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Oblivious transfer is the cryptographic primitive where Alice sends one of two bits to
Bob but is oblivious to the bit received. Using quantum communication, we can build

oblivious transfer protocols with security provably better than any protocol built using
classical communication. However, with imperfect apparatus, one needs to consider other
attacks. In this paper, we present an oblivious transfer protocol which is impervious to
lost messages.
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1 Introduction

Quantum information allows us to perform certain cryptographic tasks which are impossible

using classical information alone. In 1984, Bennett and Brassard gave a quantum key distri-

bution scheme which is unconditionally secure against an eavesdropper [1, 2, 3]. This led to

many new problems including finding quantum protocols for other cryptographic primitives

such as coin-flipping and oblivious transfer.

Coin-flipping is the cryptographic primitive where Alice and Bob generate a random bit

over a communication channel. We discuss two kinds of coin-flipping protocols, weak coin-

flipping where Alice wants outcome 0 and Bob wants outcome 1, and strong coin-flipping

where there are no assumptions on desired outcomes. We define weak coin-flipping below.

Definition 1 (Weak coin-flipping (WCF) protocol): A weak coin-flipping protocol,

denoted WCF, with cheating probabilities (AWCF, BWCF) and bias εWCF is a protocol with

no inputs and output c ∈ {0, 1} satisfying:

• if Alice and Bob are honest, they output the same randomly generated bit c;

• AWCF is the maximum probability dishonest Alice can force honest Bob to accept the

outcome c = 0;

• BWCF is the maximum probability dishonest Bob can force honest Alice to accept the

outcome c = 1;

• εWCF := max{AWCF, BWCF} − 1/2.
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610 On the existence of loss-tolerant quantum oblivious transfer protocols

The idea is to design protocols which protect honest parties from cheating parties and

there are no security guarantees when both parties are dishonest. We can assume neither

party aborts in a WCF protocol. If, for instance, Alice detects Bob has cheated then she

may declare herself the winner, i.e., the outcome is c = 0. This is not the case in strong

coin-flipping since there is no sense of “winning.”

Definition 2 (Strong coin-flipping (SCF) protocol): A strong coin-flipping protocol,

denoted SCF, with cheating probabilities (ASCF, BSCF) and bias εSCF is a protocol with no

inputs and output c ∈ {0, 1, abort} satisfying:

• if Alice and Bob are honest, then they never abort and they output the same randomly

generated bit c ∈ {0, 1};

• ASCF is the maximum probability dishonest Alice can force honest Bob to accept some

outcome c = a, over both choices of a ∈ {0, 1};

• BSCF is the maximum probability dishonest Bob can force honest Alice to accept some

outcome c = b, over both choices of b ∈ {0, 1};

• εSCF := max{ASCF, BSCF} − 1/2.

We note here that SCF protocols can be used as WCF protocols. The only issue is if the

outcome is “abort.” In this case, the party who detected the cheating announces themselves

the winner. Doing this, the bias in the WCF protocol is the same as in the SCF protocol.

Aharonov, Ta-Shma, Vazirani, and Yao [4] first showed the existence of an SCF protocol

with bias εSCF < 1/2 followed shortly by Ambainis [5] who showed an SCF protocol with bias

εSCF = 1/4. As for lower bounds, Lo and Chau [6] showed that bias εSCF = 0 is impossible.

Kitaev [7], and later Gutoski and Watrous [8], extended this result to show that the bias of any

SCF protocol satisfies εSCF ≥ 1/
√
2 − 1/2. This bound was proven to be tight by Chailloux

and Kerenidis [9] who showed the existence of protocols with bias εSCF < 1/
√
2 − 1/2 + δ

for any δ > 0.

As for WCF protocols, it was shown that the bias could be less than Kitaev’s bound. For

example, the protocols in [10, 11, 12] provide biases of εWCF = 1/
√
2 − 1/2, εWCF = 0.239,

and εWCF = 1/6, respectively. The best known lower bound for WCF is by Ambainis [5] who

showed that a protocol with bias εWCF must use Ω(log log(1/εWCF)) rounds of communication.

Then, in a breakthrough result, Mochon [13] showed the existence of WCF protocols with

bias εWCF < δ for any δ > 0.

Oblivious transfer is the cryptographic primitive where Alice sends to Bob one of two bits

but is oblivious to the bit received. We define oblivious transfer and its notions of cheating

below.

Definition 3 (Oblivious transfer (OT) protocol): An oblivious transfer protocol, de-

noted OT, with cheating probabilities (AOT, BOT) and bias εOT is a protocol with inputs

satisfying:

• Alice inputs two bits (x0, x1) and Bob inputs an index b ∈ {0, 1};
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• when Alice and Bob are honest they never abort, Bob learns xb perfectly, Bob gets no

information about xb̄, and Alice gets no information about b;

• AOT is the maximum probability dishonest Alice can learn b without Bob aborting the

protocol;

• BOT is the maximum probability dishonest Bob can learn x0⊕x1 without Alice aborting

the protocol;

• εOT := max{AOT, BOT} − 1/2.

When a party cheats, we only refer to the probability which they can learn the desired

values without the other party aborting. For example, when Bob cheats, we do not require

that he learns either bit with probability 1.

In the OT definition above, there can be different ways to interpret the bias. For example,

we could consider worst-case choices over inputs, we could assume the inputs are chosen

randomly, etc. The protocol construction given in this paper is independent of how the

inputs are chosen so this is not an issue.

Like weak coin-flipping, oblivious transfer has a related primitive which is useful for the

analysis in this paper.

Definition 4 (Randomized oblivious transfer (Random-OT) protocol): A random-

ized oblivious transfer protocol, which we denote as Random-OT, with cheating probabilities

(AROT, BROT) and bias εROT is a protocol with no inputs satisfying:

• Alice outputs two randomly generated bits (x0, x1) and Bob outputs two bits (b, xb)

where b ∈ {0, 1} is independently, randomly generated;

• when Alice and Bob are honest they never abort, Bob gets no information about xb̄,

and Alice gets no information about b;

• AROT is the maximum probability dishonest Alice can learn b without Bob aborting the

protocol;

• BROT is the maximum probability dishonest Bob can learn x0⊕x1 without Alice abort-

ing the protocol;

• εROT := max{AROT, BROT} − 1/2.

We note here that a protocol is considered fair if the cheating probabilities for Alice and

Bob are equal and unfair otherwise.

OT is an interesting primitive since it can be used to construct secure two-party protocols

[14]. See also [15], [16], [17]. It was shown by Lo [18] that εOT = 0 is impossible. This result

was improved by Chailloux, Kerenidis, and Sikora [19] who showed that the bias of every

oblivious transfer protocol satisfies εOT ≥ 0.0852.

Various settings for oblivious transfer have been studied such as the bounded-storage

model [20] and the noisy-storage model [21]. In this paper, we study only information theoretic

security but we allow the possibility of lost messages (more on this below). Oblivious transfer
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has a rich history, has various definitions, and has many names such as the set membership

problem [22] or private database querying [23].

A loss-tolerant protocol is a quantum cryptographic protocol which is impervious to lost

messages. That is, neither Alice nor Bob can cheat more by declaring that a message was

lost (even if it was received) or by sending blank messages deliberately. We prefix a protocol

with “LT-” to indicate that it is loss-tolerant.

The idea of loss-tolerance was first applied to strong coin-flipping by Berlin, Brassard,

Bussieres, and Godbout in [24]. They showed a vulnerability in the best known coin-flipping

protocol construction by Ambainis [5]. They circumvented this problem and presented an

LT-SCF protocol with bias εSCF = 0.4. Aharon, Massar, and Silman generalized this protocol

to a family of LT-SCF protocols with bias slightly smaller at the cost of using more qubits in

the communication [25]. Chailloux added an encryption step to the protocol in [24] to improve

the bias to εSCF = 0.359 [26]. The best known protocol for LT-SCF is by Ma, Guo, Yang,

Li, and Wen [27] who use an EPR-based protocol which attains a bias of εSCF = 0.3536. It

remains an open problem to find the best possible biases for LT-WCF and LT-SCF. In fact,

we do not even know if there is an LT-WCF protocol with bias less than the best possible

bias for LT-SCF; they may share the same smallest possible bias.

The first approach to designing loss-tolerant oblivious transfer protocols was by Jakobi,

Simon, Gisin, Bancal, Branciard, Walenta, and Zbinden [23]. They designed a loss-tolerant

protocol for private database querying which is also known as “1-out-of-N oblivious transfer.”

The protocol is not technically an oblivious transfer protocol (using the definition in this

paper) since an honest Bob may receive too much information. However, it is practical in the

sense that it is secure against the most evident attacks. The backbone of their protocol is the

use of a quantum key distribution scheme. This differs from the loss-tolerant protocol in this

paper which is based on weak coin-flipping.

1.1 The results of this paper

We first present a protocol in Section 2 and prove it is not loss-tolerant. Then, in Section 3, we

show how to build LT-OT protocols from LT-WCF and LT-Random-OT protocols. Namely,

we prove the following theorem.

Theorem 5: Suppose there is an LT-WCF protocol with cheating probabilities (AWCF, BWCF)

and bias εWCF and an LT-Random-OT protocol with cheating probabilities (AROT, BROT)

and bias εROT. Then there exists an LT-OT protocol with cheating probabilities

AOT = AWCF |AROT −BROT|+min{AROT, BROT}, (1)

BOT = BWCF |AROT −BROT|+min{AROT, BROT}. (2)

This protocol has bias

εOT ≤ |AROT −BROT|+min{AROT, BROT} − 1/2 = εROT. (3)

We have εOT < εROT when εWCF < 1/2 and AROT 6= BROT. Furthermore, the LT-OT

protocol is fair when the LT-WCF protocol is fair.

In Subsection 3.4, we construct an unfair LT-Random-OT protocol with cheating proba-

bilities (AROT, BROT) = (1, 1/2). Combining this with the fact that there is a fair LT-WCF
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protocol with bias εWCF = 0.3536 [27], we get the following corollary.

Corollary 6: There exists a fair LT-OT protocol with bias εOT = 0.4268.

2 An Example of a Random-OT Protocol that is Not Loss-Tolerant

In this section, we examine a protocol for Random-OT and show it is not loss-tolerant. This

protocol has the same vulnerability as the best known coin-flipping protocol constructions

based on bit-commitment, see [24] for details.

Protocol 7 (A Random-OT protocol [19]):

(i) Bob randomly chooses b ∈ {0, 1} and sends Alice half of the two-qutrit state

|φb〉 :=
1√
2
|bb〉+ 1√

2
|22〉. (4)

(ii) Alice randomly chooses x0, x1 ∈ {0, 1} and applies the following unitary to the qutrit

|0〉 → (−1)x0 |0〉, |1〉 → (−1)x1 |1〉, |2〉 → |2〉. (5)

(iii) Alice returns the qutrit to Bob. Bob now has the two-qutrit state

(−1)xb

√
2

|bb〉+ 1√
2
|22〉. (6)

(iv) Bob performs the measurement {Π0 := |φb〉〈φb|, Π1 := I−Π0} on the state.

(v) If the outcome is Π0 then xb = 0. If the outcome is Π1 then xb = 1.

(vi) Any lost messages are declared and the protocol is restarted from the beginning.

It has been shown in [19] that Bob can learn x0 ⊕ x1 with probability 1 and Alice can

learn b with maximum probability 3/4. However, this does not take into account “lost-message

strategies.” We now show such a strategy and how Alice can learn b perfectly. Suppose Alice

measures the first message in the computational basis. If she sees outcome “0” or “1” then she

knows Bob’s index b with certainty. If the outcome is “2” then she replies to Bob, “Sorry, your

message was lost.” Then they restart the protocol and Alice can measure again. Eventually,

Alice will learn b perfectly proving this protocol is not loss-tolerant.

This protocol illustrates another interesting point about the design of OT protocols. One

may not be able to simply change the amplitudes in the starting states to balance the cheating

probabilities. For example, if we were to change the amplitudes in |φb〉, then Bob would have a

nonzero probability of getting the wrong value for xb. Thus, balancing an unfair OT protocol

is not as straightforward as it can be in coin-flipping.

3 Constructing Loss-Tolerant Oblivious Transfer Protocols

In this section, we prove Theorem 5 by constructing an LT-OT protocol from an LT-WCF

protocol and a (possibly unfair) LT-Random-OT protocol. In doing so, we have to overcome

some issues that are not present when designing LT-SCF protocols. These issues include:
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• it is not always possible to simply reset a protocol with inputs;

• balancing the cheating probabilities can be difficult;

• it is not possible to switch the roles of Alice and Bob since Bob must be the receiver;

• an honest party must not learn extra information about the other party’s inputs (or

outputs in the case of Random-OT).

We deal with these issues by reducing the problem one step at a time. First we reduce the

task of finding LT-OT protocols to finding LT-Random-OT protocols in Subsection 3.1. Then

we build an LT-Random-OT protocol from an LT-WCF protocol and two (possibly unfair)

LT-Random-OT protocols in Subsection 3.2. In Subsection 3.3, we show how to create the

two LT-Random-OT protocols from a single LT-Random-OT protocol. Finally, we show an

unfair LT-Random-OT protocol in Subsection 3.4 to prove Corollary 6.

3.1 Equivalence between LT-OT protocols and LT-Random-OT protocols with

respect to bias

Having a protocol with inputs is an issue when building protocols loss-tolerantly. In recent

LT-SCF protocols, if messages were lost for any reason, then the protocol is simply restarted

at some point, but this is not always an option with OT because the inputs could have context,

e.g., Alice’s bits could be database entries. For this reason, we cannot simply “reset” them

and repeat the protocol. To remedy this issue, we use Random-OT.

It is well known that OT and Random-OT share the same cheating probabilities, i.e., if

there exists an OT protocol with cheating probabilities (AOT, BOT) = (x, y) then there exists

a Random-OT protocol with cheating probabilities (AROT, BROT) = (x, y), and vice versa.

For completeness, we show these reductions and prove they preserve loss-tolerance.

Protocol 8 (LT-Random-OT from LT-OT):

(i) Alice randomly chooses x0, x1 ∈ {0, 1} and Bob randomly chooses b ∈ {0, 1}.

(ii) Alice and Bob input their choices of bits above into the LT-OT protocol so that Bob

learns xb.

(iii) Alice outputs (x0, x1) and Bob outputs (b, xb).

It is straightforward to see that this reduction preserves the loss-tolerance of the LT-OT

protocol since we are only restricting how the inputs are chosen. More interesting is the

reduction from LT-Random-OT to LT-OT.

Protocol 9 (LT-OT from LT-Random-OT):

(i) Alice and Bob decide on their desired choices of inputs to the LT-OT protocol.

(ii) Alice and Bob use an LT-Random-OT protocol to generate the output (x0, x1) for Alice

and (b, xb) for Bob.

(iii) Bob tells Alice if his output bit b is equal to his desired index. If it is not equal, Bob

changes it and Alice switches her two bits.
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(iv) Alice tells Bob which of her two bits (x0, x1) are equal to her desired inputs. Alice and

Bob flip their outcome bits accordingly.

This reduction is a way to derandomize the outputs of the LT-Random-OT protocol. We

see that this also preserves the loss-tolerance of the LT-Random-OT protocol since classical

information can simply be resent if lost in transmission.

Using the reductions above, we have reduced the task of finding LT-OT protocols to finding

LT-Random-OT protocols.

3.2 Creating LT-Random-OT protocols

There is a simple construction of an SCF protocol with bias ε ≈ 3/4 and it proceeds as follows.

Alice and Bob first use a WCF protocol with bias ε ≈ 0. The “winner” gets to flip a coin

to determine the outcome of the SCF protocol. Of course, a dishonest player would like to

“win” the WCF protocol since then they have total control of the SCF outcome.

We mimic this idea to create a protocol prototype for LT-Random-OT and discuss why it

does not work.

Protocol 10 (A protocol prototype):

(i) Alice randomly chooses two bits (x0, x1) and Bob randomly chooses an index b ∈ {0, 1}.

(ii) Alice and Bob perform an LT-WCF protocol with bias εWCF to create random c ∈ {0, 1}.

(iii) If c = 0, then Bob sends b to Alice. Alice then replies with xb.

(iv) If c = 1, then Alice sends (x0, x1) to Bob.

This protocol has bias εROT < 1/2 if εWCF < 1/2. However, the problem is that honest

Alice learns b with probability 3/4 when Bob is honest. This is simply not allowed in a

Random-OT protocol because honest Alice should never obtain any information about b.

Honest Bob learns x0 ⊕ x1 with probability 3/4, which is also not allowed since he should

only learn x0 or x1.

To remedy this problem, instead of Alice and Bob revealing their bits entirely, they can

use (possibly unfair) LT-Random-OT protocols. We present a modified version of the protocol

below.

Protocol 11 (An LT-Random-OT protocol):

(i) Alice and Bob perform an LT-WCF protocol with cheating probabilities (AWCF, BWCF)

and bias εWCF to create random c ∈ {0, 1}.

(ii) If c = 0, then Alice and Bob generate their outputs using an LT-Random-OT protocol

with cheating probabilities (AROT, BROT) = (x, y), where x ≥ y.

(iii) If c = 1, then Alice and Bob generate their outputs using an LT-Random-OT protocol

with cheating probabilities (AROT, BROT) = (y, x).

(iv) Alice and Bob abort if and only if either LT-Random-OT protocol is aborted.
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We now prove that this LT-Random-OT protocol has cheating probabilities equal to those

in Theorem 5. We show it for cheating Alice as the case for cheating Bob is almost identical.

Since x ≥ y, Alice would prefer the outcome of the WCF protocol to be c = 0. She can force

c = 0 with probability AWCF and in this case she can learn b with probability x. If c = 1, she

can learn b with probability y. Letting A′

ROT be the amount she can learn b in the protocol

above, we have

A′

ROT = AWCF x+ (1−AWCF) y = AWCF (x− y) + y. (7)

All that remains to prove Theorem 5 is to show that an LT-Random-OT protocol with

cheating probabilities (AROT, BROT) = (α, β) implies the existence of an LT-Random-OT

protocol with cheating probabilities (AROT, BROT) = (β, α), for any α, β ∈ [1/2, 1]. This way,

we set x = max{α, β} and y = min{α, β}.

3.3 Symmetry in LT-Random-OT protocols

Suppose we have an LT-Random-OT protocol and this protocol has cheating probabili-

ties (AROT, BROT) = (α, β), for some α, β ∈ [1/2, 1]. We now show how to create an

LT-Random-OT protocol with cheating probabilities (AROT, BROT) = (β, α). The trick is

to switch the roles of Alice and Bob.

Protocol 12 (Randomized version of a protocol in [28]):

(i) Alice and Bob use an LT-Random-OT protocol with cheating probabilities equal to

(AROT, BROT) = (α, β) except that Bob is the sender and Alice is the receiver. Let

Alice’s output be (b, xb) and let Bob’s output be (x0, x1).

(ii) Alice randomly chooses d ∈ {0, 1} and sends d⊕ xb to Bob.

(iii) Alice outputs (x′

0, x
′

1) = (d, d⊕ b) and Bob outputs (b′,m) = (x0 ⊕ x1, d⊕ xb ⊕ x0).

(iv) Alice and Bob abort if and only if the LT-Random-OT protocol is aborted.

Notice this protocol is loss-tolerant since classical messages can be resent if lost in trans-

mission. We can write Bob’s output m as d ⊕ xb ⊕ x0 = d ⊕ bb′. Thus, if b′ = 0 then

m = d = x′

0 and if b′ = 1 then m = d ⊕ b = x′

1. Therefore, Bob gets the correct value for

x′

b′
. Since x′

0 ⊕ x′

1 = d⊕ (d⊕ b) = b, honest Bob gets no information about Alice’s other bit

and cheating Bob can learn x′

0 ⊕ x′

1 with maximum probability α. Since b′ = x0 ⊕ x1, honest

Alice gets no information about b′ and cheating Alice can learn b′ with maximum probability

β. Therefore, (AROT, BROT) = (β, α), as desired. Since b, x0, x1, and d are all randomly

generated, so are x′

0, x
′

1, and b′ making this a valid LT-Random-OT protocol.

This completes the proof of Theorem 5.

3.4 An unfair LT-Random-OT protocol

We present here an LT-Random-OT protocol and show that it has cheating probabilities

(AROT, BROT) = (1/2, 1). Note that even though this protocol has bias εROT = 1/2, it can

be used to create a protocol with smaller bias using recent LT-WCF protocols and Theorem 5.



J. Sikora 617

Protocol 13 (An unfair LT-Random-OT protocol):

(i) Bob randomly chooses an index b ∈ {0, 1} and another random bit d ∈ {0, 1}.

(ii) Bob sends Alice the qubit Hb|d〉.

(iii) Alice randomly chooses x0, x1 ∈ {0, 1} and applies the unitary Xx0Zx1 to the qubit.

(iv) Alice returns the qubit to Bob which is in the state Xx0Zx1Hb|d〉 = Hb|xb ⊕ d〉 (up to

global phase).

(v) Bob has a two-outcome measurement (depending on b and d) to learn xb perfectly.

(vi) If any messages are lost the protocol is restarted from the beginning.

We see that this is a valid Random-OT protocol. Firstly, because honest Bob learns xb and

gets no information about xb̄ (since Hb|xb ⊕ d〉 does not involve xb̄). Secondly, Alice cannot

learn any information about b, even if she is dishonest, since the density matrices for b = 0

and b = 1 are identical. Therefore, AROT = 1/2. This protocol is loss-tolerant concerning

cheating Alice since b and d are reset if any messages are lost so Alice cannot accumulate

useful information. It is also loss-tolerant concerning cheating Bob since he can already learn

both of Alice’s bits perfectly. He can do this by first sending Alice half of

|Φ+〉 = 1√
2
|00〉+ 1√

2
|11〉. (8)

Each choice of (x0, x1) corresponds to Bob having a different Bell state at the end of the

protocol. From this, x0 and x1 can be perfectly inferred, yielding BROT = 1.

4 Conclusions and Open Questions

We have designed a way to build LT-OT protocols by using an LT-WCF protocol to help bal-

ance the cheating probabilities in a (possibly unfair) LT-Random-OT protocol. This protocol

uses well known reductions between OT and Random-OT and the reduction to switch the

roles of Alice and Bob.

The construction in this paper is robust enough to design OT protocols with other defi-

nitions of cheating Bob. Suppose that Bob wishes to learn f(x0, x1) where f 6= XOR is some

functionality. In this case, we may not be able to switch the roles of Alice and Bob in a way

that switches the cheating probabilities as in Subsection 3.3. However, instead of just using

one LT-Random-OT protocol and creating another from it, we could have just as easily used

two different LT-Random-OT protocols (with a consistent notion of cheating Bob).

A limitation of this protocol design is that it uses LT-Random-OT protocols as subrou-

tines. Even if LT-WCF protocols with bias εWCF ≈ 0 are constructed, using the protocol in

Subsection 3.4 can reduce the bias to only εOT ≈ 1/4. It would be interesting to see if there

exists an LT-OT protocol with cheating probabilities (AOT, BOT) = (α, β) where α+β < 3/2.

An open question is to show if using more LT-WCF subroutines can help improve the bias.

In [9], many WCF protocols were used to drive the bias of a SCF protocol down towards the

optimal value of 1/
√
2− 1/2. Can something similar be done for OT or LT-OT?
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