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We develop a quantum process tomography method, which variationally reconstruct the
map of a process, using noisy and incomplete information about the dynamics. The
new method encompasses the most common quantum process tomography schemes. It
is based on the variational quantum tomography method (VQT) proposed by Maciel et
al. in arXiv:1001.1793[quant-ph] [1].
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The characterization of a quantum system and its dynamics is a daunting challenge. The first
question which arises in this scenario is what information should we possess to characterize
the dynamics. To answer this question, one needs to choose a quantum process tomography
(QPT) scheme. Each procedure demands different resources and operations.

There are four general types of QPT procedures: (i) standard quantum process tomogra-
phy (SQPT)[2]; (ii) ancilla-assisted process tomography (AAPT)[3, 4, 5]; (iii) direct charac-
terization of quantum dynamics (DCQD)[6, 7, 8]; (iv) selective and efficient quantum process
tomography (SEQPT)[9, 10, 11].

In (i) the information is obtained indirectly, performing a set of quantum state tomogra-
phies(QST)[12, 13, 14, 15, 1, 16] of the linear independent states, which spans the Hilbert-
Schmidt space of interest, after the action of the unknown map. The second scheme (ii) - also
an indirect procedure - makes use of an auxiliary system. The information is then extracted
by means of QST of the joint space (system and ancilla). The third one (iii) obtains the
dynamical information directly - by means of quantum error detection (QED)[17] concepts
- measuring stabilizers and normalizers. Finally, the last method (iv) - which also measures
the parameters directly - consists in estimating averages over the entire Hilbert space of prod-
ucts of expectation values of two operators. For the special case of one-parameter quantum
channels, there is also an interesting method developed by Sarovar and Milburn [18].
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In [1], we developed a variational quantum tomography method (VQT). The VQT ap-
proach can reconstruct a quantum state with high fidelity out of incomplete and noisy in-
formation. The method was successfully employed in a quantum optics experiment, where
entangled qutrits were generated [16]. In this letter, we extend VQT to the tomography of
quantum processes. The new method inherits all the advantages of the VQT, and opens the
door to the characterization of maps in larger systems, where myriad of measurements could
be necessary. With the variational quantum process tomography method (VQPT) we propose
here, maps can be reconstructed, with high fidelity, using just a fraction of the effort employed
in an Informationally Complete Measurement.

The method we derive has the particular form of a linear convex optimization problem,
known as Semidefinite Program (SDP), for which efficient and stable algorithms are available
[19, 20, 21]. SDP consists of minimizing a linear objective under a linear matrix inequality
constraint, precisely,

minimize ¢ x

m
subject to {F(x) =Fy+ ZiEze >0, (1)
i=1
where ¢ € C™ and the Hermitian matrices F; € C™*" are given, and « € C™ is the vector
of optimization variables. F(x) > 0 means that F(x) is a positive matrix. The problem
defined in Eq.1 has no local minima. When the unique minimum of this problem cannot be
found analytically, one can resort to powerful algorithms that return the exact answer [20].
To solve the problem in Eq.1 could be compared to finding the eigenvalues of a Hermitian
matrix. If the matrix is small enough or has very high symmetry, one can easily determine
its eigenvalues on the back of an envelope, but in other cases some numerical algorithm is
needed. Anyway, one never doubts that the eigenvalues of such a matrix can be determined
to arbitrary precision.
A bona fide completely positive and non increasing trace map £ can be generally repre-
sented as [22]
d2
Elp) = Z XijEiPE]Tv (2)
i,j=1
where p is the system initial state and the {FE,,} form an IC-POVM (Informationally Com-
plete Positive Operator Valued Measure), i.e. a complete basis in the Hilbert-Schmidt space
satisfying
d2
Y ElE =L (3)
i=1
The {x;;} defines the super-operator x, which has all the information about the process.
It is a Hermitian positive operator. Thus the super-operator can be thought as a d? x d?
density matrix in the Hilbert-Schmidt space with d* independent real parameters (or d* — d?
in the trace preserving case). More precisely, for a process whose rank is r, the number of
independent parameters scales as O(r x d?) [22]. Therefore, the number of POVM elements
to reconstruct the map is also of order O(r x d?).
Now we recast both SQPT(i) and AAPT(ii) - which rely on tomography of states - using
the VQT[1] methodology. We will name the output states of the unknown map as g% =
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2
E(pF) = ijzl XijEipkE;. Suppose n* elements of the POVM (n* < d?) in the k** output
state have been measured, namely

TT(EApk) :pl>€0 A€ [lank}' (4)

Note that p’/{ are positive numbers, the known frequencies. The frequencies obtained from an
experiment are noisy, thus:

(1= ADpS < Tr(d"EY) < 1+ AD)pR, A € [1,n7], (5)

with A% positive and hopefully small. Let us refer to the unmeasured POVM elements as the
unknown subset. Then we can define the Hamiltonian

d2
H" = Y E}. (6)

A=nk41

Thus we obtain a cost function over the unknown subset, namely,
d2
Tr(g"H*) = Tr( Y XiEip"EJHY).

ij=1
This linear functional should be minimized, for we do not know the action of the map on the
unknown subset.

The SQPT method demands quantum state tomography in all linearly independent states

which span the Hilbert-Schmidt space. With n* measurements in k; different states, the
variational SQPT reads:

minimize (Z Tr(g"H*) + Z Ak

k A=1
X =0,
Tr(g") <1,
subject to{ Ak >0, (7)

Eq.7 returns a map x which is the optimal approximation to the unknown process x. Note
that, at the same time, we were able to identify g* optimally.

In Fig.1 and Fig.2, we illustrate the application of the method for the reconstruction of
two-qubit processes. We use the trace distance of the reconstructed map (x) to the ideal map
(Xideat) as the figure of merit. In Fig.1, we plot the minimum number of POVM elements
necessary to reconstruct a random map to a precision of T7|x — Xidear| < 1072. The mea-
surement sequence of the POVM elements is the same for all processes and is arbitrary. Of
course, for a particular process, there is an optimal choice of POVM elements that minimizes
the number of measurements. This was investigated, in the context of state tomography, in
one of our previous works [16]. Here, as we are not assuming any previous knowledge about
the process, we have no reason to choose a particular sequence of POVM elements a priori.
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Fig. 1. Reconstruction of two-qubit processes of all ranks. We plot the number of independent
POVM elements necessary to reconstruct the map against the process rank. For each rank, we
randomly generated 100 processes, and showed the minimum (best case) and maximum (worst
case) number of POVM elements needed for the reconstruction. It is also shown the average
number of POVM elements employed for the reconstruction in each rank. We consider a map
(x) reconstructed, when its trace distance to the ideal map (Xigeq) is less than 1072 (Tr|x —
Xideat|/2 < 1072).
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Fig. 2. Map reconstruction’s convergence as a function of the number of POVM elements measured.
The rank-1 map is the C-Not gate, and the other two-qubit processes of higher rank were generated
randomly. The convergence is monitored by the trace distance of the reconstructed map (x) to
the ideal map (Xideat), T7|X — Xideall/2-
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Note that the O(r x d?) scaling of number of POVM elements against the rank (r) of the
process is clearly shown in Fig.1.

In Fig.2, we track the convergence of the reconstruction as a function of the number of
measured POVM elements. As a representative of the rank-1 process we take the C-Not
gate, and for the other ranks we generate random processes. The figure suggests a practical
way to decide when to stop measuring the POVM elements. Take for instance the rank-4
process. It converges at about the 150" POVM element, and the convergence curve is a
straight line parallel to the x—axis after that measurement. Therefore, taking some reference
map to measure the trace distance, one could stop measuring when the convergence curve
stops varying, as discussed.

In the AAPT method, one adds an ancillary system with the same dimension of the main
one. Then the quantum process takes place in half subspace, and finally a quantum state
tomography is performed in the whole space, ancilla plus main system. The output state now
reads 6 = (I®E)(p) = Z?Z‘:l %i;(I® E)p*(I® E;)T. With n measurements performed in
this scheme, AAPT can be recast as

minimize (Tr(oH) + Z A))
A=1

subject toq Ay >0, (8)
(1 —Ax)px <Tr(oEx) < (1 + Ax)pa,
YA€ [1,n].

In conclusion, we have introduced a new method to perform quantum process tomography,
which reconstructs a map, with high fidelity, using noisy and incomplete information. The
method is linear and convex, and its unique solution can be obtained very efficiently. It opens
the door to the characterization of the dynamics of larger quantum systems, avoiding the
need of very large informationally complete measurements.
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