the Hamiltonian. Hence, one expects that a generic error-correcting code would require a

large number of encoding qubits per logical qubit, conflicting with the central tenet of the

state transfer protocol. It is therefore necessary to design ad hoc error correcting codes. In

addition to the importance of error correction on the spin chain itself, such studies comprise

the essential initial studies of equivalent questions in systems where Hamiltonian dynamics

are used in an information processing capacity, such as in a computational architecture [6].

To date, studies of error correction in state transfer have adopted a cause-based approach.

Manufacturing errors have been modelled as random static or dynamical defects, [7, 8], or

studied via simulations [9], and can be circumvented (at the cost of a significantly increased

transfer time) by encoding across multiple parallel chains [10, 11]. The effects of timing errors

can be minimised by optimally tuning the couplings between the chain qubits [12]. The

studies of environmental induced noise models are, to date, extremely limited, being based

around the very crude attempts such as in [4, 13], or relying on very restrictive assumptions,

[14]. Nevertheless, there are specific occasions when perfect state transfer can be recovered,

albeit with a doubled transfer time [15]. No general procedure to protect against noise is yet

known; indeed, aside from some of the arguments of [4], all these prior results have made

use of a deliberately induced subspace structure in the Hamiltonian which is assumed to be

preserved, even in the presence of these errorsa. One promising avenue, recently proposed in

[16], advocates the use of topologically protected subspaces in chiral spin liquids in order to

protect against decoherence during the state transfer.

This cause-based classification has so far concealed an interesting category of errors, sys-

tematic errors, by which we mean errors that in each transfer experiment are drawn from a

fixed set of possible errors (whose description includes position, time, and type of error). This

key feature enables the detection, once and for all, of the set of possible errors, potentially

allowing us to protect against them. In this paper, we develop a strategy to recover perfectly

from low rates of systematic error on a spin chain, encoding the information in a protected

set of states and decoding it accordingly. The number of qubits used for the encoding and

decoding scales linearly with the sizes of the errors in the set. We start, in Sec. 2, by introduc-

ing the requisite information about state transfer in spin chains, particularly concentrating

on the mapping to a system of free fermions, the mathematical structure which we rely on

throughout the paper. In Sec. 3 we describe our model for systematic errors. The encoding

and decoding strategies are presented in Sec. 4 under the assumption that the errors are

aThis is usually, but not exclusively, the spin preserving property that we describe in Sec. 2.
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known, before we describe an example of how the errors can be identified in Section 5, while

also indicating that significant efficiency savings can be made over and above the sufficient

conditions previously derived.

2 State Transfer in the Fermionic Picture

In an ideal state transfer protocol, we are provided with an unknown quantum state

|χ〉 .= (α |0〉+ β |1〉),

and tasked with transmitting this state perfectly to a distant recipient, using only a fixed

Hamiltonian with local couplings. The most commonly studied system is that of a spin

chain, initially because this is the optimal geometry for transferring a state as far as pos-

sible. However, the many advantages of this choice include the ability to prove necessary

and sufficient conditions for achieving perfect state transfer [4], and the ability to perform

the Jordan-Wigner transformation on the system [17]. We will also take advantage of these

benefits.

In the simplest scenario, this state transfer is achieved by placing the state onto the first

qubit of an N qubit chain, and initialising the rest of the system in a standard state such as

|0〉⊗N−1
. Thus, the overall starting state is

|ψI〉 = |χ〉 ⊗ |0〉⊗N−1

By suitably selecting the properties of the Hamiltonian H, we evolve for some time, tF , known

as the transfer time, and the corresponding unitary U(tF ) = e−iHtF creates the final output

|ψF 〉
.
= U(tF ) |ψI〉 = |0〉⊗N−1 |χ〉 ,

i.e. the state arrives on qubit N of the chain. We consider Hamiltonians of the class

H =
1

2

N−1∑
i=1

Ji(XiXi+1 + YiYi+1)−
N∑
i=1

BiZi

where Xi, Yi and Zi are the Pauli operators acting on the i-th qubit. This Hamiltonian has

a very convenient subspace structure, described by[
H,

N∑
i=1

Zi

]
= 0,

meaning that the total number of ones (excitations) relative to the state

|0〉 = |0〉⊗N

is preserved. In particular, the one-excitation subspace, spanned by the states

|n〉 = |0〉⊗(n−1) |1〉 |0〉⊗(N−n)
,

is preserved. This allows us to describe the dynamics of this subspace by a Hamiltonian

H1, where (H1)n,m
.
= 〈n|H |m〉. Perfect transfer is achieved by an appropriate choice of
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coefficients Ji and Bi, the necessary and sufficient conditions for which are described in [4],

which result in the following properties:

U(tF ) |0〉 = |0〉
U(tF ) |n〉 = exp(iφ) |N − n+ 1〉 ∀n = 1 . . . N

for some real time tF and phase φ. There are many such choices of coupling that achieve

perfect state transfer. While the original [2, 3] has been shown to be optimal against a variety

of criteria [12], we remain agnostic to the specific choice, and do not require more than the

basic properties outlined here. The phase φ shall be neglected in the following, as it can be

corrected by a local rotation.

As we will be concerned by the action of errors which, generically, may introduce additional

excitations during the state transfer, we shall switch to the fermionic picture, which lends itself

to the description of variable excitation number. In this picture, the Hamiltonian reads:

H =

N−1∑
n=1

Jn(a†nan+1 + a†n+1an) + 2

N∑
n=1

Bna
†
nan

where

{a†n, am} = δn,m {an, am} = 0.

This hopping Hamiltonian describes N non-interacting spinless fermions [4]. The Jordan-

Wigner transformation a†n =
1

2

n−1∏
m=1

Zm
(
Xn − iYn

)
, Zn = 11− 2a†nan provides the relation to

the spin picture. Setting Ô(t)
.
= U(t)OU(t)†, for any operator O, the bilinear structure of H

implies that

ân(t) =

N∑
m=1

β∗n,m(t)am,

where βn,m(t)
.
= 〈n| exp(−iH1t) |m〉 [18] (i.e., the dynamics are entirely determined by the

single excitation subspace, described by H1). Hence, two fermions are perfectly transferred

independently of one another, modulo an ordering phase:

U(tF )anamU
†(tF ) = aN−n+1aN−m+1.

2.1 Initial State

We specified that for the basic state transfer protocol, the initial state of every qubit except

the first one should be |0〉. However, a relatively minor adaptation of the protocol makes this

requirement unnecessary [13, 19]. Consider, instead, fixing the first two qubits to convey the

information of the unknown state via an encoding

(αa†1 + βa†2) |00〉 ,

and the state of the rest of the chain can be completely arbitrary. The state of the rest of the

chain is described by an arbitrary state ∑
x∈{0,1}N−2

γxa
†
x

 |0〉⊗N−2
,
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where a†x
.
=
∏N
i=3(a†i )

xi uses the bits of the binary string x to specify which of the N − 2

qubits have creation operators acting on them. Hence,

|ψI〉 = (αa†1 + βa†2) |00〉

 ∑
x∈{0,1}N−2

γxa
†
x

 |0〉⊗N−2
,

but by the properties of perfect state transfer and the non-interacting fermion picture, we

immediately have that the output state is

|ψF 〉 =

 ∑
x∈{0,1}N−2

γxR(−1)wx+(wx
2 )a†x

 |0〉⊗N−2
(αa†N + βa†N−1) |00〉 ,

where xR is the bit string x reversed and wx is the Hamming weight of x, i.e. the number

of creation operators that act in a†x. Clearly, this state is separable about the partition

(1 . . . N − 2) and (N − 1, N), so we can recover the transferred state at the other end of the

chain. The explicit form of the operator acting over the qubits 1...N − 2 is irrelevant for the

recovery. By linearity, any mixture of these initial states can also be tolerated.

3 Modelling Systematic Errors

We represent a systematic error by a set of possible errors {E`} acting at times {t`}. Using

the {a†i} as a basis, each of these E` can be expanded as

E .
=

s∑
i=1

γi

mi∏
j=1

a†
k

(i)
j

ni∏
j=mi+1

a
k

(i)
j
, (1)

where k
(i)
j are the ni positions that the creation/annihilation operators act on. For a given

i, the sets {kij}
mi
j=1 and {kij}

mi
j=1 may share common sites, and so may {kij}

ni
j=1 and {k`j}

n`
j=1.

The {γi} are arbitrary coefficients. The overall error E is taken to be trace preserving. This

model includes the bit flips Xi =
∏i−1
j=1 a

†
jaj(ai + a†i ) and the phase errors Zi = (11 − 2a†iai).

For simplicity of exposition, we shall work with just one error E acting at time t, the effect of

multiple errors being easily incorporated. The error is assumed to act instantaneously, or, at

least, for a time much smaller than tF , so that otherwise the time-evolution is governed by U
b. Hence the state at time tF is |ψF 〉 = Ê(tF − t)U(tF ) |ψI〉 , with

Ê(tF − t) =

s∑
i=1

γi

mi∏
j=1

â†
k

(i)
j

(tF − t)
ni∏

j=mi+1

â
k

(i)
j

(tF − t) . (2)

The fermionic operators âi(tF − t)’s represent the (possibly non-orthogonal) fermionic modes

affected by the error.

Even without knowing the specific form of the error, the encoding presented in Sec. 2.1

already tolerates a vast range of errors; those for which all the errors E acting at time t

satisfying E(tF − t) =
∑
xR a

†
xR (or any mixture thereof), if |0〉 is used as initial state, since

this is entirely equivalent to the case of the different initial state. Our task is now to describe

how to deal with errors that do not satisfy this property, under the assumption that we know

what these errors are.

bWe comment on the relaxation of this assumption in the conclusions.
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Fig. 1. General schematic for the operation of a perfect state transfer system in the presence of a

systematic error at time t via an initial encoding and corresponding decoding in small regions at
either end of the chain.

4 How to Counteract Systematic Errors

In order to counteract these systematic errors, we shall encode the information about the

state |χ〉 in the first D qubits at one end of the chain, which we call the encoding region.

The encoding will be defined so that perfect state transfer can be achieved by applying a

unitary decoding operator UD at time tF , acting just over a decoding region of size D at the

opposite end of the chain (see Fig. 1). We refer to the region outside the decoding region as

the complement region, which has size D̄
.
= N − D. The size D will be determined by the

number of errors that we have to encode against, but should be considered small compared

to the transfer distance, N .

4.1 State Encoding

We propose to encode the information in the state

|ψI〉
.
= (αQ†0 + βQ†1) |ψ0〉 (3)

where the encoding operators

Q†µ
.
=

D∑
i=1

(εµi a
†
i + ηµi ai), µ ∈ {0, 1} , εµi , ηµi ∈ C (4)

are to be determined to ensure that the decoding operation UD exists; the state |ψ0〉 fulfils:

Qµ |ψ0〉 = 0 , ∀ µ ∈ {0, 1} . (5)
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We require the {Qµ}’s to represent two orthogonal fermionic modes, which imposes the con-

ditions {
Qµ, Qµ′

†
}

= δµ,µ′ ⇐⇒
D∑
i=1

(εµi ε
µ
′

i

∗
+ ηµi η

µ
′

i

∗
) = δµ,µ′ , ∀ µ ∈ {0, 1} (6)

{
Qµ, Qµ′

}
= 0 ⇐⇒

D∑
i=1

(εµi η
µ
′

i + ηµi ε
µ
′

i ) = 0 . ∀ µ ∈ {0, 1} (7)

This ensures that the logical 0, Q†0 |ψ0〉, and the logical 1, Q†1 |ψ0〉, are orthogonal, normalised

states, 〈ψ0|QµQ†µ′ |ψ0〉 = δµ,µ′ . The idea behind the proposed definition is that if the en-

coding operators correspond to fermionic modes different from the ones affected by the error,

the orthogonality of the encoding states would be unaffected by the error, and so would the

encoded information. In addition, since the Hamiltonian describes independent fermions, the

transfer of the information-carrying excitations would be independent of the excitations intro-

duced by the error, making it possible to recover the information by applying an appropriate

decoding operation at time tF . We shall now formalise this intuition.

4.2 State Decoding

Let us rewrite |ψF 〉, highlighting the action of the time-evolved error and encoding operators

on the decoding region. To do this, we describe the action of any given fermionic operator

as a product of the part that acts on the decoding region, and the part that acts on its

complement.

a†j = f̃†j ⊗ 11⊗D , f̃j =
1

2
Z⊗j−1 ⊗

(
X − iY

)
⊗ 11⊗D̄−j , ∀j ≤ D̄

a†j = Z⊗D̄ ⊗ f†j , f
†
j
.
=

1

2
Zj−D̄−1 ⊗

(
X − iY

)
⊗ 11N−j ∀j > D̄ ,

with {f†j , fi} = δi,j , {fi, fj} = 0 (and similarly for the f̃j ’s). Hence, a fermionic operator

evolved in time from when it acts up to the decoding time, tF , is expressed as

ân(t) = F̃n(t)⊗ 11⊗D + Z⊗D̄ ⊗ Fn(t) ,

with F̃n(t)
.
=

D̄∑
m=1

βn,m(t− tF )f̃m, Fn(t)
.
=

N∑
m=D̄+1

βn,m(t− tF )fm . The Fn(t) represent the

action of the error on the decoding region. We shall see that, in analogy with the case of

Sec. 2.1, the error action on the complement of the decoding region (represented by F̃n(t)) is

irrelevant for the recovery of the state. Substituting in Eq. (2), one obtains

E(tF − t) =

s∑
i=1

γi
∑

x∈{0,1}ni

P̃
(i)
x̄ Λx ⊗ P (i)

x (8)

summing over the string x in order to convey within the P
(i)
x all the different combinations

of Fkij acting on the decoding region

P (i)
x

.
=

mi∏
j=1

(
F †
kij

)xj
ni∏

j=mi+1

(
Fkij

)xj

, Λx
.
= (−1)εx̄

nj∏
j=1

(Z⊗D̄)xj ,
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with P̃
(i)
x (obtained by substituting F̃kij for Fkij ) conveying the equivalent information for

the complement regionc. The complement of x is denoted by x̄. εx conveys the parity of

the ordering of the string x, as arises from imposing a standard ordering of the fermionic

operators. Rewriting the encoding operators in the same formalism, one has:

U(tF ) |ψI〉 = (αQ̂0(tF ) + Q̂1(tF )) |ψout〉 , |ψout〉
.
= U(tF ) |ψ0〉 (9)

where

Q̂†µ(tF ) = Z⊗D̄ ⊗ qµ , q†µ
.
=

D∑
i=1

εµi f
†
N−i+1 + ηµi fN−i+1 .

To complete the rewriting, we note that it is always possible to write |ψout〉 =
∑
i |φi〉 ⊗ |ψi〉,

where |φi〉 is any (not normalised) state defined over the complement of the decoding region,

and, via Eq. (5), |ψi〉 is a solution to

qµ |ψ〉 = 0 , µ = 0, 1 . (10)

One can find this state as an eigenstate of the operator q†0q0q
†
1q1 with eigenvalue 1. Provided

D ≥ 2, such eigenstates always exist (the size of the Hilbert space spanned by the solutions of

this equation is 2D−2; hence |ψout〉 can be chosen in a Hilbert space of dimension 2N−2, i.e.,

condition (5) is not too restrictive). In what follows, we shall work with |ψout〉 = |φ〉 ⊗ |ψ〉
for the sake of simplicity, and more general states follow by linearity.

The state at time tF can be rewritten as:

|ψF 〉 =

s∑
i=1

γi

 ∑
x∈{0,1}ni

∣∣φix̄〉⊗ (α
∣∣∣0(i)
x

〉
+ β

∣∣∣1(i)
x

〉
)

 , (11)

with
∣∣∣0(i)
x

〉
.
= P

(i)
x q0 |ψ〉 ,

∣∣∣1(i)
x

〉
.
= P

(i)
x q1 |ψ〉 and

∣∣φix̄〉 .
= P̃

(i)
x̄ ΛxZ

⊗D̄ |φ〉. We shall now

prove that if Eqns. (6), (7) and (10) hold, it is sufficient to impose that

{
q†µ, Fk(i)

j

}
= 0 ⇐⇒

D∑
l=1

β
k

(i)
j ,l

(t)ηµl = 0

{
q†µ, F

†
k

(i)
j

}
= 0 ⇐⇒

D∑
l=1

β∗
k

(i)
j ,l

(t)εµ` = 0 , (12)

for both encoded states (µ = 0, 1), and each of the possible operators Fj (j = 1 . . . ni) from

all possible error strings (i = 1 . . . s), to ensure the existence of least one unitary UD that,

applied at time tF , perfectly recovers the encoded information. Fulfilling these conditions

then defines the coefficients of the encoding operators in Eq. (4), completely specifying our

strategy.

Let us introduce the sets of vectors: Zµ
.
=
{∣∣∣µ(i)

x

〉
: x ∈ {0, 1}ni ∀ i = 1 . . . s

}
, µ = 0, 1,

representing the domain of UD . Conditions (12) imply the crucial property

P (i)
x qµ = (−1)wxqµP

(i)
x , P (i)

x q†µ = (−1)wxq†µP
(i)
x , ∀µ , ∀x , ∀i . (13)

cThe argument t has been omitted for simplicity.
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Consequently, via (7) and (10), no matter what the error, the two logically encoded states

remain unambiguously distinguishable,
〈
0

(i)
x |1(j)

y

〉
= 0 , ∀x ∈ {0, 1}ni , ∀y ∈ {0, 1}nj , ∀i, j.

This is already sufficient to imply the existence of UD, although we give an explicit construc-

tion in the Appendix.

We have just proven that conditions (6), (7), (10) and (12) define a fermionic encod-

ing that protects perfectly from the error, allowing the perfect recovery of the information.

The extension of the above procedure to the case of errors acting at different times {ti} is

straightforward, by defining the sets {F`(ti)} and imposing for each ti conditions (12). Sup-

pose n̄ is the number of distinct sites affected by the error E . There are 4n̄+ 6 conditions for

the 4D parameters defining the qµ’s. The minimal D for which a solution may be found is

D = n̄ + 2 , with 2 ≤ D ≤ N . Under this assumption, conditions (12), involving operators

representing the error-action just on the decoding region, suffice to define fermionic modes

globally unaffected by the error.

In a practical sense, the procedure is worthwhile only if n̄ � N , since this confines the

encoding and decoding procedures to the ends of the chain, preserving the central tenet of

the state transfer protocol. We therefore take the condition n̄ � N as defining the concept

of a low error rate in this scenario. It is important to emphasise, however, that this counting

is in terms of the fermionic description of the error operators. Such counting is favourable

for errors such as Zi or XiXi+1, but there are other local Pauli errors, such as Xi, which are

necessarily described in terms of O(i) fermionic modes, and therefore may not be included in

the low rate condition.

As previously mentioned, the typical assumption that the chain is initialised in some global

initial state |ψ0〉 is not necessary [4, 19, 20]. This is also true of our procedure. Indeed, there

are two contexts in which our results apply equally. Either we can choose what the initial

state should be, as we have so far assumed, or we are given a fixed initial state, in which case

(10) gives two additional constraints on the encoding operators, which can be accommodated

by our choice of D. The advantage of choosing a particular initial state is that it may reduce

the effective number of errors that we have to correct for. The following section provides an

illustration of this idea.

5 Determining the Error

Given a spin-chain affected by an (unknown) error E acting at time t, conditions (12) indicate

what knowledge of the error is needed to apply our encoding procedure. What experiment can

one perform in order to gain this knowledge? One may, of course, use process tomography [21]

to determine E(tF − t), but this is extremely inefficient and would provide a lot of redundant

information. Our description of the error suggests indeed that there must be more efficient

procedures, based on preparing the chain in a suitable set of states and then applying state

tomography just on the decoding region to determine the error modes {Fk}, with little regard

for those acting on the complement region, {F̃k}. We shall now define a probing procedure in

the case |ψ0〉 = |0〉, motivating the existence of such procedures by using the most commonly

assumed fixed initial state.

In the case where the entire chain is initialised in the state |ψ0〉 = |0〉, it is only necessary to

reconstruct a subset of the error modes. Indeed, observe that the encoding operators contain

only creation operators, i.e., ηµi = 0, ∀i = 1, . . . D, hence in (12) the equations {qµ, Fkij} = 0,
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∀i, j are automatically satisfied. Also, note that in E the fermionic operators are ordered

so that the annihilation operators act first. If |ψ0〉 = |0〉, there are no excitations on the

complement region and therefore all error strings with any annihilation operators F̃k on the

complement region just give a zero-contribution to the final state. In other words, from Eq.

(11), for any i,
∣∣φix̄〉 6= 0 if and only if x ∈ C, with C

.
= {x : x̄j = 0 ,∀ j ≥ mi + 1}. These

x correspond to P̃
(i)
x̄ including no F̃k. Furthermore, ∀x ∈ C, since q†µ |0〉

⊗D
belongs to the

1-excitation subspace, only the error modes containing no more that one annihilation operator

Fk acting on the decoding region do not annihilate the encoding state. Namely, P
(i)
x q†µ |ψ〉 6= 0

if and only if ni = mi or ni = mi + 1. Let us define the sets S`
.
= {i : ni −mi = `}. We have

just shown that to protect against the error it is sufficient to protect against all the P
(i)
x such

that i ∈ S`, ` = 0, 1, and x ∈ C. So, it is sufficient that the encoding operators satisfy:

{q†µ, Fkij} = 0,∀j = 1 . . . ni,∀i ∈ S0

{q†µ, Fkij} = 0,∀j = 1 . . . ni,∀i ∈ S1.

Moreover, ∀i ∈ S1, the latter reduces to just

{q†µ, Fkini
} = 0,∀i ∈ S1

because this implies that P
(i)
x q†µ |0〉

⊗D
= 0 , ∀x ∈ C, so imposing the conditions for j =

1 . . .mi becomes unnecessary.

In order to provide the information relevant to these conditions, we will probe the system

with two different initial states, |0〉 = |0〉⊗N and |1〉 = |1〉⊗D |0〉⊗D̄. Note that both of

these are prepared using the same fixed initial state outside the encoding region (in which

we have the ability to prepare any state), and this fixed state is the same one that will be

used for the state transfer protocol. Consider first using |0〉. The only error operators that

do not annihilate the probing state are the P
(i)
x such that i ∈ S0 and x ∈ C, which indeed

do not include any annihilation operators. In order to reconstruct the information about the

corresponding Fk(i)
†, we can therefore post-select on the decoding region being the the one-

excitation subspace, and perform tomography to determine the corresponding density matrix.

The span of states is described by the set V0
.
= {F †ki |0〉

⊗D}, ∀j = 1 . . .mi,∀i ∈ S0. Hence,

state tomography [21] applied just to the decoding region allows one to reconstruct Span{V0},
which is sufficient information to impose {q†µ, Fkij} = 0, ∀j = 1 . . . ni,∀i ∈ S0.

When we use the initial state |1〉, the only non-zero contribution to the final state is given

by all the P
(i)
x ∀x ∈ C, i = 1 . . . s. Hence, the projection of this state on the D− 1 excitation

subspace of the decoding region at time tF includes the action of the P
(i)
x with x ∈ C and

i ∈ Swx+1, i.e., the P
(i)
x where one more Fk operator acts than F †j operators. The span of these

states hence includes those we are interested in, V1
.
= {Fkmi+1 |1〉

⊗D}i∈S1 , but also includes

some others, V ′. This information is sufficient to impose the remaining conditions {q†µ, Fkini
} =

0, ∀i ∈ S1, as desired, together with additional (unnecessary) conditions, which would protect

from the error-components contributing to V
′
. This redundancy is well tolerated, however,

since we assume that the number n̄ of the single error-modes is small compared to N .

Overall, this procedure gives a method to determine the relevant errors using only opera-

tions on the encoding/decoding regions, and requiring a number of measurements that scales

as O(2D), and D ' n̄ � N , thereby achieving a significant efficiency saving compared to

standard process tomography on the whole chain.
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6 Conclusions

We have presented a protocol, incorporating encoding and decoding procedures, to achieve

perfect state transfer in the presence of low rates of systematic errors, whose repeatability

allows one to learn about their structure. This procedure may be thought of as an error

correction optimally tuned to the error. Indeed, it ensures perfect recovery and, in addition,

it has the appealing feature that if the number of sites affected by the error is small compared

to the dimension of the whole chain, the encoding and decoding operators involve just a small

number of qubits, preserving the central feature of the ideal state transfer protocol.

The low rate limit may be relaxed slightly, by extending the procedure to include errors

with a support greater than the upper bound n, by selecting, via the proposed probing proce-

dure, the first n operators Fk having the highest probability of acting on the decoding region

and then encoding against them. This would minimise the probability of an unrecoverable

error.

Our formalism can also be applied in more general scenarios, where the action of the error

is not instantaneous, since it is sufficient to describe the effect of any error just at the output

time, tF . For instance, consider the case of a perturbed Hamiltonian, such as H = H0 + δV ,

where H0 is the perfect state transfer Hamiltonian while δV (t) is a perturbation which acts

non-trivially only for a short time interval δ at time t. In the interaction picture, the dynamics

is determined by H
′
(t) = U(t)δV U†(t). Hence,

E = U(tF − t) exp(−i
∫ δ

0

H
′
(τ)dτ)U†(tF − t) |ψout〉 .

For small δ, exp(−i
∫ δ

0
H
′
(τ)dτ) can be written just like the error (1), affecting, according to

the Lieb-Robinson bound [22], only a small number of sites localised around the region where

the perturbation acts. Therefore, the proposed encoding may equally be applied to recover

perfect state transfer in the presence of this class of perturbations.

In the future, it will be interesting to see how the error correcting capabilities can be

developed further, either by encoding on a single chain or across multiple chains, or by using

different network topologies for communication. It will also be important to understand if

errors such as local bit-flips can be corrected for.
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Appendix A Construction of the Decoding Unitary

To explicitly construct the decoding unitary, one orthogonalises the vectors belonging to each

Za via the Gram-Schmidt procedure:

|ăx,j〉
.
=
∣∣∣a(j)
x

〉
−
∑
y,l

〈
ăy,l|a(j)

x

〉
〈ăy,l|ăy,l〉

|ăy,l〉 (A.1)

The number z of such vectors satisfies z ≤
∑s
j=1 2nj (as some vectors in Za may be linearly

dependent). Then, UD can be defined as:

UD =
∑
w,l

∑
a

(|w, l〉 ⊗ |a〉) 〈ăw,l| ,
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where the sum runs over all the orthogonalised vectors and {|w, h〉} is any set of orthonormal

vectors, defined over all the decoding region but qubit N .

To see that the above is the desired unitary, one rewrites |ψF 〉 in terms of the orthogo-

nalised vectors and uses〈
0̆w,l|0(j)

x

〉
=
〈
1̆w,l|1(j)

x

〉
.
= µ

(x,j)
w,l ∀j, x, i, y ,

which holds because (6), (10) and (13) imply〈
1(i)
x |1(j)

y

〉
=
〈
0(i)
x |0(j)

y

〉
, ∀x,∀y , ∀i, j .

Consequently, UD applied to |ψF 〉, gives:

|ψd〉
.
= (11D̄ ⊗ UD) |ψF 〉 = |Φ〉 ⊗ (α|0〉N + β|1〉N ) ,

where |Φ〉 .=
∑
x∈{0,1}ni

∣∣φix̄〉⊗∑w,l µ
x,i
w,l |w, l〉. Since E is trace-preserving,

Tr1...N−1(|ψd〉 〈ψd|) = |χ〉 〈χ| ,

i.e., the information has been perfectly transferred to the last qubit, as promised.
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