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The SARG04 protocol is one of the most frequently used protocol in commercial plug-
and-play quantum key distribution (QKD) system, where an eavesdropper can com-
pletely control or change the photon number statistics of the QKD source. To ensure
the security of SARG04 protocol in plug-and-play QKD system with an unknown and

untrusted source, the bounds of a few statistical parameters of the source need to be
monitored. An active or a passive source monitor schemes are proposed to verify these
parameters. Furthermore, the practical issues due to statistical fluctuation and detec-
tion noise in the source monitoring process are quantitatively analyzed. Our simulation

results show that the passive scheme can be efficiently applied to plug-and-play system
with SARG04 protocol.
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1 Introduction

Quantum key distribution (QKD) provides a means of sharing a secret key between two

parties (Alice and Bob) in the presence of an eavesdropper (Eve). The single-photon (e.g.

BB84 [1] and SARG04 [2]), entanglement-based (e.g. E91 [3]) and continuous variable (e.g.

GG02 [4]) QKD protocols have proved to be unconditionally secure under ideal (source,

channel, detection and postprocessing) assumptions [5, 6, 7, 8, 9, 10, 11, 12]. In practical

QKD systems, the security assumptions are not completely satisfied and security loopholes

exist [13]. Real implementations of QKD may deviate from the ideal models in security proofs,

such as laser with intensity fluctuation [14, 15], detectors with mismatched detection efficiency

[16, 17, 18, 19, 20, 21], or detection blinding effect [22, 23, 24]. The unconditional security

of practical QKD systems will be compromised, if these loopholes are not included in general

security analysis or no counter measures are made. For instance, the ideal security proof

for the BB84 protocol was given when a single-photon source was assumed [6], while highly

attenuated laser source is often used in real experiment, where the source sometimes produces

multi-photon states. Due to the channel loss and these multi-photon states, Eve can perform

the photon-number-splitting (PNS) attack [25]. Lately, more general security analysis for the

BB84 protocol with weak coherent laser source and semi-realistic models were given [7, 8].
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Furthermore, several methods (such as decoy state [26, 27, 28, 29, 30, 31, 32] and SARG04

[2] protocols) have been proposed to fight against the multi-photon loophole.

The security loophole considered in this paper is the untrusted source problem [33, 34,

35, 36, 37, 38, 39, 40, 41, 42, 43]. In the standard security analysis of some protocols (such

as BB84, decoy state, and SARG04 protocols), the photon number distribution (PND) of the

QKD source is assumed to be fixed and known to Alice and Bob, which is defined as a trusted

source. However, in a one-way QKD system, the intensity fluctuation from the laser source and

the parameter fluctuation from the optical devices cause the assumption of the trusted source

to fail [14, 15, 42]. More seriously in a two-way plug-and-play QKD system, Eve can even

control or change the PND of the QKD source in principle, such that the source is unknown

and untrusted [35]. To solve the untrusted source problem, the statistical characteristics of

the QKD source need to be monitored in real experiment [36]. Many theoretical researches

have been done on the security analysis for BB84 and decoy state protocols with an untrusted

source [35, 37, 38, 39, 40, 41, 43], and the real-time source monitoring for both one-way and

two-way systems have been demonstrated experimentally [36, 37, 42].

As is pointed out in [5], the SARG04 protocol is more robust than BB84 against the

PNS attack, and has been applied in commercial plug-and-play QKD system [44]. However,

this protocol also suffer from the untrusted source problem. In this paper, rigorous security

analysis for the SARG04 protocol with an untrusted source is given, and the lower bound of

secure key rate is devised if the ranges of a few statistical parameters of the untrusted source

are known. Then, an active and a passive schemes are proposed to monitor these parameters.

Furthermore, the practical issues of finite data size and detection noise are quantitatively

analyzed.

2 Security analysis for the SARG04 Protocol with an untrusted source

The security key rate of the SARG04 protocol is [9]

RSARG04
1+2−photon = −Qµf(Eµ)H2(Eµ) +Q1[1−H2(Z1|X1)] +Q2[1−H2(Z2|X2)], (1)

where Qµ and Eµ are the total count rate and quantum bit error rate (QBER) respectively,

Q1(2) is the gain of the 1(2)-photon state, Z1(2) and X1(2) are random variables characterizing

the phase and bit errors for the 1(2)-photon state respectively, f(x) is the error correction

efficiency, and H2(x) = −x log2(x) − (1 − x) log2(1 − x) is the Shannon entropy function.

Suppose pX1(2) denote the probability that bit flip without phase flip occurs on 1(2)-photon

state, pZ1(2) denote the probability that phase flip without bit flip occurs on 1(2)-photon

state, and pY 1(2) denote the probability that both bit flip and phase flip occur on 1(2)-

photon state. Let ei (epi) denote the bit (phase) error rate for i-photon state, and e1(2) =

pX1(2) + pY 1(2), ep1(2) = pZ1(2) + pY 1(2). For one-way postprocessing, it has been proved

that [9],

pX1 = e1 − a, pZ1 =
3

2
e1 − a, pY 1 = a,

pX2 = e2 − b, pZ2 ≤ xe2 + g(x)− b, pY 2 = b, (2)

where g(x) = [3 − 2x + (6 − 6
√
2x + 4x2)1/2]/6, and e1/2 ≤ a ≤ e1, 0 ≤ b ≤ e2. Based

on Eq. (2), one has H2(Z1|X1) ≤ Hmax
2 (Z1|X1) = max

a
{H2(Z1|X1)}, and H2(Z2|X2) ≤
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H2(Z2) ≤ H2(e
opt
p2 ) where eoptp2 = max

x
{xe2 + g(x)}. Then,

RSARG04
1+2−photon ≥ −Qµf(Eµ)H2(Eµ) +Q1[1−Hmax

2 (Z1|X1)] +Q2[1−H2(e
opt
p2 )]. (3)

In order to calculate the final secure key rate, one needs a good estimation of Q1(2) and

e1(2). There are a few methods to approach the target. One is proposed by GLLP [8], where

all the losses and errors are assumed from the 1-photon and 2-photon states, and Q1(2) and

e1(2) are overestimated. Another is the decoy state method [26, 27, 28, 29, 30, 31, 32], which

can accurately estimate the parameters. Thus, we consider the SARG04 protocol combined

with decoy state method [9]. A fundamental assumption in the decoy state protocol with a

trusted source is en = esn = edn and Yn = Y s
n = Y d

n [26], where Yn is the yield of n-photon

state and the superscript s(d) means the signal (decoy) source. The optimal estimation, with

applying infinite decoy states, converges to [9],

Yn = ηn(
edet
2

+
1

4
) +

1

2
(1− ηn)Y0, en = [ηn

edet
2

+
1

4
(1− ηn)Y0]/Yn, (4)

where ηn is the probability for n-photon state to arrive at Bob’s detector, Y0 is the dark count

rate of Bob’s detector, and edet is the probability that a photon hit the erroneous detector

in Bob’s side. Then, one has Q1(2) = P1(2)Y1(2), where P1(2) is the probability for Alice to

send out 1(2)-photon state in signal source, which is fixed and known to Alice and Bob with

a trusted source.

However, the assumptions of esn = edn and Y s
n = Y d

n are broken if the source is untrusted

[35, 34], and the results in Eq. (4) no longer hold. One needs new methods to estimate

Q1(2) and e1(2) for QKD system with an untrusted source. Fortunately, the results in [35, 39]

provide two new ways to estimate the bounds of Q1 and e1 for BB84 protocol combined with

3-intensity decoy state methods. However, in SARG04 protocol, both 1-photon and 2-photon

states have positive contributions to the secure key rate and one needs a further estimation

of Q2 and e2. We find that a modification of the method in [39] will fulfill this task. In

the following, the lower bound of Q2 is calculated for the SARG04 protocol combined with

4-intensity decoy state method in untrusted source scheme.

In a SARG04 protocol combined with 4-intensity decoy state method, Alice randomly

sends four kinds of sources [30]: vacuum, decoy-1, decoy-2 and signal source, with probability

p0, p1, p2, and p′, respectively. In the trusted source scheme, the source is controlled by

Alice, and the quantum states of vacuum, decoy-1, decoy-2 and signal sources are expected

to be ρ0 = |0〉 〈0|, ρ1 =
∑∞

n=0 an |n〉 〈n|, ρ2 =
∑∞

n=0 bn |n〉 〈n| and ρs =
∑∞

n=0 a
′
n |n〉 〈n|,

respectively, where {a′n, an, bn} are fixed and known. In the untrusted source scheme, the

source is controlled and prepared by Eve (as shown in Fig. 1(a)), and {a′n, an, bn} are

unknown, which need to be monitored to estimate final secure key rate.

Suppose Alice sends M optical pulses to Bob totally. In a real experiment, one could

observe the following parameters: Ns, Nd1(2), and N0 (the number of counts caused by signal,

decoy-1(2), and vacuum sources, respectively). Then the count rates for signal, decoy-1(2),

and vacuum sources are Qµ = Ns/p
′M , Qd1(2) = Nd1(2)/p1(2)M , and Y0 = N0/p0M , respec-

tively. Denote the lower (upper) bound of {a′n, an, bn} as {a′n
L(U)

, a
L(U)
n , b

L(U)
n }, which

can be experimentally estimated by source monitor (see Section 3 for details) [43]. One can
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rigorously prove that (see Appendix A for details)

Q1 ≥ a′2
L
Qµ − aU2 Qd1 − (a′2

L
aU0 − a′0

L
aU2 )Y0

a′2
LaU1 − a′1

LaU2
, (5)

Q2 ≥
a′3

L
Qd1 − aU3 Qµ − (a′3

L
aU0 − a′0

L
aU3 )Y0 − (a′3

L
aU1 − a′1

L
aU3 )

Qd2−bL
0
Y0

bL
1

c(a′3
LaU2 − a′2

LaU3 )
, (6)

under conditions
a′k

L

aUk
≥ a′3

L

aU3
≥ a′2

L

aU2
≥ a′1

L

aU1
, (for all k ≥ 4), (7)

c = 1 +
aU3 a

′
1
L − a′3

L
aU1

a′3
LaU2 − aU3 a

′
2
L

bL2
bL1

> 0. (8)

As in [9], we will compare the following two cases in the paper. When one consider the

contribution from only 1-photon state for the SARG04 protocol, the final secure key rate is

RSARG04
1−photon ≥ −Qµf(Eµ)H2(Eµ) +Q1[1−Hmax

2 (Z1|X1)]. (9)

The parameters {a′0
L
, aU0 , a

′
1
L
, aU1 , a

′
2
L
, aU2 } need to be verified to estimate the gain of 1-

photon state in Eq. (5), after which one has e1 ≤ EµQµ/Q1. Then one can calculate the secure

key rate as Eq. (9). This case is defined as Case-1. When one consider the contributions

from both 1-photon and 2-photon states, the parameters {a′0
L
, bL0 , a

U
0 , a

′
1
L
, bL1 , a

U
1 , a

′
2
L
,

bL2 , a
U
2 , a

′
3
L
, aU3 } need to be verified to estimate the gains of 1-photon and 2-photon states

as in Eqs. (5) and (6). Then one can numerically choose the optimal values e1 and e2
under constrain QµEµ ≥ Q1e1 + Q2e2 to lower bound the secure key rate in Eq. (3). This

case is defined as Case-2. Note that the conditions in Eqs. (7) and (8) need to be verified

experimentally. In the following, we propose an active and a passive source monitors to

estimate these statistical parameters experimentally.

3 Active and Passive Source Monitors

The schematic diagram of a QKD system with an untrusted source is shown in Fig. 1(a), where

the source is assumed to be completely controlled and prepared by Eve [35]. A source monitor

is used to verify the statistical characteristics of the untrusted source in Alice’s side. At least

two schemes can realize the source monitor: an active scheme (shown in Fig. 1(b)) [35] and

a passive scheme (shown in Fig. 1(c)) [36, 37, 38]. Suppose that P1(n) is the PND of the

untrusted source at P1 (Pi means position i in Fig. 1), and P3(m, η) is the PND at P3 given

that the attenuation coefficient of the variable optical attenuator (VOA) is η. Then P3(m, η)

is a Bernoulli trasformation of P1(n) [36],

P3(m, η) =
∑∞

n=m
P1(n)

(

n
m

)

η′m(1− η′)
n−m

, (10)

where η′ = η for active scheme and η′ = η × ηBS for passive scheme. Due to the definition of

{a′m, am, bm}, one has

a′m = P3(m, ηs), am = P3(m, ηd1), bm = P3(m, ηd2). (11)



634 The security of SARG04 protocol in plug and play QKD system with an untrusted source

Fig. 1. (Color online) (a) Schematic diagram of the QKD system with an untrusted source. The

untrusted source prepared at P1 by Eve, where Pi means position i (i = 1, 2, 3, 4, 5), passes through
an optical filter, a phase randomizer (PR), an encoder and a variable optical attenuator (VOA)
with attenuation coefficient η = ηs, ηd1, ηd2, and 0, for the signal, decoy-1, decoy-2, and vacuum
source, respectively. Then, the source is sent into a source monitor at P2 to estimate the statistical

parameters for security analysis, and sent out of Alice’s side at P3. (b) Schematic diagram of an
active source monitor. A high-speed active optical-switch (OS) randomly sends one half of the
input optical pulses to a photon-number-resolving (PNR) detector at P4 for parameter estimation,

and sends the other half to Bob for key generation. (c) Schematic diagram of a passive source
monitor. The optical pulses are passively separated into two parts by a beam-splitter (BS) with
transmittance ηBS : one goes to a PNR detector with efficiency ηD at P5, which is modeled by an
attenuator with efficiency ηD combined with an ideal PNR detector, and the other is sent out of

the source monitor.

A full security analysis procedure can be divided into four steps. Step1: Estimate the

bounded statistical parameters of the untrusted source based on the measurement data of

the monitor. Step2: Verify the conditions shown in Eqs. (7) and (8). Step3: Calculate the

lower bound of Q1 and Q2 based on Eqs. (5) and (6). Step4: Estimate the secure key rate.

3.1 Active Source Monitor

In the active source monitor shown in Fig. 1(b), one half of the optical pulses are randomly

sent to a photon-number-resolving (PNR) detector for parameters estimation, and the other

half are sent to Bob for key generation [35]. In this subsection, the PNR detector is assumed

to be noiseless and the detection efficiency is 1. Suppose D(m, η) is the probability that m

photoelectrons are recorded by the PNR detector given that the attenuation coefficient of the

VOA is η, one has

D(m, η) = P3(m, η), (m = 0, 1, 2, 3, · · ·). (12)

Combining the results in Eqs. (11) and (12),

a′m = D(m, ηs), am = D(m, ηd1), bm = D(m, ηd2). (13)

Clearly, one can bound the parameters {a′m, am, bm} based on the recorded data D(m, η).

Then one can verify the conditions in Eqs. (7) and (8), and calculate the secure key rate.
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3.2 Passive Source Monitor

As pointed out in [36, 37], it is challenging and inefficient to implement the active scheme.

Then, a practical passive scheme is proposed and tested experimentally [36]. In the passive

source monitor shown in Fig. 1(c), optical pulses are separated into two paths by a beam

splitter (BS) with transmittance ηBS : one goes to a PNR detector with efficiency ηD, which

is modeled by a BS with transmittance ηD and a perfect PNR detector, and the other is sent

out of Alice’s side. If the PNR detector is noiseless, the detected photoelectron distribution

F (m, η) at P5 will be the same to the PND P5(m, η) at P5,

F (m, η) = P5(m, η). (14)

The PND at P5 is also a Bernoulli trasformation of that at P1,

P5(m, η) =
∑∞

n=m
P1(n)

(

n
m

)

[η(1− ηBS)ηD]m[1− η(1− ηBS)ηD]
n−m

. (15)

For simplification, one set

(1− ηBS)ηD = ηBS . (16)

Combining the results in Eqs. (10), (15) and (16), one has

P5(m, η) = P3(m, η). (17)

Based on Eqs. (11), (14) and (17), one can bound the parameters {a′m, am, bm} with the

knowledge of F (m, η). In a real system, one needs to consider the practical imperfections

of the source monitor [37, 38, 43]. In the following, the effects of statistical fluctuation and

detection noise are quantitatively analyzed.

3.2.1 Infinite Data Size and Noiseless Source Monitor

Suppose that M is the total number of optical pulses sent from Alice to Bob, while p′M(=

Ms), p1M(= M1), and p2M = (M2) is the number of signal, decoy-1, and decoy-2 pulses,

correspondingly. Let jsm, jd1m , and jd2m denote the number of detected signal, decoy-1 and

decoy-2 pulses at P5 given the PNR detector records m photoelectrons. Using the random

sampling theory [46], each F (m, ηs) ∈ [jsm/Ms − ε′, jsm/Ms + ε′] with a confidence level 1 −
2 exp(−Msε

′2/2) for signal pulses, and each F (m, η1(2)) ∈ [j
d1(2)
m /M1(2)− ε1(2), j

d1(2)
m /M1(2)+

ε1(2)] with a confidence level 1−2 exp(−M1(2)ε
2
1(2)/2) for decoy-1(2) pulses can be estimated.

Step1. When the data size M → ∞, one has a′m
L
= a′m

U
= F (m, ηs) = jsm/Ms, aLm =

aUm = F (m, ηd1) = jd1m /M1, bLm = bUm = F (m, ηd2) = jd2m /M2.

Step2. The conditions in Eqs. (7) and (8) turn to

F (k, ηs)

F (k, ηd1)
≥ F (3, ηs)

F (3, ηd1)
≥ F (2, ηs)

F (2, ηd1)
≥ F (1, ηs)

F (1, ηd1)
(for all k ≥ 4),

1 +
F (3, ηd1)F (1, ηs)− F (1, ηd1)F (3, ηs)

F (2, ηd1)F (3, ηs)− F (3, ηd1)F (2, ηs)

F (2, ηd2)

F (2, ηd1)
> 0.

Step3. In case-1, the gain of 1-photon state is calculated by Eq. (5) based on the recorded

data F (m, η), and all the errors are assumed from 1-photon state e1 = EµQµ/Q1. In case-2,
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Fig. 2. (Color online) Simulation results of the SARG04 protocol for the trusted source, compared
with the untrusted source in both case-1 and case-2 when the data size is infinite. In the trusted

source case, infinite decoy state method is used to estimate the values of Q1, Q2, e1, e2 as in
Eq. (4). The top (red) line is the simulation results for the trusted source, where one considers the
contribution from both 1-photon and 2-photon states. The second (yellow) line is the simulation

results for the untrusted source in case-2. The third (blue) line is the simulation results for the
trusted source, where one considers the contribution from only 1-photon state. The bottom (green)
line is the simulation results for the untrusted source in case-1. In all the simulations, the PND
for both trusted and untrusted source is assumed to be of Poissonian statistics.

the gains of 1-photon and 2-photon states are calculated by Eqs. (5) and (6) based on the

recorded data F (m, η), and e1(2) are chosen numerically to lower bound the secure key rate.

Step4. Calculate the final secure key rate.

For testing the efficiency of the passive scheme, the simulation results for the trusted

source are compared with that for the untrusted source (shown in Fig. 2), where the data size

is assumed to be infinite. The PND for the trusted and the untrusted source is assumed to be

of Poissonian statistics to perform simulations. The error correction efficiency f(Eµ) = 1.22.

The transmittance ηBS of the BS is 0.13 and the detection efficiency ηD of the PNR detector

is 0.15. The other experimental parameters are cited from the GYS experiment [45] as shown

in Table 3.2.1, where ηBob is the efficiency of Bob’s detection, e0 is the probability that a dark

count hit the erroneous detector in Bob’s side. Suppose the average photon number (APN) for

signal, decoy-1 and decoy-2 sources are µ, v1 and v2, respectively. The conditions in Eqs. (7)

and (8) turn to e−µµk

e−v1v1
k ≥ e−µµ3

e−v1v1
3 ≥ e−µµ2

e−v1v1
2 ≥ e−µµ

e−v1v1

(for all k ≥ 4), and 1− v2

v1

v1+µ
µ > 0. As

shown in Fig. 2, the performance of the untrusted source based on the passive source monitor

is very close to that of the trusted source, and the 2-photon state makes positive contribution

to the secure key rate.

Table 1. The simulation parameters for Figs. 2-5.

ηD ηBS ηBob α Y0 edet e0
0.15 0.13 0.045 0.21 1.7× 10−6 3.3% 0.5
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Fig. 3. (Color online) Simulation results for the SARG04 protocol with an untrusted source in case-
1 and case-2 with data size M , based on the passive source monitor. The PND of the untrusted
source is assumed to be Poissonian. The other experimental parameters are cited from Table

3.2.1. (a) Simulation results in case-2 with data size M = ∞, 1012, 1011, 1010, 109, respectively.
(b) Simulation results in case-1 with data size M = ∞, 1012, 1011, 1010, 109, respectively. The
confidence level is set to be 1− 10−6.

3.2.2 Finite Data Size and Noiseless Source Monitor

Suppose that M is finite and jsm, jd1m , and jd2m denote the number of detected signal, decoy-1

and decoy-2 pulses at P5 given the PNR detector records m photoelectrons.

Step1. We prove that, to estimate Q1(2) and verify the conditions in Eqs. (7) and (8) with

finite data size, one only needs to bound the parameters {a′m
L
, aUm, bLn} for m = 0, 1, · · · , J

and n = 0, 1, 2 (see Appendix B). Simultaneously, F (m, ηs) ∈ [jsm/Ms − ε′, jsm/Ms + ε′],

F (m, η1) ∈ [jd1m /M1 − ε1, j
d1
m /M1 + ε1] for m = 0, 1, 2, · · · , J , and F (n, η2) ∈ [jd2n /M2 −

ε2, j
d2
n /M2 + ε2] for n = 0, 1, 2 are approximately estimated with a confidence level α =

1−2(J+1) exp(−Msε
′2/2)−2(J+1) exp(−M1ε1

2/2)−6 exp(−M2ε2
2/2). From Eqs. (11), (14)

and (17), one gets

a′m
L
=

ksm
Ms

− ε′, aUm =
kd1m
M1

+ ε1, bLn =
kd2n
M2

− ε2, (18)

for m = 0, 1, 2, · · · , J and n = 0, 1, 2 with confidence level α.

Step2. It is challenging to verify directly the condition in Eq. (7) with finite data size: a) In

hardware, the PNR detector is required to discriminate the photon number n = 0, 1, · · · ,∞; b)
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Fig. 4. (Color online) Comparison between case-1 and case-2 for the SARG04 protocol with an
untrusted source: (a) with data size M = 1012; (b) with data size M = 1011. The PND of the
untrusted source is assumed to be Poissonian. The other experimental parameters are cited from
Table 3.2.1. The confidence level is set to be 1− 10−6.

When the photoelectron number m is large enough, one always gets ksm = kd1m = 0. One needs

a reasonable cutoff value of m. Suppose jd1m = 0 for all m > J while jd1J > 0. To lower bound

the gains of Q1 and Q2 with finite data size, one can replace the condition in Eq. (7) as

a′k
L

aUk
≥ a′3

L

aU3
≥ a′2

L

aU2
≥ a′1

L

aU1
, (for all 4 ≤ k ≤ J), (19)

where the PNR detector is only required to discriminate photon number n = 0, 1, · · · , J (see

Appendix B for details). The condition in Eq. (8) turns to

1 +
F (3, ηd1)F (1, ηs)− F (1, ηd1)F (3, ηs)

F (2, ηd1)F (3, ηs)− F (3, ηd1)F (2, ηs)

F (2, ηd2)

F (2, ηd1)
> 0. (20)

Step3. If the conditions in step2 are satisfied, one can lower bound the parameters Q1(2).

Step4. Calculate the secure key rate for case-1 and case-2 with Eqs. (9) and (3).

For testing the effects of finite data size, we choose an untrusted source of Poissonian

statistics to perform simulations in both case-1 and case-2. The error correction efficiency

f(Eµ) are chosen to be 1.22. The other experimental parameters are cited from Table 3.2.1.

Simulation results for case-2 and case-1 are shown in Fig. 3(a) and (b), and the data size are
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set to be M = ∞, 1012, 1011, 1010 and 109, respectively. To compare the two cases more

clearly, Fig. 4 shows the simulation results for case-1 and case-2 with M = 1012 and 1011,

respectively. In all the above simulations, the confidence level is set to be α = 1 − 10−6.

The simulation results show that statistical fluctuation has negative effect on performance

of the QKD system. When the data size is large enough, the 2-photon state has positive

contribution to the secure key rate.
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1−photon

1+2−photon

Fig. 5. (Color online) Simulation results for the SARG04 protocol with an untrusted source based
on the passive scheme: (a) with finite data size M = 1012, and the average dark count rate of the

Poissonian detection noise λ = 0, 10−6, 0.5, and 1, respectively, in case-2; (b) with finite data size
M = 1012, and the average dark count rate of the Poissonian detection noise λ = 0, 10−6, 1, 1.5,
and 2, respectively, in case-1. The PND of the untrusted source and the distribution of detection

noise are assumed to be Poissonian. The other experimental parameters are cited from Table 3.2.1.
The confidence level is 1− 10−6.

3.2.3 Finite Data Size and Source Monitor with Random Additive Detection Noise

Given a PNR detector with an independent additive detection noise y, the detected photo-

electron number m′, and the photon number m at P5 satisfy m′ = m+ y. One can calculate

the lower and upper bound of PND P5(m, η) at P5 based on the photoelectron distribution

F (m, η) with a high confidence level, given that the distribution of the detection noise N(y)

is known by Alice.

The dark count is the main kind of detection noise for the PNR detector such as time

multiplexing detector (TMD) [48, 49], transition-edge sensor (TES) [50], or a threshold
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detector together with a VOA [51]. In case of independent Poisson statistics noise, the

probability of detecting m′ photoelectrons is F (m′, η) =
∑m′

d=0 N(y = m′ − d)P5(d, η) where

N(y = d) = e−λλd/d! is the probability that d dark counts occur in the PNR detector, and λ

is the average dark count rate. Then, one has








P5(0, η)
P5(1, η)
P5(2, η)
P5(3, η)









=









F (0, η) 0 0 0
F (1, η) F (0, η) 0 0
F (2, η) F (1, η) F (0, η) 0
F (3, η) F (2, η) F (1, η) F (0, η)

















eλ

−λeλ

λ2eλ/2
−λ3eλ/6









. (21)

Step1. Using random sampling theory [46], simultaneously, F (m, ηs) ∈ [jsm/Ms−ε′, jsm/Ms+

ε′], F (m, ηd1) ∈ [jd1m /M1 − ε1, j
d1
m /M1 + ε1], and F (n, ηd2) ∈ [jd2n /M2 − ε2, j

d2
n /M2 + ε2]

for m = 0, 1, 2, · · · , J and n = 0, 1, 2 are estimated with a confidence level 1 − 2(J +

1) exp(−Msε
′2/2)− 2(J + 1) exp(−M1ε1

2/2)− 6 exp(−M2ε2
2/2). Then, one yields

a0 ≤ eλ(
jd1m=0

M1
+ ε′),

b0 ≥ eλ(
jd2m=0

M2
− ε2),

a′0 ≥ eλ(
jsm=0

Ms
− ε′),

a1 ≤ eλ(
jd1m=1

M1
+ ε1)− λeλ(

jd1m=0

M1
− ε1),

b1 ≥ eλ(
jd2m=1

M2
− ε2)− λeλ(

jd2m=0

M2
+ ε2),

a′1 ≥ eλ(
jsm=1

Ms
− ε′)− λeλ(

jsm=0

Ms
+ ε′),

a2 ≤ eλ(
jd1m=2

M1
+ ε1)− λeλ(

jd1m=1

M1
− ε1) +

λ2

2
eλ(

jd1m=0

M1
+ ε1),

b2 ≥ eλ(
jd2m=2

M2
− ε2)− λeλ(

jd2m=1

M2
+ ε2) +

λ2

2
eλ(

jd2m=0

M2
− ε2),

a′2 ≥ eλ(
jsm=2

Ms
− ε′)− λeλ(

jsm=1

Ms
+ ε′) +

λ2

2
eλ(

jsm=0

Ms
− ε′),

a3 ≤ eλ(
jd1m=3

M1
+ ε1)− λeλ(

jd1m=2

M1
− ε1) +

λ2

2
eλ(

jd1m=1

M1
+ ε1)

−λ2

2
eλ(

jd1m=0

M1
− ε1),

a′3 ≥ eλ(
jsm=3

Ms
− ε′)− λeλ(

jsm=2

Ms
+ ε′) +

λ2

2
eλ(

jsm=1

Ms
− ε′)

−λ2

2
eλ(

jsm=0

Ms
+ ε′).

Our analysis is not limited to the Poissonian noise case. Generally, when the random-positive

detection noise y with distribution N(y) is known to Alice, one can still use the same method

in [43] to estimate the parameters {a′0
L
, bL0 , a

U
0 , a

′
1
L
, bL1 , a

U
1 , a

′
2
L
, bL2 , a

U
2 , a

′
3
L
, aU3 } with a

certain confidence level.
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Step2. Using the same method, one can estimate the bound values {a′k
L
, aUk } for 4 ≤

k ≤ J , and verify the conditions in Eqs. (8) and (19). Since the expressions of {a′k
L
, aUk } for

4 ≤ k ≤ J are much complex and trivial, we assume the above conditions are satisfied as in

[36, 40].

Step3. Lower bound the parameters Q1 and Q2.

Step4. Calculate the secure key rate for case-1 and case-2 with Eqs. (9) and (3).

For testing the effect of dark count noise, the simulation results for case-2 are shown in

Fig. 5(a), with finite data size M = 1012 and average dark count rate λ = 0, 10−6, 0.5, and

1, respectively. The simulation results for case-1 are shown in Fig. 5(b) with M = 1012 and

λ = 0, 10−6, 1, 1.5 and 2, respectively. The confidence level is set to be α = 1− 10−6.

4 Summary and Conclusion Remark

In summary, we have shown the unconditional security of the SARG04 protocol with an

untrusted source, given that the bound of a few key statistical parameters of the untrusted

source are known. Furthermore, an active and a passive source monitors are proposed to

verify these parameters experimentally. Finally, the effects of the practical imperfections in

the passive source monitor are quantitatively analyzed, such as finite data size and additive

detection noise. Asymptotically, the performance of the QKD system with an untrusted

source combined with passive source monitor is very close to that of a trusted source. Our

results can be directly applied to plug-and-play QKD system with SARG04 protocol.
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The security of practical quantum key distribution, Rev. Mod. Phys., Vol. 81, p. 1301.
6. P. W. Shor and J. Preskill (2000), Simple Proof of Security of the BB84 Quantum Key Distribution

Protocol, Phys. Rev. Lett., Vol. 85, p. 441.
7. H. Inamori, N. Lütkenhaus, and D. Mayers (2007), Unconditional security of practical quantum

key distribution, Eur. Phys. J. D, Vol. 41, p. 599.
8. D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill (2004), Security of quantum key distri-

bution with imperfect devices, Quantum Inf. Comput., Vol. 4, p. 325.
9. C. H. F. Fred, K. Tamaki, and H. K. Lo (2006), Performance of two quantum-key-distribution

protocols, Phys. Rev. A, Vol. 73, p. 012337.



642 The security of SARG04 protocol in plug and play QKD system with an untrusted source

10. A. Acin, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani (2007), Device-Independent

Security of Quantum Cryptography against Collective Attacks, Phys. Rev. Lett., Vol. 98, p. 230501.
11. R. Garcia-Patron and N. J. Cerf (2006), Unconditional Optimality of Gaussian Attacks against

Continuous-Variable Quantum Key Distribution, Phys. Rev. Lett., Vol. 97, p. 190503.
12. M. Navascues, F. Grosshans and A. Acin (2006), Security Bounds for Continuous Variables Quan-

tum Key Distribution, Phys. Rev. Lett., Vol. 94, p. 020505.
13. H. K. Lo and Y. Zhao (2009), Quantum Cryptography, Encyclopedia of Complexity and Systems

Science (Springer New York), Vol. 8, p. 7265.
14. X. B. Wang (2007), Decoy-state quantum key distribution with large random errors of light inten-

sity, Phys. Rev. A, Vol. 75, p. 052301.
15. X. B. Wang, C. Z. Peng, and J. W. Pan (2007), Simple protocol for secure decoy-state quantum

key distribution with a loosely controlled source, Appl. Phys. Lett., Vol. 90, p. 031110.
16. V. Makarov, A. Anisimov, and J. Skaar (2006), Effects of detector efficiency mismatch on security

of quantum cryptosystems, Phys. Rev. A, Vol. 74, p. 022313.
17. V. Makarov and J. Skaar (2008), Fakes states attack using detector efficiency mismatch on

SARG04, Phase-Time, DPSK, and Ekert protocols, Quantum Inf. Comput., Vol. 8, p. 0622.
18. B. Qi, C. H. F. Fung, H. K. Lo and X. F. Ma (2007), Time-shift attack in practical quantum

cryptosystems, Quantum Inf. Comput., Vol. 7, p.0073.
19. Y. Zhao, C. H. F. Fung, B. Qi, C. Chen and H. K. Lo (2008), Quantum hacking: Experimental

demonstration of time-shift attack against practical quantum-key-distribution systems, Phys. Rev.
A, Vol. 78, p. 042333.

20. C. H. F. Fung, K. Tamaki, B. Qi, H. K. Lo and X. Ma (2009), Security proof of quantum key

distribution with detection efficiency mismatch, Quantum Inf. Comput., Vol. 9, p. 0131.
21. L. Lydersen and J. Skaar (2010),Security of quantum key distribution with bit and basis dependent

detector flaws, Quantum Inf. Comput., Vol. 10, p. 0060.
22. V. Makarov (2009), Controlling passively quenched single photon detectors by bright light, New J.

Phys., Vol. 11, p. 065003.
23. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar and V. Makarov (2010), Hacking

commercial quantum cryptography by tailored bright illumination, Nat. Photonics, Vol. 4, p. 686.
24. I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov (2011), Full-field

implementation of a perfect eavesdropper on a quantum cryptography system, Nat. Comm., Vol.
2, p. 349.

25. N. Lütkenhaus (2000), Security against individual attacks for realistic quantum key distribution,
Phys. Rev. A, Vol. 61, p. 052304.

26. W. Y. Hwang (2003), Quantum Key Distribution with High Loss: Toward Global Secure Commu-

nication, Phys. Rev. Lett., Vol. 91, p. 057901.
27. H. K. Lo (2004), Quantum Key Distribution with Vacua or Dim Pulses as Decoy States, in Pro-

ceedings of the International Symposium on Information Theory (ISIT) (IEEE Press, Chicago),
p. 137.

28. X. B. Wang (2005), Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptog-

raphy , Phys. Rev. Lett., Vol. 94, p. 230503.
29. H. K. Lo, X. Ma, and K. Chen (2005), Decoy State Quantum Key Distribution, Phys. Rev. Lett.,

Vol. 94, p. 230504.
30. X. B. Wang (2005), Decoy-state protocol for quantum cryptography with four different intensities

of coherent light , Phys. Rev. A, Vol. 72, p. 012322.
31. X. Ma, B. Qi, Y. Zhao, and H. K. Lo (2005), Practical decoy state for quantum key distribution,

Phys. Rev. A, Vol. 72, p. 012326.
32. W. Mauerer and C. Silberhorn (2007), Quantum key distribution with passive decoy state selection,

Phys. Rev. A, Vol. 75, p. 050305.
33. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy (2006), Trojan-horse attacks on quantum-

key-distribution systems, Phys. Rev. A, Vol. 73, p. 022320.
34. X. B. Wang, T. Hiroshima, A. Tomita, and M. Hayashi (2007), Quantum information with Gaus-



B. Xu, X. Peng, and H. Guo 643

sian states , Phys. Rep., Vol. 448, p. 1.
35. Y. Zhao, B. Qi, and H. K. Lo (2008), Quantum key distribution with an unknown and untrusted

source, Phys. Rev. A, Vol. 77, p. 052327.
36. X. Peng, H. Jiang, B. Xu, X. Ma, and H. Guo (2008), Experimental quantum-key distribution with

an untrusted source, Opt. Lett., Vol. 33, p. 2077.
37. Y. Zhao, B. Qi, H. K. Lo, and L. Qian (2010), Security analysis of an untrusted source for quantum

key distribution: passive approach, New J. Phys., Vol. 12, p. 023024.
38. X. Peng, B. Xu, and H. Guo (2010), Passive-scheme analysis for solving the untrusted source

problem in quantum key distribution, Phys. Rev. A, Vol. 81, p. 042320.
39. X. B. Wang, C. Z. Peng, J. Zhang, L. Yang and J. W. Pan (2008), General theory of decoy-state

quantum cryptography with source errors, Phys. Rev. A, Vol. 77, p. 042311.
40. X. B. Wang, L. Yang, C. Z. Peng, and J. W. Pan (2009), Decoy-state quantum key distribution

with both source errors and statistical fluctuations, New J. Phys., Vol. 11, p. 075006.
41. J. Z. Hu and X. B. Wang (2010), Reexamination of the decoy-state quantum key distribution with

an unstable source , Phys. Rev. A, Vol. 82, p. 012331.
42. F. X. Xu, Y. Zhang, Z. Zhou, W. Chen, Z. F. Han, and G. C. Guo (2009), it Experimental

demonstration of counteracting imperfect sources in a practical one-way quantum-key-distribution
system, Phys. Rev. A, Vol. 80, p. 062309.

43. B. Xu, X. Peng, and H. Guo (2010), it Passive scheme with a photon-number-resolving detector
for monitoring the untrusted source in a plug-and-play quantum-key-distribution system, Phys.
Rev. A, Vol. 82, p. 042301.

44. www.idquantique.com
45. C. Gobby, Z. L. Yuan, and A. J. Shields (2004), Quantum key distribution over 122 km of standard

telecom fiber, Appl. Phys. Lett., Vol. 84, p. 3762.
46. J. V. Uspensky (1937), Introduction to mathematical probability, McGraw-Hill (New York).
47. C. J. Clopper and E. S. Pearson (1934), The use of confidence or fiducial limits illustrated in the

case of the binomial, Biometrika Vol. 26, p. 404.
48. D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, and I. A. Walmsley (2003), Fiber-assisted

detection with photon number resolution, Opt. Lett., Vol. 28, p. 2387.
49. D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C. Jacobs, T. B.

Pittman, and J. D. Franson (2004), Photon-number-resolving detection using time-multiplexing, J.
Mod. Opt., Vol. 51, p. 1499.

50. D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam (2005), Noise-free high-efficiency photon-

number-resolving detectors , Phys. Rev. A, Vol. 71, p. 061803.
51. G. Zambra, A. Andreoni, M. Bondani, M. Gramegna, M. Genovese, G. Brida, A. Rossi, and M.

G. A. Paris (2005), Experimental Reconstruction of Photon Statistics without Photon Counting,
Phys. Rev. Lett., Vol. 95, p. 063602.

Appendix A

Suppose Alice sends M pulses to Bob in the whole quantum process. At any time i, where

i ∈ {1, 2, · · · ,M}, Alice randomly produces vacuum (|0〉 〈0|), decoy-1 (ρ1i =
∑∞

n=0 ani |n〉 〈n|),
decoy-2 (ρ2i =

∑∞
n=0 bni |n〉 〈n|), and signal (ρsi =

∑∞
n=0 a

′
ni |n〉 〈n|) source with the proba-

bility p0, p1, p2, and p′, respectively, where {ani, bni, a′ni} are controlled by Eve.

Following the methods in [39, 40], some definitions are necessary for further analysis.

• Definition 1. In the protocol, Alice sends M pulses, and Bob gets M observations. If

Bob’s detector click at time i, we say that “the ith pulse from Alice has caused a count”.

• Definition 2. Sets C and cn: Set C contains any pulse that has caused a count; set cn
contains any n-photon pulse that has caused a count.
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• Definition 3. Denote the lower (upper) bound of {a′ni, ani, bni} as {a′n
L(U)

, a
L(U)
n , b

L(U)
n }

for i = 1, 2, · · · ,M , which can be experimentally estimated by the source monitor in

Fig. 1 [43].

Define

d0i =
1

p0 + p1a0i + p2b0i + p′a′0i
, dki =

1

p1aki + p2bki + p′a′ki
(k ≥ 1), (A.1)

and

Dk =
∑

i∈ck

dki. (A.2)

If the ith pulse contains zero photon, the probability that it comes from the vacuum source

is Pvi|0 = p0d0i. Therefore, the number of counts caused by vacuum source is

N0 =
∑

i∈c0

pvi|0 =
∑

i∈c0

p0d0i. (A.3)

Similarly, if the ith pulse contains zero photon, the probability that it comes from the decoy-

1, decoy-2 and signal source are P1i|0 = p1a0id0i, P2i|0 = p2b0id0i, and Psi|0 = p′a′0id0i,

respectively. Then the number of counts caused by zero photon state in decoy-1, decoy-2 and

signal source are

n0d1 =
∑

i∈c0

p1a0id0i, n0d2 =
∑

i∈c0

p2b0id0i, n0s =
∑

i∈c0

p′a′0id0i, (A.4)

respectively. It is clear that

nU
0d1 =

p1a
U
0 N0

p0
≥ n0d1 ≥ p1a

L
0N0

p0
= nL

0d1,

nU
0d2 =

p2b
U
0 N0

p0
≥ n0d2 ≥ p2b

L
0N0

p0
= nL

0d2, (A.5)

nU
0s =

p′a′0
U
N0

p0
≥ n0s ≥ p′a′0

L
N0

p0
= nL

0s.

The number of counts caused by decoy-1(2) and signal sources are

Nd1 = n0d1 + p1
∑

i∈c1

a1id1i + p1
∑

i∈c2

a2id2i + p1

∞
∑

k=3

∑

i∈ck

akidki,

Nd2 = n0d2 + p2
∑

i∈c1

b1id1i + p2
∑

i∈c2

b2id2i + p2

∞
∑

k=3

∑

i∈ck

bkidki, (A.6)

Ns = n0s + p′
∑

i∈c1

a′1id1i + p′
∑

i∈c2

a′2id2i + p′
∞
∑

k=3

∑

i∈ck

a′kidki,

which can be rewritten as

Nd1 = n0d1 + p1a
U
1 D1 + p1a

U
2 D2 + p1Λ1 − ξ1, (A.7)

Nd2 = n0d2 + p2b
L
1D1 + p2b

L
2D2 + p2Λ2 + ξ2, (A.8)

Ns = n0s + p′a′1
L
D1 + p′a′2

L
D2 + p′Λ′ + ξ3, (A.9)
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where Λ1 =
∑∞

k=3 a
U
k Dk, Λ2 =

∑∞
k=3 b

L
kDk, Λ′ =

∑∞
k=3 a

′
k
L
Dk, and ξ1 ≥ 0, ξ2 ≥ 0, ξ3 ≥ 0.

According to the definition, we have

a′2
L
D2 + Λ′ =

a′2
L

aU2
(aUz D2 + Λ1) + ξ4 (A.10)

and

ξ4 = Λ′ − a′2
L

aU2
Λ1. (A.11)

Further we assume
a′k

L

aUk
≥ a′2

L

aU2
≥ a′1

L

aU1
, (for all k ≥ 3), (A.12)

which leads to ξ4 ≥ 0. Then, one can rewrite the Eqs. (A.7) and (A.9) as

Nd1 = n0d1 + p1a
U
1 D1 + p1(a

U
2 D2 + Λ1)− ξ1, (A.13)

Ns = n0s + p′a′1
L
D1 + p′

a′2
L

aU2
(aU2 D2 + Λ1) + ξ3 + p′ξ4. (A.14)

Combining the Eqs. (A.13) and (A.14), one can lower bound the D1 as

D1 ≥ DL
1 =

a′

2

L

p1

Nd1 − aU
2

p′ NS − a′

2

L

p1

nU
0d1 +

aU
2

p′
nL
0s

a′2
LaU1 − aU2 a

′
1
L

. (A.15)

Further, one can lower bound the gain of 1-photon state in signal source, Q1 = p′
∑

i∈c1

a′1id1i
1

p′M ≥
a′

1

LDL
1

M as shown in Eq. (5). We can lower bound the Q2 in a similar way. Define

ξ = Λ′ − a′3
L
/aU3 Λ1, (A.16)

and assume
a′k

L

aUk
≥ a′3

L

aU3
≥ a′2

L

aU2
≥ a′1

L

aU1
, (for all k ≥ 4) (A.17)

which leads to ξ ≥ 0, one has

Ns = n0s + p′a′1
L
D1 + p′a′2

L
D2 + p′

a′3
L

a3U
Λ1 + p′ξ + ξ3. (A.18)

Combining Eqs. (A.7) and (A.18), one has

D2 =

a′

3

L

p1

Nd1 − aU
3

p′
Ns − a′

3

L

p1

n0d1 +
aU
3

p′
n0s + (aU3 a

′
1
L − a′3

L
aU1 )D1 +

a′

3

L

p1

ξ1 +
aU
3

p′
(ξ3 + p′ξ)

a′3
LaU2 − aU3 a

′
2
L

.

(A.19)

Since ξ1, ξ3 and ξ are all non-negative, a′3
L
aU2 − aU3 a

′
2
L ≥ 0 and a′3

L
aU1 − aU3 a

′
1
L ≥ 0, one has

D2 ≥
a′

3

L

p1

Nd1 − aU
3

p′
NS − a′

3

L

p1

nU
0d1 +

aU
3

p′
nL
0s + (aU3 a

′
1
L − a′3

L
aU1 )D

U
1

a′3
LaU2 − aU3 a

′
2
L

. (A.20)
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It is clear that Nd2 ≥ nL
0d2 + p2b

L
1D1 + p2b

L
2D2. Then one has

D1 ≤ Nd2 − nL
0d2

p2bL1
− bL2

bL1
D2 = DU

1 . (A.21)

Combine the results of Eqs. (A.20) and (A.21), one has

D2 ≥ DL
2 =

a′

3

L

p1

Nd1 − aU
3

p′
NS − a′

3

L

p1

nU
0d1 +

aU
3

p′
nL
0s + (aU3 a

′
1
L − a′3

L
aU1 )

Nd2−nL
0d2

p2bL1

c(a′3
LaU2 − aU3 a

′
2
L)

, (A.22)

under conditions
a′

k
L

aU
k

≥ a′

3

L

aU
3

≥ a′

2

L

aU
2

≥ a′

1

L

aU
1

(for all k ≥ 4) and c = 1 +
aU
3
a′

1

L−a′

3

LaU
1

a′

3

LaU
2
−aU

3
a′

2

L

bL
2

bL
1

> 0.

Further, one can estimate the lower bound of gain of 2-photon state in signal source Q2 ≥
a′

2

LDL
2

M as shown in Eq. (6). It is clear that once the condition in Eq. (A.17) is satisfied, the

condition in Eq. (A.12) is also satisfied. To lower bound the gain of Q1 and Q2 with Eqs.

(A.15) and (A.22), one only need to verify the conditions

a′k
L

aUk
≥ a′3

L

aU3
≥ a′2

L

aU2
≥ a′1

L

aU1
(for all k ≥ 4), c = 1 +

aU3 a
′
1
L − a′3

L
aU1

a′3
LaU2 − aU3 a

′
2
L

bL2
bL1

> 0. (A.23)

Appendix B

The APN of signal source is µ ∼ O(10−1) while the APN of decoy-1 source is v1 ∼ O(10−2).

When the data size is finite (e.g. M = 1012), one may always observe that jd1m = 0 for all

m > J while jd1m=J > 0 (e.g. J = 10) in a real experiment, which is a cutoff value of the

detected photoelectron number m. The counts caused by the photon number states m > J

in decoy-1 source can be ignored in the experiment. For instance, given that the PND of the

decoy-1 source is Poissonian with an APN v1 = 0.01, the probability that the decoy-1 source

sends out photon number states n > 10 is less than 10−25, which can be ignored for data size

M = 1012.

Suppose that one observe jd1m = 0 for all m > J while jd1m=J > 0, and jsm = 0 for all m > J ′

while jsm=J ′ > 0 (J ′ ≥ J) in a real experiment. Generally one can assume J ′ ≥ J due to that

the signal intensity of signal source is much strongger than that of decoy-1 source. Similar to

Eqs. (A.6), one has

Qd1 =

J
∑

k=0

Qd1
k +

∞
∑

k=J+1

Qd1
k , (B.1)

where Qd1 = Nd1/M1 is the count rates of the decoy-1 source, and Qd1
k = p1

∑

i∈ck
akidki/M1

is the gain of k-photon state in decoy-1 source which can be explained as the probability

that Alice produces a k-photon pulse in decoy-1 source and the pulse causes a count at Bob’s

detectors. Clearly, Qd1
k ≤ ak and Qd1 ≤

∑J
k=0 Q

d1
k +

∑∞
k=J+1 ak, which infers,

Nd1 ≤ n0d1 + p1

J
∑

k=1

∑

i∈ck

akidki +M1PJ , (B.2)

where PJ =
∑∞

k=J+1 ak. Using the C lopper-Pearson confidence interval theory [47], one can

upper bound PJ with a confidence level 1−α, where (1−PU
J )M1 = α/2 and PU

J ∼ 1
M1

is the
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upper bound of PJ . Similar to Eqs. (A.6), one has

N ′
d1 ≤ n0d1 + p1

∑

i∈c1

a1id1i + p1
∑

i∈c2

a2id2i + p1

J
∑

k=3

∑

i∈ck

akidki,

Ns ≥ n0s + p′
∑

i∈c1

a′1id1i + p′
∑

i∈c2

a′2id2i + p′
J
∑

k=3

∑

i∈ck

a′kidki,

where N ′
d1 = Nd1 −M1P

U
J . Then one can calculate the lower bounds of D1 and D2 the same

as Eqs. (A.15) and (A.22) except replacing the Nd1 by N ′
d1, and the condition in Eq. (7) is

replaced by

a′k
L

aUk
≥ a′3

L

aU3
≥ a′2

L

aU2
≥ a′1

L

aU1
, (for all 4 ≤ k ≤ J). (B.3)


