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Any two-party cryptographic primitive can be implemented using quantum communica-

tion under the assumption that it is difficult to store a large number of quantum states
perfectly. However, achieving reliable quantum communication over long distances re-
mains a difficult problem. Here, we consider a large network of nodes with only neigh-
boring quantum links. We exploit properties of this cloud of nodes to enable any two

nodes to achieve security even if they are not directly connected. Our results are based
on techniques from classical cryptography and do not resort to technologically difficult
procedures like entanglement swapping. More precisely, we show that oblivious trans-

fer can be achieved in such a network if and only if there exists a path in the network
between the sender and the receiver along which all nodes are honest. Finally, we show
that useful notions of security can still be achieved when we relax the assumption of
an honest path. For example, we show that we can combine our protocol for oblivious

transfer with computational assumptions such that we obtain security if either there ex-
ists an honest path, or, as a backup, at least the adversary cannot solve a computational
problem.
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1 Introduction

Quantum communication allows us to achieve cryptographic security without relying on un-

proven computational assumptions. Two nodes, Alice and Bob, can establish a secure key

using quantum key distribution [3, 7], and, moreover, solve any two-party cryptographic prob-

lem even if they do not trust each other in the noisy-storage model [32, 17, 27]. Well-known

examples of such problems include secure identification [5], as well as electronic voting and

secure auctions. More generally, Alice and Bob wish to solve problems where Alice holds

an input x (eg. the amount of money she is willing to bid for an item sold by Bob) and

Bob holds an input y (e.g. his minimum asking price), and they want to obtain the value

of some function f(x, y) (e.g. output no if x < y, and x otherwise) as depicted below. In

this setting, there is no outside eavesdropper but Alice or Bob themselves may be dishonest.
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Security thereby means that Alice should not learn anything about y and Bob should not

learn anything about x, apart from what can be inferred from the value of f(x, y) [33].

Unfortunately, quantum communication over long distances poses a formidable problem.

At present, quantum key distribution has been achieved over a distance of at most 145km

in fiber [25] or 144km in freespace [28, 31]. In addition, having a direct communication link

between any two nodes that may wish to communicate is an infeasible problem even when it

comes to classical communication. Instead, we have networks of nodes, such as the present

day internet, in which only some nodes are directly connected, but are willing to relay com-

munication for other nodes who do not share a direct link. Typically it is easy to connect two

nodes who are physically close. In order to achieve longer distances, many forms of quantum

repeaters have been proposed in order to extend the range of quantum communication and

obtain a quantum version of the internet [18, 16]. Broadly speaking, quantum repeaters used

in key distribution come in two variants: in the first, the nodes along the path between Alice

and Bob are trusted, and we perform quantum key distribution between each two neighbours.

This form of repeater is known as trusted relay and was for example used in the network of

SECOQC [1], which is similar to classical methods used in wireless networks [6]a. The second

method is to have the intermediary nodes create entanglement, allowing Alice and Bob to

create entanglement between them using the concept of entanglement swapping [13]. This

is clearly more desirable than relying on trusted relays, but technologically very difficult to

achieve especially when there are many intermediary nodes. Many experiments have been

done over the last twelve years [22, 24, 11], but still we are far from using this technology

for QKD [1], and similarly for the case of two-party computation in the noisy-storage model.

What both of these approaches have in common is that they first try to create the analog of

a point-to-point link between Alice and Bob to solve the final cryptographic task.

Here, we take a novel approach using techniques from classical cryptography to bridge the

potentially large physical distance between Alice and Bob. Concretely, we consider for the first

time the case where any two nodes that are directly connected by a (quantum) communication

link can securely solve the universal cryptographic problem of oblivious transfer (OT), which

in turn enables them to solve any two-party cryptographic problem [15]. Implementations of

such protocols (link-OT) can be found in the noisy-storage model [32, 17, 27]. We thereby

assume that the network topology is fixed from the start. Any node in the network may

behave honestly, or be dishonest in the sense that it will collaborate with the dishonest Alice

or Bob. Note that this implies that all dishonest nodes work together with one of the two

parties. A dishonest node also has full control over the communication links attached to it,

making it more powerful than for example the eavesdropper in QKD who only has access to

the communication link and not to any of the individual labs. Moreover, since we assumed

that any two nodes that are directly connected by a quantum communication link can solve

any two-party cryptographic problem, this in particular implies that two honest parties can

aWe would like to emphasize that the problems solved in SECOQC aim for secure communications, rather
than secure multi-party computations.
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securely exchange messages, without leaking information to an eavesdropper. Another way

to achieve this is by performing QKD and then encrypting the messages via a one-time pad

encryption scheme. Note that our analysis differs from investigations done in multi-party

secure computation for the case that the network graph connecting the players is not fully

connected. There it is typically assumed that the players can still perform secure broadcast,

even if the graph is not fully connected (see [9] and references therein). We make no such

assumption here, but instead start out from pairwise oblivious transfer to implement oblivious

transfer between two remote nodes.

Fig. 1. If any two nodes with a direct link can perform oblivious transfer, then Alice and Bob

can solve any two-party cryptographic problem as long as there exists a path from Alice to Bob
(e.g., 3 and 4) along which all intermediary nodes are honest, or the cheating party cannot solve
a computational problem efficiently.

Results We first provide a simple protocol for oblivious transfer between Alice and Bob

who do not share a direct quantum link (path-OT), that is secure for both parties, as long as

all nodes along one of the paths from Alice to Bob are honest (we provide the definition of

oblivious transfer and the notion of security in the following section). We will refer to this

path as an honest path from Alice to Bob, which is in flavor similar to recent extensions to

the idea of trusted relays for QKD [26]. Whereas this may seem like a strong assumption,

we prove that this is in fact all we can hope to achieve without any additional resources:

Without an honest path no protocol between Alice and Bob can be secure when we are only

given the resource of link-OT and classical communication. Furthermore, without link-OT we

also cannot hope to obtain a secure protocol, i.e., having access to a large network of nodes

does not allow us to solve the problem of oblivious transfer on its own b.

We then successively relax the assumption of an honest path. First, since providing secu-

rity only for the case when a honest path exists may still be rather unsatisfactory c, we show

that we can add a security backup. More precisely, our protocol can be made secure if there is

either an honest path, or at least the dishonest node cannot break a computational assump-

tion. Note that this also means that even with the assumption of an honest path, quantum

communication (allowing for link-OT) only increases the security over classical computational

assumptions. We then show that the assumption of the honest path can be relaxed if each

bNote that there could be only a single node on the honest path from Alice to Bob, which means we cannot
simply solve this problem by assuming only very few of the nodes are dishonest as in secure multi party
computation.
cWhen there are only few paths connecting Alice and Bob it is less likely for such a path to exist
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pair of nodes are given a classical shared key for free. Finally, we look at the case where

an honest Alice (similarly for an honest Bob) performs an oblivious transfer protocol in a

network where everyone else is dishonest. We show that even in this case, where we have

made no assumptions, a non-trivial notion of security is still achievable for Alice and Bob.

More precisely, we will consider a variant of Oblivious Transfer (defined in more detail below)

which is still impossible to achieve classically but becomes possible in the presence of quantum

information.

Our results open the door for extending implementations of oblivious transfer in the noisy-

storage model to large distances similar to the case of QKD [1].

2 The protocol

Let us first explain the problem of oblivious transfer (OT) [23]; a formal definition can be

found in [17]. Alice (the sender) holds two input strings s0, s1 ∈ {0, 1}ℓ dand Bob (the receiver)

holds a choice bit c ∈ {0, 1}. If both nodes are honest, Bob should receive the input of his

choosing, sc, at the end of the protocol.

If Bob is honest, then our goal is to ensure that whatever attack Alice may mount, she can

nevertheless not gain any information about c. Conversely, if Alice is honest, we want that

a dishonest Bob is unable to gain any information about at least one of Alice’s inputs, s1−c.

Whereas oblivious transfer by itself may seem like a rather obscure task, it has in fact been

shown that Alice and Bob can use it to solve any other cryptographic problem securely [15].

Below we use OT((s0, s1), c) to indicate that we use a link-OT protocol as a black box.

The above definition corresponds to the so-called 1-out-of-2 OT, where Alice has two

strings and Bob learns one of them. One can generalize it to the k-out-of-n OT, where Alice

holds n different strings and Bob learns k of them.

We now provide two protocols, where the first is unconditionally secure for the sender

Alice eand secure for the receiver Bob provided there is an honest path. The second has

exactly opposite security properties: it is unconditionally secure for Bob and secure for Alice

provided there is an honest path.

2.1 A protocol unconditionally secure against cheating Bob

Let E be the number of links in the network and letN be the number of paths connecting Alice

to Bob that will be used in the protocol. We denote by v1, . . . , vN the nodes adjacent to Alice

on the N possible paths. We use ’+’ and ’·’ to indicate bitwise addition and multiplication

modulo 2 respectively f, and ∈R to denote that a variable has been chosen uniformly and

independently at random.

dThe two input strings are chosen uniformly at random, unknown to Bob.
eIt is secure even if there is no honest path.
fThe bitwise addition of two strings a, b ∈ {0, 1}ℓ is defined as the string (a1+ b1 mod 2, . . . , aℓ+ bℓ mod 2).
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Protocol 1:

Input: s0, s1 ∈ {0, 1}ℓ for Alice, c ∈ {0, 1} for Bob Output: sc to Bob.

Bob: Chooses N bits c1, . . . , cN ∈R {0, 1} such that c = c1 + . . . + cN . He encrypts and
sends cj to node vj along the j-th path.

Alice: Chooses N keys r1, . . . , rN ∈R {0, 1}ℓ such that r1 + . . .+ rN = 0.

Performs OT((t0,1, t1,1), c1) with with node v1 where t0,1 = s0 + r1 and t1,1 =
s1 + r1. Performs OT((t0,j , t1,j), cj) with nodes v2, . . . , vN where t0,j = rj and
t1,j = s0 + s1 + rj .

Intermediary Nodes: Node vj sends tcj ,j to Bob along the j-th path.

Bob: Computes sc = tc1,1 + . . .+ tcN ,N .

Let us first detail what we mean by ”Bob encrypts and sends cj to node vj along the

j-path“. Without loss of generality, we have assumed that each pair of adjacent nodes can

create a secret key and communicate encrypted messages (this follows form the assumption

that adjacent nodes can perform OT or by performing QKD). Hence, Bob sends to his adjacent

node in the j-th path, the name of the path j and an encryption of the bit cj (by using one

bit of a secret key). The adjacent node, decrypts the bit cj , encrypts it using one bit of the

shared key with the following node on the j-path and sends it, along with the name of the

path j. This process continues until the bit cj reaches the node vj . Note that the bit cj
remains secure against any eavesdropper, as long as all nodes along the path j are honest.

Note that the intermediate nodes send tcj ,j to Bob along the j-th path without having to

encrypt it.

We now study the correctness and security of the protocol.

First, the protocol is correct when both players are honest, since Bob computes

sc = tc1,1 + . . .+ tcN ,N = s0 + (s0 + s1) · c (1)

On every one of the N paths, we use one link-OT and secret keys of length (in bits) equal to

the length of the path (which cannot be larger than E). Hence, the rate is given by

ROT =
1

N · E
. (2)

Note that since there are no errors in the link-OTs themselves, there will be no errors in the

resulting protocol.

We now argue that the protocol is also secure. We provide a brief sketch of our argument

here; details can be found in the appendix. Suppose first that Bob is dishonest. Note first

that even if Bob is working together with all intermediary nodes, he can only learn at most

one of (t0,j , t1,j) from each of the N link-OTs. However, since Alice uses fresh keys {rj}j in

each round, and s0 and s1 are themselves completely unknown to Bob, one can show that

Bob would need to retrieve at least N + 1 entries tcj ,j in order to compute both s0 and s1.

Hence, Bob learns nothing about one of s0 or s1 as desired.

Suppose now that Bob is honest, and there exists an honest path between Alice and Bob.
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Note that Bob effectively performs a secret sharing of his input along all paths g, so that

Alice needs all shares {cj}j in order to recover c [29]. However, the share on the honest-

path remains unknown to Alice since it has been securely transmitted (using the secret keys

between adjacent pairs of nodes). The security of the link-OT ensures she cannot use it to

gain any information about c either.

Clearly, there is a tradeoff between the rate and the security of the protocol. By reducing

the number of paths used in the protocol, we can increase the rate but at the same time

there may no longer exist an honest path among the now smaller set of possible paths. This

means that security for honest Bob could no longer be guaranteed, even though an honest

path exists in the network.

2.2 A protocol unconditionally secure against cheating Alice

Our second protocol is similar, but with Alice performing a secret sharing of her inputs. Let

w1, . . . , wN be the nodes adjacent to Bob on the N possible paths.

Protocol 2:

Input: s0, s1 ∈ {0, 1}ℓ for Alice, c ∈ {0, 1} for Bob Output: sc to Bob.

Alice: Chooses N strings s01, . . . , s0N ∈R {0, 1}ℓ such that s0 = s01 + . . . + s0N and
similarly s11, . . . , s1N ∈R {0, 1}ℓ such that s1 = s11 + . . . + s1N . She encrypts and
sends l-bit strings s0j , s1j to node wj , i.e. the j-th neighbour of Bob via the j-th
path.

Bob: Performs OT((s0j , s1j), c) with nodes wj for all j. Computes sc = sc1 + . . .+ scN .

Clearly, the protocol is correct if both parties are honest. On every one of the N paths, we

use one link-OT and l bits of a secret key for every link of the path (which cannot be larger

than E). Hence, the rate is given by

ROT =
1

N · l · E
. (3)

The security of the link-OT for the receiver ensures that even if a dishonest Alice controls

all nodes adjacent to Bob, she nevertheless cannot learn c. Finally, the protocol is secure

against a dishonest Bob, assuming that there exists an honest path: In this case, at least

one of the shares s0j or s1j remains unknown to Bob, since they are securely transmitted to

node wj via the honest path, and the link-OT protocol between wj and Bob is secure for the

sender. Hence, he cannot learn both inputs s0, s1.

One may wonder whether we could have constructed a path-OT protocol without relying

on the existence of a link-OT protocol, which is impossible to obtain without assumptions [19].

However, it is easy to see that the existence of any path-OT protocol would imply a secure

link-OT protocol between two directly connected parties, Anne and Bill: First, Anne picks

a path from Alice to Bob in the original setting. Then Bill picks a path from Bob to Alice.

The remaining paths they split arbitrarily. Now Anne acts as Alice would and in addition

gInformally, a secret sharing is a procedure where a secret c is split up into so-called shares, here {cj}j , such
that c cannot be reconstructed without obtaining all shares. Relaxed schemes exist where also a smaller
number of shares is enough to reconstruct the secret.
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simulates the action of all nodes in the paths assigned to her. Bill also simulates the actions

of Bob together with all nodes in the paths assigned to him. Clearly, no matter who will be

dishonest, we are always in the setting where there is an honest path in the original protocol,

as one path is always simulated by someone being honest. This means that we cannot hope

to achieve OT in the honest-path model without additional assumptions either [19].

3 Security without an honest path

However, one might still hope that given such a strong primitive as link-OT we might be able

to achieve security using only classical communication, even without the assumption of an

honest path. Unfortunately, it turns out that an honest path is indeed a necessary condition

for security: If there is no honest path, then there exists a subset of corrupted nodes M , such

that any communication between Alice and Bob goes through them. Intuitively this means

that either M can gain information about c, or else must know enough about s0 and s1 to

be able to supply Bob with the desired output. In the first case, dishonest Alice can learn c

from M , and in the second dishonest Bob can break security by learning information about

both of Alice’s inputs. This holds even for weak forms of oblivious transfer where we allow

an error in the security (see appendix).

A security backup: Nevertheless, the assumption of an honest path may appear quite

strong, and it would be useful to have some security guarantees even if this assumption fails.

Fortunately, it is straightforward to adopt existing techniques from classical cryptography [12,

20] to extend our protocols to be secure if either the honest-path assumption holds, or else if

the dishonest party cannot break a certain computational problem. To this end, we combine

our protocol with a protocol for classical oblivious transfer. OT can be achieved classically

under a large variety of assumptions. Here, we choose to combine our protocol with the

protocol of Naor and Pinkas [21], which is secure against a dishonest sender if he cannot

break the decisional Diffie Hellman problem (DDH), and unconditionally secure against a

dishonest receiver. Note that this means that just like for our honest-path assumption, we

have unconditional security against one party, and security according to either the DDH or

the honest-path assumption against the other h. Using the {3, 2}-robust uniform OT-combiner

from [20, Theorem 2] we hence immediately obtain that there exists an oblivious transfer

protocol that is secure if either the honest path or the DDH assumption holds using two

instances of protocol 1, and two instances of the OT protocol of [21]. An explicit protocol

can be found in [20].

Secret keys: In the classical model for secure multiparty computation one usually assumes

that there exist private links between all nodes and we are trying to show security against

subsets of dishonest nodes. Clearly, this is a strong assumption as it requires us to establish

keys over potentially long distances. Nevertheless, it is interesting to consider a hybrid-model,

where there exists a complete network of classical private links and also a network of quantum

links between neighboring nodes allowing them to perform link-OT. It is easy to see that our

protocol can be transformed to achieve security as long as one of the neighbours of Alice and

Bob is honest, instead of the entire path being honest: we use the private channels to directly

hWe can similarly construct a protocol that is secure against a dishonest receiver if there exists an honest
path or he cannot break the decisional Diffie Hellman problem (DDH), and unconditionally secure against a
dishonest sender.
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communicate with the immediate neighbours instead of relying on the entire path. This easy

example shows that allowing link-OT is indeed more powerful than what one can hope to

gain in the classical model of secure multi-party computation.

No assumptions: Finally, let us consider what happens if we allow an arbitrary number

of network nodes to be dishonest. Curiously, some weak notion of security still remains.

More specifically, we can perform Protocol 1 and Protocol 2 sequentially with different

inputs for Alice and Bob in the two executions. We can, hence, construct a 2-out-of-4 path-

OT, where Alice has four inputs s0, s1, t0, t1, and Bob has two choice bits c and d such that:

if everyone is honest, then Bob learns the bits sc and td, and Alice learns nothing about

Bob’s two choice bits. If Alice is honest, but everyone else in the network is dishonest, then

Bob learns three bits, but not all four of them (the bit s1−c remains unknown). If Bob is

honest, but everyone else is dishonest, then Alice learns one of the two choice bits of Bob, but

not both of them (d remains unknown). These properties follow directly from our previous

analysis.

Note that this weak form of security is still impossible classically on a complete network

with private links, unless computational assumptions are added. In our model, it becomes

possible because we added the neighboring quantum links and assumed that we can perform

short distance OT protocols via these quantum links. One can turn this weak OT protocol

into some weak bit commitment protocol as well, leading to weak forms of coin tossing over

long distances. On the other hand, this variant of OT is not strong enough to be universal.

This, of course, should be expected, since OT is known to be impossible in the quantum world

without any assumptions.

Another series of works have considered weaker forms of security for OT, where a dishonest

player is allowed to gain some information about the other player’s inputs but not all of it

[4, 30, 10, 14, 8]. These security guarantees are only possible in the quantum world but again

are not strong enough to provide unconditional security for general two-party computation.

They defer from our variant, since in our case, the dishonest player gets full information about

some inputs and no information about the remaining.

4 Conclusions

We have shown security against dishonest Alice (or Bob) whenever there is at least one

honest path, or the dishonest party cannot break a computational assumption. To achieve

one instance of OT between distant Alice and Bob, we thereby used a number of link-OTs

that is equal to the number of all paths (N) connecting Alice and Bob. Note that the same

protocol would work had we picked a smaller number of paths. However, note that decreasing

the number of paths may make it less likely to ensure that there is indeed an honest one. One

can easily extend our protocol to be robust against the case where the intermediary nodes

may be dishonest independently of Alice and Bob, and try to alter Alice’s or Bob’s input. In

our present protocols this is of course possible since they could for example flip one of the

bits {cj}j . To make the protocol robust we can simply use a more advanced secret sharing

scheme that, similar to an error correcting code, protects against ‘errors’ introduced in the

secrets [2]. Note that depending on our choice of secret sharing scheme, we may require more
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than one honest path to achieve robustness or more communication rounds i.

Our protocols show that two-party cryptographic primitives can be implemented over

long distances in an extremely simple manner. Our result enables us to extend the range of

protocols in the noisy-storage model in a similar way as has been done in QKD [1]. Clearly,

our protocols still require a considerable amount of classical communication. However, this

is technologically much easier to achieve than entanglement swapping which of course still

remains the more desirable solution. The quantum operations that the nodes are performing

are no harder than the ones necessary in the link-OT protocols, i.e. it suffices that they create

and measure BB84 [3] states [17]. No complicated operations like Bell state measurements,

or memory are required.
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Appendix A Security of protocol 1

We can show security of our protocol using the formal definitions for fully-randomized

OT [17]. However, here we restrict ourselves to the simple arguments below in order to not

obscure our argument. These arguments are sufficient since our setting is very straightforward

to analyze.

Claim A. 1 Protocol 1 forms a secure oblivious transfer scheme with unconditional security

against Alice, and security against Bob whenever there exists an honest path.
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Proof. We first show that the protocol is correct when both Alice and Bob are honest. This

follows immediately by noting that Bob can compute

sc = tc1,1 + . . .+ tcN ,N (A.1)

= (s0 + (s0 + s1) · c1 + r1) +

N∑

i=2

((s0 + s1) · ci + r2)

= s0 + (s0 + s1) · c = sc .

We now show that the protocol is secure if Alice is honest, where we allow all intermediary

players and Bob to be dishonest. From the security of the link-OT protocol, it follows that

Bob can learn at most one of Alice’s inputs from each invocation. In the most general cheating

strategy, Bob can arbitrarily choose values as his input bits to the N link-OT protocols. Let

d1, d2, . . . , dN denote these inputs and let td1,1, . . . , tdN ,N be the inputs of Alice that Bob

learns. Note that for any choice of Bob’s inputs {di}i there exists a c ∈ {0, 1} such that

td1,1 + . . . + tdN ,N = sc. Moreover, td1,1 + . . . + tdN−1,N−1 + t1−dN ,N = s1−c. Our goal is

now to show that Bob cannot gain any information about s1−c. First of all, note that since

Alice uses fresh keys {rj}j in each link-OT, and s0 and s1 are themselves randomly chosen

bit strings unknown to Bob, the values of td1,1, . . . , tdN ,N and t1−dN ,N are all independent.

Hence, Bob would need to retrieve all such N +1 entries in order to compute both s0 and s1,

which contradicts the security of the link-OT.

It remains to prove security if Bob is honest. Note that Bob effectively performs a secret

sharing of his input

c =
∑

j∈{1,...,N}

cj (A.2)

along all paths such that the bit c can only be recovered if and only if Alice learns all shares

{cj}j . However, Alice has no information about the value of cj on the honest-path as the

communication between honest players is secure. Furthermore, the link-OT used between

Alice and vj is secure for the receiver, and hence we conclude that Alice cannot learn c as

promised.

Appendix B Necessity of the honest path

We now prove that an honest-path is a necessary condition for OT, where we use a weaker

definition which is implied by the formal ones given e.g. for (fully randomized) oblivious

transfer in [17]. Note that this is sufficient to prove the impossibility of the more difficult

task as well. More concretely, the following conditions must hold for any protocol that is

both correct and secure. Any impossibility proof for a protocol aiming for perfect security is

rather unsatisfactory since we would be willing to accept a very small probability of failure.

We hence include a security parameter ε > 0 which intuitively corresponds to the error we

are willing to accept.

First of all, for any protocol that is correct we must have that the probability that honest

Bob with input c can guess honest Alice’s input, sc, satisfies

Correctness: Pr[sc|Bob] ≥ 1− ε . (B.1)
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Furthermore, if Alice is honest, then for whatever attack Bob may conceive we have that he

cannot guess at least one of the two inputs

Security against Bob: ∃b Pr[sb|Bob] ≤
1

2ℓ
+ ε , (B.2)

Finally, if Bob is honest and his input bit is c, then for any strategy of dishonest Alice, she is

unable to learn Bob’s choice bit

Security against Alice: Pr[c|Alice] ≤
1

2
+ ε . (B.3)

To obtain an impossibility proof, our goal is now to show that (B.1), (B.2) and (B.3) can

never be satisfied simultaneously for small values of ε. That is, we can only hope to achieve

very imperfect version of oblivious transfer with a large error ε.

Claim B. 1 There exists no protocol for oblivious transfer based on only link-OT and classical

communication that is secure without an honest path between Alice and Bob with security

parameter ε < 1/4− 1/2ℓ+2.

Proof. If there is no honest path, then there exists some subset of potentially dishonest nodes

M that separates the network into two disconnected components, one containing Alice and

the other Bob. Let us now establish some basic properties of the probabilities that Alice, Bob

or M can learn s0, s1 and c in an honest execution of any protocol.

Note that in any protocol, Bob cannot gain more information about Alice’s inputs than M

can, since all information between Alice and Bob runs through M (wlog we can furthermore

assume that dishonest Bob would give any shared secret keys with Alice toM for free). Hence,

we have that

∀b Pr[sb|Bob] ≤ Pr[sb|M ] . (B.4)

Similarly, Alice cannot gain more information about Bob’s input than M can, hence

Pr[c|Alice] ≤ Pr[c|M ] . (B.5)

First, suppose that for an honest execution of any protocol the probability that M is able to

guess c satisfies Pr[c|M ] > 1/2 + ε. Then, Alice can violate the security condition (B.3) by

running the protocol honestly with Bob and then asking M for a guess of c. Hence, it must

hold that

Pr[c|M ] ≤
1

2
+ ε . (B.6)

Second, by the correctness condition (B.1) and equation (B.4), for an honest execution of any

protocol, we have

Pr[sc|M ] ≥ 1− ε . (B.7)

Third, suppose that for an honest execution of any protocol, Pr[s1−c|M ] > 1

2ℓ
+ε. Then, Bob

can violate the security condition (B.2) by running the protocol honestly with Alice and then

asking M for a guess for both s0 and s1. Hence, it must hold that

Pr[s1−c|M ] ≤
1

2ℓ
+ ε . (B.8)
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We now show that these conditions imply that whenever Bob is honest, there exists a cheating

strategy for Alice. Alice first chooses two random inputs s0, s1 ∈ {0, 1}ℓ, and runs the protocol

as an honest Alice would do. Afterwards, she picks a random b and asks M , who by definition

will willingly cooperate with any cheating party, to send her a guess s̃b for sb. Note that (B.7)

and (B.8) now tell us that the probability that M succeeds is very large for sc, but extremely

small for s1−c. Alice then outputs b as her guess for c if M guessed correctly and 1− b if M

guessed wrongly. The probability that Alice succeeds using this strategy obeys

Pr[c|Alice] (B.9)

= Pr[b = c] Pr[sc|M ] + Pr[b = 1− c](1− Pr[s1−c|M ])

≥
1

2
(1− ε) +

1

2
(1−

1

2ℓ
− ε) (B.10)

= (1− ε−
1

2ℓ+1
) . (B.11)

Comparing (B.11) with (B.3) concludes our claim.

Note, however, that OT is of course possible ifM would be fully quantum, and in particular

would be able to perform entanglement swapping between Alice and Bob.


