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We develop a quantum process tomography method, which variationally reconstruct the
map of a process, using noisy and incomplete information about the dynamics. The
new method encompasses the most common quantum process tomography schemes. It
is based on the variational quantum tomography method (VQT) proposed by Maciel et
al. in arXiv:1001.1793[quant-ph] [1].
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The characterization of a quantum system and its dynamics is a daunting challenge. The first

question which arises in this scenario is what information should we possess to characterize

the dynamics. To answer this question, one needs to choose a quantum process tomography

(QPT) scheme. Each procedure demands different resources and operations.

There are four general types of QPT procedures: (i) standard quantum process tomogra-

phy (SQPT)[2]; (ii) ancilla-assisted process tomography (AAPT)[3, 4, 5]; (iii) direct charac-

terization of quantum dynamics (DCQD)[6, 7, 8]; (iv) selective and efficient quantum process

tomography(SEQPT)[9, 10, 11].

In (i) the information is obtained indirectly, performing a set of quantum state tomogra-

phies(QST)[12, 13, 14, 15, 1, 16] of the linear independent states, which spans the Hilbert-

Schmidt space of interest, after the action of the unknown map. The second scheme (ii) - also

an indirect procedure - makes use of an auxiliary system. The information is then extracted

by means of QST of the joint space (system and ancilla). The third one (iii) obtains the

dynamical information directly - by means of quantum error detection (QED)[17] concepts

- measuring stabilizers and normalizers. Finally, the last method (iv) - which also measures

the parameters directly - consists in estimating averages over the entire Hilbert space of prod-

ucts of expectation values of two operators. For the special case of one-parameter quantum

channels, there is also an interesting method developed by Sarovar and Milburn [18].
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In [1], we developed a variational quantum tomography method (VQT). The VQT ap-

proach can reconstruct a quantum state with high fidelity out of incomplete and noisy in-

formation. The method was successfully employed in a quantum optics experiment, where

entangled qutrits were generated [16]. In this letter, we extend VQT to the tomography of

quantum processes. The new method inherits all the advantages of the VQT, and opens the

door to the characterization of maps in larger systems, where myriad of measurements could

be necessary. With the variational quantum process tomography method (VQPT) we propose

here, maps can be reconstructed, with high fidelity, using just a fraction of the effort employed

in an Informationally Complete Measurement.

The method we derive has the particular form of a linear convex optimization problem,

known as Semidefinite Program (SDP), for which efficient and stable algorithms are available

[19, 20, 21]. SDP consists of minimizing a linear objective under a linear matrix inequality

constraint, precisely,

minimize c†x

subject to

{

F (x) = F0 +

m
∑

i=1

xiFi ≥ 0, (1)

where c ∈ Cm and the Hermitian matrices Fi ∈ Cn×n are given, and x ∈ Cm is the vector

of optimization variables. F (x) ≥ 0 means that F (x) is a positive matrix. The problem

defined in Eq.1 has no local minima. When the unique minimum of this problem cannot be

found analytically, one can resort to powerful algorithms that return the exact answer [20].

To solve the problem in Eq.1 could be compared to finding the eigenvalues of a Hermitian

matrix. If the matrix is small enough or has very high symmetry, one can easily determine

its eigenvalues on the back of an envelope, but in other cases some numerical algorithm is

needed. Anyway, one never doubts that the eigenvalues of such a matrix can be determined

to arbitrary precision.

A bona fide completely positive and non increasing trace map E can be generally repre-

sented as [22]

E(ρ) =
d2

∑

i,j=1

χijEiρE
†
j , (2)

where ρ is the system initial state and the {Em} form an IC-POVM (Informationally Com-

plete Positive Operator Valued Measure), i.e. a complete basis in the Hilbert-Schmidt space

satisfying
d2

∑

i=1

E
†
iEi = I. (3)

The {χij} defines the super-operator χ, which has all the information about the process.

It is a Hermitian positive operator. Thus the super-operator can be thought as a d2 × d2

density matrix in the Hilbert-Schmidt space with d4 independent real parameters (or d4 − d2

in the trace preserving case). More precisely, for a process whose rank is r, the number of

independent parameters scales as O(r × d2) [22]. Therefore, the number of POVM elements

to reconstruct the map is also of order O(r × d2).

Now we recast both SQPT(i) and AAPT(ii) - which rely on tomography of states - using

the VQT[1] methodology. We will name the output states of the unknown map as ˜̺k =
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E(ρk) =
∑d2

i,j=1
χijEiρ

kE
†
j . Suppose nk elements of the POVM (nk < d2) in the kth output

state have been measured, namely

Tr(Eλρ
k) = pkλ, λ ∈ [1, nk]. (4)

Note that pkλ are positive numbers, the known frequencies. The frequencies obtained from an

experiment are noisy, thus:

(1−∆k
λ)p

k
λ ≤ Tr(˜̺kEk

λ) ≤ (1 + ∆k
λ)p

k
λ, λ ∈ [1, nk], (5)

with ∆k
λ positive and hopefully small. Let us refer to the unmeasured POVM elements as the

unknown subset. Then we can define the Hamiltonian

Hk =

d2

∑

λ=nk+1

Ek
λ. (6)

Thus we obtain a cost function over the unknown subset, namely,

Tr(˜̺kHk) ≡ Tr(

d2

∑

i,j=1

χ̃ijEiρ
kE

†
jH

k).

This linear functional should be minimized, for we do not know the action of the map on the

unknown subset.

The SQPT method demands quantum state tomography in all linearly independent states

which span the Hilbert-Schmidt space. With nk measurements in kt different states, the

variational SQPT reads:

minimize (
∑

k

Tr(˜̺kHk) +

nk

∑

λ=1

∆k
λ)

subject to























χ̃ ≥ 0,
T r(˜̺k) ≤ 1,
∆k

λ ≥ 0,
(1−∆k

λ)p
k
λ ≤ Tr(˜̺kEk

λ) ≤ (1 + ∆k
λ)p

k
λ,

∀λk ∈ [1, nk] and k = [1, kt].

(7)

Eq.7 returns a map χ̃ which is the optimal approximation to the unknown process χ. Note

that, at the same time, we were able to identify ˜̺k optimally.

In Fig.1 and Fig.2, we illustrate the application of the method for the reconstruction of

two-qubit processes. We use the trace distance of the reconstructed map (χ) to the ideal map

(χideal) as the figure of merit. In Fig.1, we plot the minimum number of POVM elements

necessary to reconstruct a random map to a precision of Tr|χ − χideal| < 10−2. The mea-

surement sequence of the POVM elements is the same for all processes and is arbitrary. Of

course, for a particular process, there is an optimal choice of POVM elements that minimizes

the number of measurements. This was investigated, in the context of state tomography, in

one of our previous works [16]. Here, as we are not assuming any previous knowledge about

the process, we have no reason to choose a particular sequence of POVM elements a priori.
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Fig. 1. Reconstruction of two-qubit processes of all ranks. We plot the number of independent

POVM elements necessary to reconstruct the map against the process rank. For each rank, we
randomly generated 100 processes, and showed the minimum (best case) and maximum (worst
case) number of POVM elements needed for the reconstruction. It is also shown the average
number of POVM elements employed for the reconstruction in each rank. We consider a map

(χ) reconstructed, when its trace distance to the ideal map (χideal) is less than 10−2 (Tr|χ −
χideal|/2 < 10−2).
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Fig. 2. Map reconstruction’s convergence as a function of the number of POVM elements measured.
The rank-1 map is the C-Not gate, and the other two-qubit processes of higher rank were generated
randomly. The convergence is monitored by the trace distance of the reconstructed map (χ) to
the ideal map (χideal), Tr|χ− χideal|/2.
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Note that the O(r × d2) scaling of number of POVM elements against the rank (r) of the

process is clearly shown in Fig.1.

In Fig.2, we track the convergence of the reconstruction as a function of the number of

measured POVM elements. As a representative of the rank-1 process we take the C-Not

gate, and for the other ranks we generate random processes. The figure suggests a practical

way to decide when to stop measuring the POVM elements. Take for instance the rank-4

process. It converges at about the 150th POVM element, and the convergence curve is a

straight line parallel to the x−axis after that measurement. Therefore, taking some reference

map to measure the trace distance, one could stop measuring when the convergence curve

stops varying, as discussed.

In the AAPT method, one adds an ancillary system with the same dimension of the main

one. Then the quantum process takes place in half subspace, and finally a quantum state

tomography is performed in the whole space, ancilla plus main system. The output state now

reads ˜̺ = (I ⊗ E)(ρ) =
∑d2

i,j=1
χ̃ij(I ⊗ Ei)ρ

k(I ⊗ Ej)
†. With n measurements performed in

this scheme, AAPT can be recast as

minimize (Tr(˜̺H) +

n
∑

λ=1

∆λ)

subject to























χ̃ ≥ 0,
T r(˜̺) ≤ 1,
∆λ ≥ 0,
(1−∆λ)pλ ≤ Tr(˜̺Eλ) ≤ (1 + ∆λ)pλ,
∀λ ∈ [1, n].

(8)

In conclusion, we have introduced a new method to perform quantum process tomography,

which reconstructs a map, with high fidelity, using noisy and incomplete information. The

method is linear and convex, and its unique solution can be obtained very efficiently. It opens

the door to the characterization of the dynamics of larger quantum systems, avoiding the

need of very large informationally complete measurements.
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