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We study quantum entanglement distribution on networks with full-rank bi-partite mixed

states linking qubits on nodes. In particular, we use entanglement swapping and purifi-
cation to partially entangle widely separated nodes. The simplest method consists of

performing entanglement swappings along the shortest chain of links connecting the two
nodes. However, we show that this method may be improved upon by choosing a pro-

tocol with a specific ordering of swappings and purifications. A priori, the design that

produces optimal improvement is not clear. However, we parameterize the choices and
find that the optimal values depend strongly on the desired measure of improvement. As

an initial application, we apply the new improved protocols to the Erdös–Rényi network

and obtain results including low density limits and an exact calculation of the average
entanglement gained at the critical point.
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1 Introduction

The quantum repeater has been at the center of numerous studies addressing the distribution

of entanglement over long distances, an essential prerequisite for many tasks in quantum infor-

mation processing [1, 2]. The central idea of the quantum repeater is to send one of a pair of

entangled particles (e.g. a photon) across a series of links such that each link is short enough

that the probability of absorption is low and then to perform entanglement swappings at each

node to further propagate the entanglement. However, the inevitable presence of noise in pro-

ducing and transporting quantum states renders the straightforward application of repeaters

hard in practice. This has resulted in the expenditure of a great deal of effort in designing

distribution protocols. While the initial repeater schemes involved a one-dimensional chain

of nodes (containing qubits) connected by links, considering higher-dimensional networks of

nodes and links has been a fruitful approach because the entanglement in neighboring links
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can be concentrated via purification. Given a fixed amount of entanglement per link that

can be generated in a particular laboratory setting, this concentration allows a useful amount

of entanglement to be distributed over larger distances, which in turn allows protocols that

consume entanglement to work over a larger distance. Previous work on entanglement distri-

bution in dimension greater than one considered either pure states [3, 4, 5], or certain mixed

states of rank two and three [6, 7]. Pure states were used in previous distribution studies be-

cause entanglement is better understood and easier to manipulate in pure states than mixed

states. However, realistic noise models imply that a bi-partite system of non-local components

may only be prepared in a full-rank mixed state. In fact, it has been shown that long-range

entanglement on a cubic lattice of full-rank mixed states is possible [8].

On the other hand, while the bulk of work to date has been concerned with regular lattices,

only a few works have treated random networks. The creation of entangled sub-networks on

the Erdös–Rényi (ER) model [9] has been studied. Other workers investigated the effect

of a particular transformation on several pure–state complex networks as well entanglement

swapping with full-rank mixed states on the same networks [10, 11]. These studies showed

on one hand that transforming network hubs to rings via LOCC can enhance entanglement

distribution on a variety of pure-state networks and on the other hand how distribution is

affected by the interplay between the correlation length and the characteristic length of decay

of fidelity under swapping. However, detailed studies of the application of of entanglement

distribution protocols using both swapping and purification on complex networks have not

yet been done. In the present work we address this deficit by introducing some natural

optimization problems in distributing entanglement along paths of full-rank mixed states. We

find that the solutions to these problems yield surprisingly non-trivial results. Then, as a first

application, we apply entanglement concentration protocols to the ER network. One of our

main objectives is to understand when the use of the network connectivity offers an advantage

for distributing entanglement between two nodes with respect to the simple protocol in which

entanglement is swapped along the shortest path connecting them. Note that this is always

the case for a classical network: connectivity always helps in distributing classical information

through a network. However, this may not be the case in the quantum regime, as quantum

information cannot be cloned [12]. Indeed, we provide instances where the simplest direct

protocol is better than the considered protocols using the network connectivity.

In Sec. 2, we give an overview of the models that we will examine. We shall consider the

average concurrence on networks in which each link is initially a full-rank mixed state on two

two-level systems, while a node is a local collection consisting of one party from each link

terminating at that node. (See Fig. 1.) Unless stated explicitly, when we speak of average

concurrence we mean an average over both the outcomes of quantum measurements and the

distribution of links for a given random network. We shall furthermore consider only two

quantum operations for distributing entanglement (See Fig. 2.):

• entanglement swapping, which probabilistically replaces a series of two links by a single

link that bypasses the common node. The output link is in general less entangled than

the input links.

• purification, which essentially replaces two parallel links (i.e. sharing the same two

nodes) by a single link that is more highly entangled than either input link.
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Fig. 1. Part of a quantum network in its initial state. Small circles are qubits. Solid lines are

bipartite states. Dashed circles enclose qubits within a node. Local operations may act on all

qubits within a node.

α γ δ β
(a)

(b)

(c) (d)

Fig. 2. Entanglement swapping: (a) Before swapping α and γ are entangled and δ and β are

entangled, but systems αγ and δβ are in a product state. (b) After swapping, systems α and β
are entangled, while αβ and γδ are in a product state. Purification: (c) Before purification, two

entangled pairs (links). (d) after purification, one pair of nodes has higher entanglement than
either of the original pairs.
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Fig. 3. Establishing entanglement between nodes A and B. (a) The shortest path PAB between

A and B; the geometry of the path is irrelevant, so we represent it by a straight line with individual

links not shown. Other paths connecting A and B are not shown. (b) The shortest path PAB

(solid line with a dashed segment) between A and B. Between the endpoints of subpath S (dashed

segment) there is an alternate path A (dotted line). (c) Similar to (b) with three subpaths and
corresponding alternate paths.

The main reason for the restriction to two operations is that many techniques that are suc-

cessful on pure states, such as multi-partite techniques [13], are difficult, at best, to translate

to networks of mixed states. However, these two operations naturally give rise to a rich set

of protocols whose design is determined by the quantities that are to be optimized.

In Sections 2, 3, and 4, rather than designing a network for a particular task, we accept a

given network of mixed states as a constraint. Our goal is then to identify and solve questions

of design that arise in creating protocols to accomplish entanglement distribution. The main

question is: when presented with the option either to swap or to purify, which is the better

choice? For instance:

• Single purification protocol. Consider the scenario in Fig. 3b in which we want to

entangle nodes A and B using the shortest connecting path PAB while making use of

a neighboring path A. We proceed by swapping at all nodes on the two paths S and

A to replace each of them by a single link, then purifying these two links, followed by

performing swappings on all remaining nodes. In Sec. 4.3 we compute the ratio of path

lengths |S|/|PAB | that produces the largest average entanglement between A and B,

finding a value of approximately 0.37.

• If the goal in the previous example is instead to achieve a positive probability of en-

tangling A and B with minimal entanglement per link, then the optimal ratio of path

lengths takes the value 1 + ln 2/ ln([
√

5− 1]/4) ≈ 0.409.

• Consider the scenario shown in Fig. 3c, which we call the multiple purification protocol.

Here, instead of purifying a single pair of subpaths, we purify n pairs. In Sec 4.4 we

compute the minimum entanglement per link required to entangle A and B in the limit

of large n for this protocol.

In Sec. 3 we define specifically the direct and quantum strategies mentioned above. In Sec. 4

we analyze the protocols in a more detailed and quantitative way. In Sec. 5 we apply the

single purification protocol (SPP) mentioned above to a particular random network— the

Erdös–Rényi (ER) network. We present results for short shortest paths and relatively impure
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Fig. 4. Quantum protocol. (a),(b), and (c) show the progression of a quantum protocol: (a)
Shortest path between A and B PAB with subpaths of lengths k1, k2, n1, n2. Dotted lines show

alternate paths of lengths m1 + n1 and m2 + n2. In this paper, we shall always require that the

collection of alternative paths and PAB be mutually disjoint. (b) After swapping and purifying
subpaths. Each line segment now represents a single link with the labels giving the resulting

Werner parameter. (c) After swapping all links.

states. We also compute the exact asymptotic concurrence of the SPP including all shortest

path lengths at the critical point of the model parameter. Finally, is Sec. 6, we address the

effects on the protocols of noise in the unitary operations and measurements.

2 Elements of the model

We first introduce the networks that we shall consider. We then describe entanglement swap-

ping and purification in more detail.

2.1 Network and initial quantum states

Consider the generic network of nodes and edges shown in Fig 1. With each edge of the

network, we associate two two-level systems forming a bipartite system with states on C4.

Thus, each node of degree k is occupied by k qubits. In the following, we shall consider states

diagonal in the Bell basis{
|Φab〉 =

1√
2

(
|0a〉+ (−1)b |1ā〉

)
: a, b ∈ {0, 1}

}
.

In particular, as the initial state on each edge, we choose the Werner state [14]

ρW (x) = x |Φ00〉〈Φ00| +
1− x

4
14, (1)

which has fidelity F
def
= 〈Φ00| ρW (x) |Φ00〉 = (3x + 1)/4. It can be shown that the Werner

state is that it is entangled for x > 1/3 and separable otherwise. All protocols in this paper

attempt to entangle two nodes by creating a Werner state on a pair of qubits, one from each

node. Because of its simplicity, the Werner state serves as a standard form, allowing a clearer

exposition of the distribution protocols than does a Bell-diagonal state. The Werner state

also has the advantage that it is created from any mixed state by removing the off-diagonal

elements via a depolarization process, a procedure that can be realized by local operations

and classical communication.
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2.2 Concurrence as a measure of entanglement

In this paper we use concurrence [15] as a measure of useful entanglement in the system. For

the Werner state (1) the concurrence is given by

C(x) = max{0, (3x− 1)/2}. (2)

Because our task is to entangle any arbitrarily chosen pair of nodes, we define the average

concurrence of the network

C̄(x) =
2

N(N − 1)

∑
α,β

πα,βC(α, β), (3)

where x is the parameter of the initial state, C(α, β) = C(xα,β) is the concurrence of the

state xα,β between α and β after applying some protocol, and πα,β is the probability that this

protocol succeeds. Thus this definition depends on the choice of protocol and furthermore

assumes that the concurrence of the resulting state between α and β is zero with probability

1 − πα,β . Note that this average is over both pairs of nodes, as well as probability of the

success of the protocol.

In particular, we judge a particular protocol to be better than the direct protocol if it

yields a higher concurrence averaged over measurement outcomes. When applied to our pro-

tocols on two-qubit Werner states, the concurrence has at least two advantages over other

entanglement measures in this respect. Firstly, the concurrence is the unique entanglement

measure that is linear in x, which makes analysis easier. Secondly, the concurrence provides

the extremal comparison in the following sense. Most of the interesting entanglement mea-

sures are either convex (for instance, entanglement of formation) or concave (for instance,

logarithmic negativity). Suppose that a given protocol has higher average entanglement than

the direct protocol if concurrence is used as the measure. In Appendix 1 we show that the

protocol also has higher average entanglement, if any convex entanglement measure is used

rather than concurrence. Conversely, if the protocol is worse than the direct when judged by

concurrence, then it is also worse when judged by any other concave entanglement measure.

Finally, we note that for the state (1) the concurrence and the negativity are identical.

2.3 Operations for distribution and concentration of entanglement

2.3.1 Entanglement swapping

In this section, we review entanglement swapping, and present the result of applying the

operation to Werner states. Consider a state of four qubits α, β, δ, γ, such that (α, γ) is an

entangled pair and (δ, β) is an entangled pair, but systems αγ and δβ are in a product state.

Entanglement swapping is a sequence of quantum operations that transfers entanglement

leaving (α, β) entangled and (δ, γ) entangled. (See Fig. 2.) In the case of pure states, the

optimal swapping is effected by measuring (γ, δ) in the appropriate Bell basis, and then

performing a corrective unitary on β depending on the outcome of this measurement [16],

with the result being either a maximally, or a partially entangled state on (α, β). In the latter

case, swapping is usually understood to include an attempted singlet conversion on αβ, so that

the result of the entire operation is to leave (α, β) in either a maximally entangled state (if

successful) or a separable state (if unsuccessful.) Mathematically, we consider entanglement

swapping to be a map from C4 ⊗ C4 to C4, with the reduction of dimensions resulting from
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applying a partial trace over the system γδ. One can show that if the initial states on (α, γ)

and (δ, β) are both maximally entangled (eg Bell states), then the swapping operation succeeds

with probability one, assuming perfect operations. In the case of Bell-diagonal mixed states,

we cannot know which of the four states we have drawn from the classical ensemble and so

cannot unambiguously interpret the result of a measurement. The best we are able do is to

assume that we have drawn the most probable state |Φ00〉, and proceed with swapping based

on this assumption. However, if we have drawn a state other than |Φ00〉, we are unfortunately

increasing the average classical population of the remaining Bell states. More precisely, given

two Bell-diagonal input states whose eigenvalues are (A,B,C,D) and (A′, B′, C ′, D′), the

un-normalized output state after swapping is

(AA′ +BB′ + CC ′ +DD′, AB′ +BA′ + CD′ +DC ′,

AC ′ +BD′ + CA′ +DB′, AD′ +BC ′ + CB′ +DA′).
(4)

Using (1) and (4) it is easy to compute that performing swapping on two Werner states with

parameters x and x′ produces a Werner state with parameter xx′. That is,

ρW (x)⊗ ρW (x′) 7→ ρW (xx′). (5)

2.3.2 Purification protocol

Purification protocols operate on a collection of bi-partite mixed states, producing a smaller

number of bi-partite states of higher fidelity than the input states [17]. We will use the

Bennett-Brassard-Popescu-Schumacher-Smolin-Wootters (BBPSSW) purification protocol, in-

troduced by Bennett et. al. [18], which attempts to replace two input Werner states with

parameters x1 and x2 by a single, more pure, Werner state— i.e. a state with parameter x′

satisfying x′ > x1 and x′ > x2. The parameter of the state resulting from this protocol is

x′(x1, x2) =
x1 + x2 + 4x1x2

3 + 3x1x2
, (6)

with probability
1 + x1x2

2
,

while failure results in two separable (i.e. useless) states. Usually, in the study of purification

protocols, one is concerned with the asymptotic limit of repeated purifications. However, in

the present case we are concerned with a single application of (6). One common situation we

encounter below is purifying two states with x1 = x2 = x. Another question is: Given a state

x, what is the smallest value of xlow < x such that, when the states x and xlow are purified,

the result is not worse than both of them; that is xlow for which x′(x, xlow) = x. In Fig. 5

we plot x′(x, x) − x and x − xlow v.s. x. We see that, in order for purification to be useful,

x1 and x2 must not be too different, and also that purification is most useful for x ≈ 0.7–0.8;

Finally, we note that (6) is increasing in both x1 and x2, a fact that we will use below.

It is well known that the Deutsch-Ekert-Jozsa-Macchiavello-Popescu-Sanpera protocol

(DEJMPS), introduced by Deutsch et. al. [19], yields states of higher fidelity than the

BBPSSW protocol when performing repeated purifications. In fact DEJMPS operates on

two generic Bell-diagonal states, producing an output state that is also Bell-diagonal. When

applied to two Werner states ρW (x1), and ρW (x2) both protocols yield states with the same
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Fig. 5. x′(x, x)− x (solid curve). x− xlow, where xlow is determined by x′(x, xlow) = x. (dashed

curve). Both curves cross the x-axis at x = 1/3 and x = 1.

fidelity and with the same probability of success. However, in general, only the output co-

efficient of the |Φ00〉 component is the same for the two protocols with the remaining three

coefficients differing between the protocols. In the case that the two input states are a Werner

state and a general Bell-diagonal state with largest eigenvalue A, (4) gives a state with con-

currence [(4A − 1)x − 1]/2. This result, together with the fact that the swapping (4) is

commutative and associative, imply that, for protocols using a single purification, the result-

ing concurrence is the same whether we use BBPSSW or DEJMPS. On the other hand, direct

calculation shows that applying (4) to two states, each of which is the result of purifying two

Werner states, yields a state whose concurrence is improved with DEJMPS. In the present

work, only the results in Sec. 4.4 are non-optimal in this sense.

Finally, we mention that multiparticle recurrence [20], and hashing [21] protocols have

been shown to be more efficient than protocols operating on two copies. Improvements have

also been made by optimizing (in part by computer) over a large class of local unitaries [22]

rather than using the unitaries employed in BBPSSW and DEJMPS. These protocols may

give better results, but they are more opaque conceptually and less amenable to analysis.

Furthermore, the gains shown in other contexts are rather modest. Thus, we do not consider

these more complicated protocols here.

3 Entanglement distribution protocols

3.1 Direct strategy

Our task is to entangle qubits on two selected nodes A,B of the network. The most naive ap-

proach is inspired directly by the quantum relay: perform repeated entanglement swappings

along the chain of links in the shortest path PAB connecting A and B using the proce-
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dure summarized in (5). (See Fig. 3a.) For instance, swapping the first two links replaces

ρ1,2 = ρ2,3 = ρW (x) with one new link ρ1,3 = ρW (x2). We then swap the resulting link ρ1,3
with ρ3,4 = ρW (x), yielding ρ1,4 = ρW (x3), and so on. Thus, after swapping along the n

interior nodes in PAB we obtain ρAB = ρW (xn). We call this scheme the direct strategy. It

is somehow analogous to a classical problem of transmission on a noisy network with trans-

mission probability x on each link. However, the analogy is not perfect because the classical

transmission probability between A and B xn is in principle useful for any x > 0, whereas

in our quantum network any Werner state with x < 1/3 is separable and thus useless as a

resource for quantum information tasks. The concurrence of this direct strategy on a path of

L links connecting nodes α and β is

CDirect(α, β)
def
= C(xL),

using C defined in (2).

3.2 Quantum strategies

We may improve on the direct approach by using quantum mechanical operations to con-

centrate entanglement on the shortest path PAB connecting A and B. In particular, we

employ purification schemes to transfer entanglement from neighboring paths to subpaths of

PAB . This follows the general idea of concentrating entanglement along a “backbone” that

we used in previous work [4]. But, in the present setting, we must introduce new techniques

because we are not trying to generate Bell pairs, and we must treat random neighborhoods

of the backbone. In what follows, these more complex strategies that exploit the network

connectivity are called quantum, although it is clear that the direct protocol is also quantum.

3.2.1 Swapping and purifying

We begin by presenting the elementary combination of the purification and swapping protocols

described above that we shall use in all of the protocols appearing below. Consider two paths,

one of n links and the other of m+ n links, with identical Werner states ρW (x) on each link,

for instance, paths S and A in Fig. 3b. We first perform entanglement swappings on each

chain resulting in two states ρW (xn) and ρW (xm+n) which share the nodes at their endpoints.

We then purify these two states to obtain a Werner state with parameter given by

px(n,m) =
xn + xm+n + 4x2n+m

3 + 3x2n+m
, (7)

the operation succeeding with probability

πx(n,m) =
1 + x2n+m

2
. (8)

It is not difficult to prove that (7) only yields an improvement over swapping alone (i.e.

px(n,m) > xn) if m < n.

3.2.2 Quantum strategy

Here we present the class of protocols that we study in the remainder of the paper. In

subsequent sections, we will study particular cases of this class of strategies. These strategies
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yield a higher average concurrence than the direct strategy. Referring to Fig. 3a, we say

subpath for the segment S of PAB that we will purify. We say alternate path for a path

A disjoint from PAB that we use to purify the subpath S. To entangle a pair of nodes A and

B, the protocol is as follows. (See Fig. 4.)

1. Identify the shortest path PAB between A and B of length L. Or, if there is more than

one shortest path, choose one of them.

2. Identify a subpath S1 of PAB with end nodes a1, b1 and length n1, such that there is an

alternate path A1 of length m1+n1 with 0 < m1 < n1 joining a1, b1 that is edge-disjoint

with PAB . Note that we cannot have m1 < 0, because this would imply, contrary to

our assumption, that PAB is not a shortest path.

3. Repeat step 2 zero or more times, as shown in Fig. 3c, finding subpaths of lengths ni
and mi +ni edge-disjoint from all previously identified paths. As depicted in Fig. 4(b),

we now have a collection of subpaths of lengths ni and mi + ni together with subpaths

of PAB for which there is no sufficiently short alternate path.

4. Perform entanglement swapping at each interior node on each of Si and Ai, effectively

replacing each path of length l with a single Werner state ρW (xl).

5. Purify each pair of states that resulted from a swapping on each pair of paths (Si,Ai),
This results in a new path connecting A and B as shown in Fig. 4(c).

6. Swap along the new path connecting A and B to create a new Werner state between A

and B with parameter

x′ = px(n1,m1)px(n2,m2) · · ·xL−n1−n2−···.

In the following discussion, we find it useful to remove the length L from all quantities

with the following change of variables.

y = xL, ai =
ni
L
, bi =

mi

L
. (9)

Note that y, ai, bi ∈ [0, 1], and that ai and bi+ai are now the fractional lengths of the subpath

and alternate path, respectively. The average concurrence of this quantum protocol is then

written

CQM(α, β)
def
=
∏
i

πy(ai, bi)C

(
y1−

∑
j aj
∏
i

py(ai, bi)

)
, (10)

where i and j index the purifications in some arbitrary order, and we have used (7) and (8).

The choice of subpaths is not specified in the steps above, but is rather determined by the

desired outcome. Below, we give explicit conditions on the choice of subpaths for optimizing

different quantities: maximum size of interval in initial fidelity for which QM protocol is

better; n that gives minimum initial fidelity (minimum x) for which QM protocol gives positive

concurrence; allowed values n near L for which QM protocol is better; n that yields the highest

concurrence for fixed x. These protocols can, in principle, be applied to any network.
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The basic measure of success of the QM protocol given in steps 1–6 above is that it must

give a better average concurrence than the direct approach. In the remainder of the paper we

shall often be concerned with the increase in concurrence resulting from using a QM protocol.

We denote this increase between nodes α and β connected by a shortest path of length L by

∆C(α, β) =CQM(α, β)− CDirect(α, β) (11)

=CQM(α, β)− C(y).

Likewise ∆C̄ is ∆C(α, β) averaged over a network. We call the interval in x for which the

protocol is successful in this sense (plus some reasonable criteria) the good interval. The

good interval is determined by the following criteria.

• Each pair of subpath and alternative path must give an improvement in fidelity after

purification. That is,

py(ai, bi) > yai , (12)

if it succeeds. This requirement is necessary to avoid protocols which are advantageous,

but would be even better if this particular purification were omitted.

• For y < 1/3, the QM protocol must give a concurrence greater than zero. That is,

y1−
∑
i ai
∏
i

py(ai, bi) >
1

3
. (13)

We call the root of the corresponding equality y∗l .

• For y > 1/3, the average concurrence of the quantum protocol must be greater than the

concurrence of the direct protocol. That is

∆C(α, β) > 0. (14)

We call the root of the corresponding equality y∗h. One can show that (12) and (13) give

lower bounds on y, while (14) gives an upper bound on y. Physically this can be seen

as follows. If the quantum protocol gives positive concurrence for some value of y, then

it will continue to do so for larger values of y (this also follows from the fact that (6) is

increasing in both arguments). At the upper bound, the effectiveness of the purification

is decreasing with increasing y (as seen in Fig. 5), but the probability of success does

not increase fast enough to make up for the decrease in the resulting Werner parameter.

Finally, we note that the case in which the input parameter y < 1/3 (that is x < (1/3)1/L)

is especially interesting. In this case, the QM protocol is not only better on average, but is

better in a stronger sense in that CDirect vanishes for y < 1/3.

4 Analysis of QM protocols

4.1 Generic form of constraints

In this section, we present the constraints in a form that does not provide additional in-

sight, but is useful for later calculations. The constraints (12),(13), and (14) determining the

endpoints of the good interval are each of the form

f(y, {di}) =
∑
j

Kjy
cj,0+

∑
i cj,idi > 0, (15)
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where {di} is a relabeling of all of the ai and b′i, and K and cj,i are some numbers depending

on {di} the particular constraint. We are not interested in the details of this formula, but

we use it as a tool for calculating quantities appearing below. The end-points of the good

interval are determined by the root, y∗ between 0 and 1 of f(y∗, {di}) = 0. The end-point

determined by (15) is thus given by

x∗ = y∗
1
L .

We denote by ŷ the root of

f(ŷ, {di = 0}) = 0. (16)

The last expression is useful for computing perturbations around the solution of equations of

constraint that are formulated such that all parameters vanish.

4.2 Properties of constraints

These properties hold for all protocols described by the six-step procedure above.

• Consider for the moment just a single subpath of fractional length a and the alternate

path of fractional length a + b. We ask which is better: swapping along the subpath

and ignoring the alternate path, or swapping along each of them and purifying the

result. The threshold at which purifying yields a Werner parameter equal to the input

is described by ∆py(a, b) = py(a, b)− ya = 0, which defines the threshold in each of the

parameters a, b, and y implicitly as a function of the other two. This equation is easiest

to analyze if it is reparameterized as ∆py(a, ca) = 0, that is, by eliminating b via b = ca.

The parameter c is also interesting because it gives the fractional excess length of the

alternate path relative to the subpath. It is not difficult to prove that:

i) The threshold c is given by c = c(ya) where

c(z) = ln
(
2[1 + 4z − 3z2]−1

)
ln−1(z). (17)

ii) c(z) takes valid values (i.e. non-negative and real) only on z ∈ [1/3, 1] where we

define c(1) by limz→1 c(z) = 1.

iii) c(z) increases monotonically in z = ya, so that the threshold c increases(decreases)

monotonically in y (a).

iv) The difference in Werner parameter ∆py(a, ca) is maximized by c = 0 for any fixed

z, but is maximized by non-trivial z for fixed c. For instance, ∆py(a, 0) maximized over

z is approximately 0.05 and is given by a root of 3z4 +8z2−8z+1 with numerical value

z ≈ 0.69.

• Because the map (9) from y∗ to x∗ is monotonic, the order of end-points of the good

interval is preserved as L varies. In fact, the intervals are compressed with increasing

L. Thus, we only need to analyze the rescaled inequalities.

• The two roots determined by (13) and (14) coincide at y∗ = 1/3. This is because

CDirect(y) vanishes for y ≤ 1/3, and increases continuously for y > 1/3. Thus y = 1/3

is the threshold above which subtracting CDirect(y) from CQM is necessary to evaluate

whether the QM protocol is useful.
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Fig. 6. Roots of ∆CSPP
a,b (y) = 0 from (20) as a function of y and a for various values of b. From the

outermost to innermost curve the values of b are 0, 0.01, 0.07, 0.11, 0.135. Curves are determined

from closed-form solutions a = a(y, b) with the roots for b = 0 in particular given by (21) and (22).

The region inside the closed curves is where ∆CSPP
a,b (y) > 0 and thus SPP is advantageous. The

curve cutting through the closed curves is ya = 2y and maximizes ∆CSPP
a,b (y) with respect to a.

• It can be proved that the largest absolute increase ∆C for the QM protocols compared

to the direct, occurs at y = 1/3 for all protocols, that is, the largest y for which the

direct protocol gives CDirect = 0. This is shown in Fig. 7.

4.3 The single purification protocol

We consider here the case of only a single purification (the single purification protocol [SPP] )

in which we identify only a single subpath and alternative path pair. This situation is shown

in Fig. 3b. We analyze the protocol finding optimal values according to the most interesting

metrics. In this case there is only one factor in each of the products in (13) and (14), while

it is easy to see that (12) is redundant. Then (13) and (14) become

y1+b + 4y1+a+b − y2a+b − g(y) > 0, (18)

where

g(y) =

{
1− y for y < 1/3

5y − 1 for y ≥ 1/3.
(19)

In accordance with the discussion above, we require y, a, b ∈ (0, 1). We call the roots of (18)

for y < 1/3 and y ≥ 1/3, y∗l and y∗h, respectively. Explicitly, the increase in concurrence

gained from using SPP is

∆CSPP
a,b (y) =

1

4

{
yb
[
4y2 + y − (ya − 2y)2

]
− g(y)

}
. (20)
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Inspecting (20), we see that for fixed y and independently of b, ∆CSPP
a,b (y) is maximized for a

solving (ya − 2y)2. If we further maximize over b and y, it is not hard to see that ∆CSPP
a,b (y)

assumes a maximum value of 1/36 at b = 0, y = 1/3 and a = (log(3) − log(2))/ log(3). To

further illustrate the behavior of (20), we consider the simplest case when a = n/L, b = 0,

that is, the shortest path and the alternate path are of the same length. The roots of (20)

solved for a are

a(y) = 0, a(y) =
log(4y − 1)

log(y)
, (21)

for y ≥ 1/3, and

a(y) =

log

(
2y ± 2

√(
y −

√
5−1
4

)(
y +

√
5+1
4

))
log(y)

, (22)

for y < 1/3. In particular, we see that the point where the roots (22) coincide gives the value

of a representing the lowest lower bound y∗l on y and is given by a = 1+ln 2/ ln([
√

5−1]/4) ≈
0.409, with (See Fig. 6.)

y∗l =
(√

5− 1
)
/4 ≈ 0.309. (23)

Thus, this is the optimum value of a to allow the QM protocol to succeed with minimum

initial fidelity. On the other hand, the roots (21) coincide at the largest allowed value of y,

y∗h =
1

2
. (24)

Inspecting (21) and (22) we also see that the largest good interval in y is obtained for purifying

the shortest sub-path, i.e. as a→ 0. However, the improvement in concurrence also vanishes

in this limit. (See Fig. 8). Also note, as shown in Fig. 8, that the value of a that maximizes

the concurrence is different from the value that allows minimum initial fidelity as computed

above.

We now turn to the case b 6= 0 (That is, alternate path is longer than subpath.) Swapping

with a single purification is in every way worse than if b = 0. This follows from noting that

the only effect on SPP of increasing b is to introduce a more weakly entangled state as one

of the inputs to the purification. In particular, there is a value of a = n/L above which

the QM scheme offers no improvement for any value of y. One can further show that the

maximum value of b allowing positive ∆CSPP
a,b (y) is b = log(7/6)/ log(3) ≈ 0.14. The region

in the ab-plane for which the single purification protocol yields an improvement is shown in

Fig 9.

4.4 Multiple purifications

Having analyzed the case in which we are allowed a single purification, we now turn our

attention to the opposite extreme of unlimited purifications. We partition a fraction α of the

shortest path into n subpaths of equal length and purify each subpath with an alternate path

of equal length. We ask how this protocol performs as n → ∞ and find that the increase in

concurrence tends to a limit, with a lower bound on y for which the protocol is good given

by y = (1/3)3/(3−α).
Consider n subpaths Si of PAB of lengths ai, not necessarily covering all of PAB , each of

which has a corresponding alternative path Ai also of length ai (See Fig 3c.) We first swap
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along each subpath and alternative path, then purify the resulting pairs. Finally, we swap

along the all the remaining internal nodes. In this case we obtain from (13) the inequality for

y∗l ,

3

(
2

3

)n
y
∏
i

(1 + 2yai)−
∏
i

(1 + y2ai) > 0.

Likewise the inequality for y∗h obtained from (14) is(
1

6

)n [
2n3y

∏
i

(1 + 2yai)− 3n
∏
i

(1 + y2ai)

]
− 3y + 1 > 0

In order to investigate the case of purifying many pairs of short paths, we choose the simplest

case, setting ai = a for all i and a = α/n. That is, we consider purifications on a fraction

α of PAB , in which we purify n pairs of paths, with each path of rescaled length α/n. The

inequality for y∗l is then

3

(
2

3

)n
y
(
1 + 2y

α
n

)n − (1 + y
2α
n

)n
> 0.

The limit of the solution of the corresponding equality as n→∞ is

y∗l = (1/3)3/(3−α). (25)

One can show that the inequality for y∗h as n→∞ is

3y
2α
3 +1 − yα − 3y + 1 < 0, (26)
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which we solve numerically. The results are presented in Fig. 10, together with the same

curves for a single purification and three purifications. We saw that the value of α giving

the minimum possible initial entanglement for a single purification is strictly between 0 and

1. However, for two or more purifications, the minimum is at α = 1 (this can easily be

proven, as well). Thus, if the goal is for the protocol to work for the smallest possible initial

entanglement, then performing purifications along the entire path is best in the present case.

Also, both y∗l and y∗h decrease with increasing n, with the lowest initial entanglement possible

giving non-zero concurrence y = (1/3)3/2 ≈ 0.19 for for α = 1 and n → ∞. This result

demonstrates that for multiple purifications the best protocol performs as many purifications

on short subpaths as possible, rather than fewer purifications on longer subpaths. In this

sense, purifying before swapping is favorable. It seems very likely that the asymptotic limit

mentioned above is the best one can do (with our two allowed operations) without resorting

to using previously purified links in further purifications.

4.5 Asymptotic form of constraints

Here we consider the form of the generic inequalities of constraint (15) for large L, in order to

find simple expressions for the roots, which in turn give the endpoints of the interval where

the quantum protocol is advantageous. We must take care, however, because we have some

choices when taking this limit. We consider two different classes of limits. The first choice is

one in which we ignore the rescaled equations so that L becomes large with ni fixed. In other

words, we are holding the lengths of the subpaths constant as L becomes large. In this case,

we find that the leading nontrivial term in the root is of second order in 1/L. The other choice

is to let L become large with ai = ni/L constant. In this case, the rescaled equations are

unchanged in the large L limit so we only have to look at the asymptotic form of the rescaling

y = xL. Thus, for large L with ai held constant, the roots are given by x∗ ≈ 1 + ln y∗/L
so that the interval between two constraints decays as 1/L. That is, the length of the good

interval in x decreases as 1/L,

x∗2 − x∗1 ≈
1

L
(ln y∗2 − ln y∗1).

Now we treat the case of holding ni fixed. We proceed by first taking the small ai limit of the

rescaled equations, followed by the large L limit of the inverse scaling x = y1/L. An expansion

of the LHS of (15) to first order in both y and ai gives

y∗ = ŷ −
∑
i ai∂aif(ŷ, {0})
∂yf(ŷ, {0}) ,

where ŷ is the root of (16). Replacing ai by ni/L and using (a+ bε)ε = aε + (b/a)ε2 +O(ε3)

we find to second order in 1/L

x∗ = y∗
1
L = ŷ

1
L −

∑
i ni∂aif(ŷ, {0})
L2ŷ∂yf(ŷ, {0})

= ŷ
1
L −

ln ŷ
∑
j

∑
i=1Kjnicj,iŷ

cj,0

L2
∑
j Kjcj,0ŷcj,0

,

(27)

where (15) was used to compute the final line. Before proceeding to examples, we make two

remarks on the expansions. i) for some values of the parameters ni, the numerator in (27)
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vanishes so the that the leading term in 1/L in the length of the good interval is of order

three. ii) In some cases, we want to find the limit (27) for only a subset of {ai}, with the

others held constant. In this case we simply remove some of the ai from the sums.

There are several protocols in which these limiting cases are of interest. We mention two

of them. Consider for example a network disordered in such a way that most shortest paths

have nearly the same length (namely L). That is, if the shortest path between A and B is of

length L, then the available subpaths and alternate paths are most probably of length near L.

Furthermore, we reconsider the scenario in Sec. 4.3 of a single purification, writing |S| = L−q
and |A| = L − r with L large and q and r fixed. Thus q and r represent small deviations

in the length of available subpaths and alternate paths respectively. In this case, we define

α = q/L, β = r/L, and make the substitutions a = 1 − α, b = −β in (18), and compare the

result with (15) taking {di} = {α, β} to find the parameters cj,i. Applying (27), we find the

interval

x̂− ln 3

L2
(3q − 2r) < x < x̂+

ln 3

3L2
(3q − 2r).

Thus (assuming the roots are analytic in 1/L) only for q/r > 2/3, does a a good interval exist

for large L.

In the single and multiple purification schemes above, we saw that the optimal length of

the alternate path A is the same as that of subpath S, that is m = 0. However, an alternate

path of length exactly n will not be available in general. The lowest order fluctuation in the

upper limit of the good interval, as m varies about 0, is studied by examining the small b

limit, with the result

y∗ = ŷ +
m ln ŷ(−ŷ + 4ŷ1+a − ŷ2a)

L2(ŷ + 4(1 + a)ŷ1+a − 2ŷ2a)
.

5 Application of Single Purification Protocol to Erdös–Rényi model

We consider the Erdös–Rényi (ER) random graph [23, 24] because it is easier to analyze than

more complicated random graphs and gives us insight into the behavior of the purification

protocols on more complicated graphs. In particular, we want to compute the average con-

currence under the single purification protocol (SPP) of section 4.3 on the ER graph. The ER

model is constructed as follows. Begin with the complete graph of N nodes and N(N − 1)/2

edges and then delete each edge independently with probability 1 − p. Before proceeding,

we simplify the notation below by introducing m′ = n + m so that the alternate paths are

of length m′. In the following, we call σL(p) the density of shortest paths of length L and

ηL,n,m′(p) the density of SPPs of the given parameters (that is, the fraction of pairs of nodes

that admit this SPP). In general there is more than one possible position for the subpath of

length n along the SP of length L, and ηL,n,m′(p) includes an average over these positions.

The most important results in this section are

• At low bond densities (small p) the density of SPPs characterized by L, n,m′ is propor-

tional to the product of the densities of shortest paths of length L and length m′. That

is ηL,n,m′ ∝ σLσm′ . The constant of proportionality is determined by the number of

positions for the subpath.

• At high bond density ηL,n,m′ ∼ σL; that is, most subpaths have an available alternate

path.
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• At the critical point Np = 1, and as N increases, all shortest paths are equally likely

and the network contains a number of each possible SPP of order 1. As N becomes

large and the Werner parameter is near 1, that is, 1−x is small, the concurrence gained

by applying all the SPPs is ∆C̄ ∼ AN−2(1− x)−4 where A is a constant that is easily

computed numerically.

As we saw above, the SPP configurations can be partially characterized by the numbers

(L, n,m′) giving the lengths of the shortest path, the subpath, and the alternate path, re-

spectively. In order to compute the average concurrence for a particular value of Werner

parameter x, we need to know the densities for various L, n,m′ of the shortest paths admit-

ting SPP that are beneficial for this value of x. It would greatly simplify understanding the

protocol on complex networks if we could write the densities of the SPPs in terms of sim-

pler and better known quantities, such as the distribution of shortest paths. To pursue the

connection between these quantities, we compute below the density of all SPPs on the ER

network in the small p limit and see that in this limit, the density of an SPP characterized

by L, n,m′ is proportional to the product of the density of shortest paths of length L and the

density of shortest paths of length m′. That is, ηL,n,m′(p) ≈ g(L, n)σL(p)σm′(p). The factor

g is discussed below. On the other hand, we argue that, as p → 1, the density of SPPs with

fixed L, n,m′ is given simply by ηL,n,m′(p) ≈ σL(p). (That is, nearly all shortest paths admit

SPP). Between these two limits densities are more difficult to compute. One might expect

similar behavior on other networks that have few connections (small p on the ER network),

or many connections (large p), but we have not yet studied other networks in detail.

5.1 Low Bond Density

In the limit of low bond density p, the numbers L, n,m′ are enough to compute the density

of the corresponding SPP. We take p to be small enough that two or more SPPs are unlikely

to be available for a single pair of end point nodes A and B. The probability for the SPP

configuration is

ηL,n,m′(p) = g(L, n)pL+m
′ (N − 2)!

(N − L−m′)! +O(pL+m
′+1), (28)

or ηL,n,m′(p) ∼ g(L, n)pL+m
′
NL+m′−2 for large N , where

g(L, n) =

{
L− n+ 1 for m′ 6= n,

(L− n+ 1)/2 for m′ = n,
(29)

is computed in Appendix B. Similarly, we can show

σL(p) = pL
(N − 2)!

(N − L− 1)!
+O(pL+1),

or σL(p) ∼ pLNL−1 for large N . It follows that ηL,n,m′(p) ∼ g(L, n)σL(p)σm′(p) in this limit.

5.2 High Bond Density

On the other hand, when p is large enough that a shortest path of length L is rare, then nearly

all shortest paths are of length less than L. If the SP does not admit an SPP with subpath
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Fig. 11. Density of single path purifications η3,2,2 for L = 3, n = 2,m′ = 2, on Erdös–Rényi graph

with N = 200. Points are MC data. Curve for smaller p is small the p expansion p5(N − 2)(N −
3)(N −4). Curve for larger p is the asymptotic formula (1−p2)N−2(1−p). The small and large p
regions are shown in more detail using the same data in Figs. 12 and 13 Error bars are not visible

on the scale of the plot.

length n, then an edge-disjoint alternate path must be absent in all L−n+1 positions, which

becomes rare with increasing p and L. It follows that nearly all shortest paths of length L will

allow an SPP for all possible n and m′. Let us consider in particular L = 3, n = m′ = 2. The

density of such SPPs for small p is to lowest order in p η3,2,2(p) = p5(N − 2)(N − 3)(N − 4),

as shown in Figs. 11 and 12. For large p, the density of this SPP is nearly the density of

shortest paths of length 3, which in turn is nearly the probability that the shortest path is

not of length 1 or 2. It is easy to show (see Appendix B) that for all N and p, σ1(p) = p and

σ2(p) = (1 − (1 − p2)N−2)(1 − p). We then have η3,2,2 ≈ 1 − σ2 − σ1 = (1 − p2)N−2(1 − p)
for large enough p, as shown in Figs. 11 and 13. Thus, as we argued in the beginning of this

section, to lowest order in p, ηL,n,m′ ≈ σLσm′ , but this no longer holds for large p where

asymptotically ηL,n,m′ ≈ σL. Finally, we address the consequences of these observations

for the average concurrence. Figure 15 shows the average concurrence as defined in 3 on an

ER network as a function of both input Werner parameter x and bond density p. This plot

illustrates several features of the above analysis. The five concentrations of density correspond

to L = 3, 4, 5, 6, 7 (larger L were not computed in the MC calculations). For small p, longer

SPs and SPPs are more prevalent, and these require larger x to be effective. On the other

hand, for large enough p, most of the SPs are of length 1 and 2, which do not admit SPPs.
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5.3 Concurrence at the critical point Np = 1

In this section, we compute the asymptotic average improvement in concurrence ∆C̄ of the

critical ER network for x near 1 and large N and find that

∆C̄ ∼ A

N2(1− x)4
. (30)

This expression is interpreted as follows. The factor of N−2 is the probability that an SPP

with any particular L, n,m and position of subpath will occur. The factors of 1/(1−x) come

from multiple SPPs contributing at one value of x: A fixed value of x gets contributions from

SPPs with associated SPs of length L ≈ 1/(1 − x); there are order L such shortest paths;

order L different subpaths (of length n) for each SP; order L alternate paths for each subpath;

order L positions along the shortest path for the subpath.

A few comments on the range of applicability of (30) are in order. In addition to requiring

large N and small 1 − x, we require that contributing paths not be too large so that the

tree-like approximation remains valid. The most crude bound is that contributing paths be

smaller than the radius (largest geodesic) of the network. At the critical point, there is a

single cluster of size of order N2/3 with all next-largest clusters growing slower than any

power. It has been proven recently [25] that the radius of the incipient giant cluster on the

critical ER graph grows as N1/3 and furthermore (in distinction to the subcritical phase) the

smaller clusters have smaller radii. Our numerical simulations show that the the radius of

the largest cluster is aN1/3, with a approximately equal to 3. Using this radius as a bound

on the valid range of L together with L ≈ 1/(1 − x) in (30), we find that ∆C̄ < 81AN−2/3.

Thus, we see that the advantage of single-path purification vanishes with increasing N at the

critical point of the ER model. We expect similar behavior on other critical models as they

will also have a broad distribution of very long paths. On the other hand, if we fix N = cp2,

we get asymptotically σ2 = 1− exp(−c) and σ3 = exp(−c), in which case we expect SPP to

continue to show an advantage.

The calculation of (30) proceeds as follows. It follows from (28) that

ηL,n,m′(p = 1/N) = g(L, n)p2 = g(L, n)/N2 (31)

for large N . At this value of p the calculation of the average concurrence is simplified in that

the contributions from each path admitting SPP have the same dependence on N . Figure 14

shows the contributions to ∆C̄ for individual triples L, n,m′, each of which is effective over

a range of x. At Np = 1, we are in the low density regime and only one SPP is likely to be

present between any pair of vertices. Thus, for any value of x, the total contribution at Np = 1

is found by summing over the contributions for each triple L, n,m′. With increasing L, the

density of SPPs with nearly the same proportions (that is, a and b) increases. Thus, although

all these SPPs are equiprobable, as x increases the contributions come from increasingly large

L with the number of overlapping ranges increasing without limit as x → 1. In fact, the

average concurrence is

∆C̄(x) ∼ 1

N2

∫
L3f(y) dL, (32)

for large N and x near 1. Here y = xL and f(y), which accounts for the sum over n and m′,
is computed in Appendix C. We define h(s) via h(− ln(y)) = f(y), and use − lnx ≈ 1−x = ε
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Fig. 16. h(s) appearing in (33). Inset is a semi-log plot of h(s) showing the function vanishing

at s∗l and s∗h as a power. The curve was determined by numeric integration.

for x near 1. Then integrating (32) over L gives

∆C̄(x) ∼ 1

N2

∫
L3h(εL) dL

=
1

N2ε4

∫ s∗hi

s∗lo

s3h(s) ds =
A

N2ε4
. (33)

The limits on the integral are determined by the lowest lower bound (23) and largest upper

bound (24) on y (as shown in Fig. 6). We have s∗hi = − ln(y∗h) and s∗lo = − ln(y∗l ) with

A ≈ 6.5 × 10−5 determined by numeric integration. In Fig. 17 we see that the asymptotic

result (33) is approached rapidly with increasing L.

6 SPP with noisy operations

Until now, we have considered only the ideal case of perfect operations and unlimited re-

sources, with the only noise being that inherent in the Werner state. Even so, the SPP yields

only small improvements in concurrence, with a maximum improvement of about 0.03. How-

ever, because the maximum concurrence gain from a single successful purifcation using either

BBPSSW or DEJMPS is only 0.05, purification schemes typically involve repeated purifica-

tion of a large number of copies. Thus, the SPP is conceived as a first step to investigate

possibilities of entanglement concentration on complex networks and perhaps as a building

block in repeated purification schemes. However, noise can prevent even the small improve-

ment in concurrence from a single purifcation so that that further purification is not possible.

In this section we briefly consider the effect of imperfect unitaries and measurements on the

SPP protocol. We employ a particular noise model for which the effects on the BBPSSW

protocol and the swapping protocol were computed in reference [1]. Here, a noisy operation is
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Fig. 17. Average concurrence scaled by N2 v.s ε = 1− x on the ER network with Np = 1. The

points are computed by summing all contributions of single purifications of shortest paths with

L ≤ 300. The solid line is the asymptotic result N2∆C̄ = Aε−4. This plot contains no MC, but
rather assumes N is large enough that each SPP occurs with the probability given by the low

density expansion (31). At the rightmost of the plot are the contributions from the shortest SPP

with L = 3, n = 2,m = 0.

modeled by a convex combination of the perfect operation and a totally depolarizing channel

that acts only on the same subspace as the perfect operation. An two-qubit operation on

qubits 1 and 2 with reliability p2 is described by

O12ρ = p2O
ideal
12 ρ+

1− p2
4

tr12{ρ} ⊗ 112, (34)

with a similar definition for a single-qubit operator of reliability p1. An imperfect operation on

a single qubit with reliability p1 is described in an analagous way. The imperfect measurement

in the computational basis of a single-qubit is described by the POVM

P η0 = η |0〉〈0| + (1− η) |1〉〈1| (35)

P η1 = η |1〉〈1| + (1− η) |0〉〈0| , (36)

which is a projective measurement only when the parameter η is unity. In [1], the effects

of theses noisy operations on each the BBPSSW or DEJMPS and swapping protocols was

computed. Although the DEJMPS protocol was reported to be much more robust against

noise, it is also much less amenable to analysis and was thus treated numerically. Here, we

present simple closed-form results using the BBPSSW protocol. Purification of two input

states ρW (x) yield a state ρW (x′) where

x′ =
(2x+ 4x2)(1− δ)

3(1 + α) + 3x2(1− 2δ)
, (37)

with δ = 2η(1− η) and α = (1− p22)/p22. The probability of success is [1 + α+ x2(1− 2δ)]/2.

It is evident that, when α = δ = 0, these reduce to the result for perfect operations given
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by (6). We assume that swapping with noisy operations a chain of n Werner states each of

parameter x produces a state

x′ =
xn

cn−1
, (38)

with parameter c ≥ 1, which allows us to track separately the effects of noise from swapping

and purification. If we further assume that the error model for unitaries and measurements

described above applies to swapping as well, then reference [1] gives

c =
3

p1p2(4η2 − 1)
. (39)

The rescaled Werner parameter for a geodesic of length L is now

y =
(x
c

)L
.

Note that y must now satisfy y < (1/c)L rather than y < 1 as in the case of perfect operations.

For simplicity, we restrict our attention to the case b = 0 in which the alternate path has

optimal length. The average concurrence (11) with noisy swapping and purification is then

∆CSPP
a (y) =

1

4

{
4c2(1− δ)2

1− 2δ
y2 − g̃(cy)− 2cδy

−α− c2(1− 2δ)

[
ya − 2(1− δ)

1− 2δ
y

]2}
,

(40)

where

g̃(w) =

{
1− w for w ≤ 1/3

4w − 1 for w > 1/3.
(41)

To simplify the analysis further, we note that for fixed y, ∆CSPP
a (y) obtains its maximum value

at a = amax(y) for which the squared expression containing ya in (40) vanishes. Furthermore,

the maximum over y is obtained for y = ymax = 1/(3c). This maximum average concurrence

∆CSPP
max =

1

4

{
4(1− δ)2
9(1− 2δ)

− 1

3
(1 + 2δ)− α

}
, (42)

which is independent of c, is plotted in Fig. 18 v.s. p2 and η, normalized to the value for perfect

operations 1/36. We see that at y = ymax and a = amax(ymax) for errors of a couple percent,

SSP yields improvements of the same order as for perfect operations. This is consistent with

the sensitivity of the BBPSSW protocol to noise. In fact, for y = ymax and a = amax(ymax)

the values of the noise parameters for which ∆CSPP
a (y) vanishes are exactly those for which

x = x′ in (37).

7 Conclusion

We have introduced and solved optimization problems resulting from the interplay between

entanglement distribution and concentration. Already for simple protocols, the optimal choice

of parameters is non-trivial and depends strongly on the quantity to be optimized.

There are many unexplored questions still to be addressed. For instance, our approach

deals with a static initial network and searches for a protocol with no consideration of dy-

namics.
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Appendix A Entanglement on two-qubit Werner States

In this appendix we show that the concurrence is the extremal entanglement measure when

comparing the quantum to direct protocols. Below, we show that entanglement measures can

be parameterize by C, i.e. E = E(C). We label two values Ei = Ei(Ci) with i = 1, 2. The

condition (10) has the form

pC2 ≥ C1, (A.1)

with 0 < p < 1. We will show that (A.1) implies pE2 ≥ E1 if and only if E(C)/C is non-

decreasing, a condition satisfied by all convex entanglement measures. Thus, if the quantum

protocol is advantageous according to concurrence, then it is advantageous according to all

convex entanglement measures.

In this paper, an entanglement measure is a function E from density operators to [0, 1]

that satisfies the following conditions

i) If ρ is separable then E(ρ) = 0.

ii) E(Bell state) = 1.

Entanglement measures usually satisfy one or both of two other properties that will not

concern us here: LOCC cannot increase the expectation value of the entanglement, and for

pure states E reduces to the entropy of entanglement [26]. Many useful entanglement measures

are convex, that is,

iii) for positive pi and
∑
i pi = 1,

∑
i

piE(ρi) ≥ E
(∑

i

piρi

)
.

Condition i implies that entanglement measures must vanish for x ≤ 1/3, so we need not

concern ourselves with these states. The concurrence (2) is an invertible linear function for

states with x ≥ 1/3, so they can be parameterize by C rather than x, with C ∈ [0, 1], and

we write E = E(C). Because the eigenvalues of the Werner state (1) are linear in C, the

set of states with x ≥ 1/3 is closed under convex combinations, so that iii implies E(C) is

convex. Similar statements can be made about concave functions. We now show that (A.1)

implies pE2 ≥ E2 if and only if E(C)/C is non-decreasing. Clearly, (A.1) is equivalent to

p ∈ [C1/C2, 1]. In the worst case, we must then have (C1/C2)E2 ≥ E1, that is, E(C)/C is

non-decreasing. That the converse is true can be shown with similar arguments. Furthermore,

it is easy to show that for all convex entanglement measures E(C)/C is non-decreasing. A

similar argument shows that pE2 < E1 implies pC2 < C1 if and only if E(C)/C is non-

increasing, a condition that is satisfied by all concave entanglement measures. Finally, it is

worth noting that we can make sharper statements. For instance, Ea(C) = (C+ 4C2−C4)/4

is neither convex nor concave, yet Ea(C)/C is increasing. It can be shown that the inverse

of Ea, Einv
a (C), is also an entanglement measure that is neither convex nor concave, but

Einv
a (C)/C is decreasing.

Appendix B Shortest paths and SPPs on the ER network
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In this appendix we compute the density of shortest paths and paths admitting single

purification protocol.

Shortest Paths The density of shortest paths of length 1 is obviously σ1(p) = p. To compute

σ2(p), consider the possible path of length 2 between vertices va and vb that passes through

vc. This path is absent with probability 1 − p2. Note that the collection of paths for each

of the N − 2 possible vc together with the possible path of length 1 are mutually edge-

disjoint. Thus the probability that there is a path of length 2, but none of length one is

σ2(p) = (1− (1− p2)N−2)(1− p). We did not compute σ3(p), which would be more difficult

because independence is no longer present. However, we can say something about the case

of large and small p. For large p, σ(p)L+1/σ(p)L vanishes with increasing p so that σL(p) ≈
1− σL−1(p)− σL−2(p) . . ., which allows us to compute the asymptotic form of σ3(p). On the

other hand, for small p, the probability of more than one path Between va and vb of length

L becomes negligible and σL is then the sum of the probabilities for each possible SP. The

number of ordered choices of intermediate vertices for the SP is (N−2)(N−3) . . . (N−L−1),

each of which corresponds to a path with at least one unique edge. So, for small p, σL(p) =

pL(N−2)(N−3) . . . (N−L−1). Our Monte Carlo calculations show that this approximation

holds for the case Np = 1.

SPPs The computation of density of SPPs is similar to that of SPs. The number of edges

present in an SPP with shortest path of length L, subpath of length n, and alternate path of

length m′ is L+m′. Likewise the number of intermediate vertices is L+m′−2. However, only

in the case n = m′, the possible permutations of the L + m′ − 2 vertices can be partitioned

into pairs, in which each member of the pair defines an SPP including exactly the same edges.

In each pair, the interior vertices of the subpath and the alternate path are swapped, while

the remaining vertices are unchanged. This is the origin of the factor of 1/2 in (29). Finally,

the number of ways that the subpath can be placed along a path of length L is L−n+1, from

which we arrive at (29). Monte Carlo data supporting this expression is shown in Fig. B.1.

Appendix C Density of contributions to concurrence at the critical point on the

ER network

Here we compute f(y) appearing in (32). In the following we let p = 1/N . We write

∆CL,n,m(x) = max[CQM
L,n,m(x)−CClass.

L,n,m(x), 0] for the average increase in concurrence obtained

from purifying an SPP with parameters L, n,m between two vertices. (The average is over

quantum outcomes, distribution of ER networks, and possible positions of the subpath.) Here

we use m and m′ = n+m. As above, we have b = m/L which takes values between 0 and 1.

Then the contribution to the average increase in concurrence between a pair of vertices for a



G.J. Lapeyre, Jr., S. Perseguers, M. Lewenstein, and A. Aćın 533
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Fig. B.1. ηL,n,n/g(L, n) vs. N at the critical point Np = 1 for eleven pairs of L and n, from

3,2, through 7,3. The solid line is N−2 as predicted by (31). Points are MC data obtained by
generating ER network samples and counting the number of SPPs.

fixed value of L is

∆CL =

L−1∑
n=2

n−1∑
m=0

ηL,n,m′(p)∆CL,n,m(x)

=
1

N2

L−1∑
n=2

n−1∑
m=0

g(L, n)∆CL,n,m(x)

=
1

N2

L−1∑
n=0

(L− n+ 1)

[
1

2
∆CL,n,0(x)

+

n−1∑
m=1

∆CL,n,m(x)

]

=
L

N2

1−1/L∑
a=2/L

(1− a+ 1/L)

[
1

2
∆C1,a,0(x)

+

a−1/L∑
b=1/L

∆C1,a,b(x)

]
,
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where we used (29), and a = n/L, b = m/L take discrete values. This expression holds for

large N , but for all x and L. Now for large L we replace the sum with an integral and find

∆CL =
L2

N2

∫ 1

0

da (1− a)

[
1

2
∆C1,a,0(x)

+ L

∫ 1

0

db∆C1,a,b(x)

]

=
L3

N2

∫ 1,1

0,0

(1− a)∆C1,a,b(y) da db =
L3

N2
f(y).

In the last line, we discarded the term that is of order L2 and kept the term of order L3. The

final expression is valid for all x, but for any fixed value of x, ∆CL vanishes with increasing L

because y = xL. In practice, we compute f(y) numerically by integrating (10) over values a

and b for which ∆C is positive as shown in Fig 9. The integrand could be done analytically,

but the boundaries in Fig 9 are determined via numerical roots in any case.

Appendix D Monte Carlo computations

We used a modified version of the C language library igraph [27] for Monte Carlo calcula-

tions. In particular, we replaced the calls to the system random number generator with the

Mersenne twister [28] generator. The number of trials for computing statistics varies greatly

with model parameters from a few tens to 109. Error bars for quantities such as the number

of SPs and SPPs were computed from the sample variance in the mean number of events per

network as σ/
√
nt where nt is the number of trials. In a few instances, for the largest error

bars, nt is not large and the error bars are thus not accurate.


