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1 Introduction

The Weyl-Heisenberg group [1] first appeared in nineteenth century algebraic geometry, and

is at the root of many things including harmonic analysis, theta functions, and—of course—

quantum mechanics. Its automorphism group within the unitary group—the largest subgroup

of the unitary group having the Weyl-Heisenberg group as a normal subgroup—appears in

quantum information theory under the name of the Clifford group [2, 3].
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The particular problem that motivated the present study is known as the SIC problem

[4, 5]: in a complex Hilbert space of finite dimension N , find N2 unit vectors |ψI〉 such that

|〈ψI |ψJ 〉|2 =
1

N + 1
, for all I 6= J . (1)

Such a collection of equiangular vectors [6] is known as a SIC, which is short for a Symmetric

Informationally Complete POVM, where POVM is short for Positive Operator Valued Mea-

sure. In physics a SIC represents a kind of fiducial measurement, of interest for quantum

state tomography [5] and for at least one approach to quantum foundations [7, 8, 9]. Such

measurements can be—and in low dimensions, have been [10, 11, 12]—realised in the labora-

tory, but—perhaps surprisingly—the theoretical SIC problem as stated is not easy to solve.

At the moment exact solutions are known in dimensions 2–16, 19, 24, 35, and 48 (with 16

added here), while convincing numerical solutions are available in dimensions 2–67. These

results are due to several authors; we refer to Scott and Grassl [13] for complete references,

and just remark that beyond three dimensions the known SICs look appallingly complicated

at first sight.

Zauner’s conjecture [4] states that in every dimension there is an orbit of the Weyl-

Heisenberg group which forms a SIC, and moreover that every vector in such a SIC is left

invariant by an element of the Clifford group of order three. Hence the problem of finding

a SIC reduces to that of finding a suitable fiducial vector for the group to act on, and the

second—very mysterious—part of the conjecture provides some guidance when one looks for

such a fiducial vector. All available evidence supports Zauner’s conjecture [13, 14].

The representation theory of the Weyl-Heisenberg group tells us that once one of its

generators is given in diagonal form all its group elements are represented by monomial

phase-permutation matrices, that is by unitary matrices having only one non-zero entry per

column, and per row [1]. Being products of a permutation matrix and a diagonal unitary,

such matrices are also said to be of shift-and-multiply type. This property of the group can

be traced back to the way that the representation is induced from that of its center. It is

an important property shared by many, but not all, unitary operator bases of group type (or

“nice error bases”, as they are called in quantum information theory) [15].

In general the Clifford group is not represented by phase-permutation matrices. However,

after a few preliminaries in Section 2, we devote Section 3 to a representation of the Weyl-

Heisenberg group which is special to the case when the dimension is a square, N = n2. It can

be thought of as a finite dimensional analogue of the Zak basis [16], and is used in the theory

of theta functions [17]. Our observation is that in this representation the entire Clifford group

is given by phase-permutation matrices. In Section 4 we demonstrate that this remarkable

feature is present if and only if the dimension is a square. In the remaining sections we explore

some ways in which the phase-permutation basis can be useful. Section 5 illustrates how it

is, in a way, aligned to SICs, while Section 6 is devoted to exact solutions for SICs in 22 and

32 dimensions. In the former case they are trivial to obtain. In the latter they are not, but

they look significantly better compared to how they look in the standard basis [13, 18]. In

Section 7, we present new exact solutions for dimension 42; previously these were known in

numerical form only. Section 8 contains a remark on Mutually Unbiased Bases, and Section 9

summarises our conclusions. There are two appendices containing group theoretical theorems.



406 The monomial representations of the Clifford group

2 Preliminaries

We introduce the Weyl-Heisenberg group by writing down a defining representation. Choose

a dimension N and assume that {|0〉, . . . , |N − 1〉} is an orthonormal basis of CN . Define two

phase factors ω, τ by

ω = e
2πi
N , τ = −e iπ

N (2)

and two operators X,Z by

X|u〉 = |u+ 1〉 , Z|u〉 = ωu|u〉 , u ∈ {0, . . . , N − 1} , (3)

where here and elsewhere the labels of the vectors are computed modulo N . The matrix

group generated by {τ,X,Z} is the defining representation of the Weyl-Heisenberg group

H(N). (It is known [1] that all irreducible representations of H(N) in dimensions larger than

one are unitarily equivalent to the defining one). Note that X and Z are represented by

phase-permutation matrices, and the same is true for all the elements of the group since the

product of two phase-permutation matrices is again a phase-permutation matrix.

The Weyl-Heisenberg groups H(N) behave slightly differently depending on whether N is

even or odd. The underlying reason is that while one always has the relations

ωN = 1 , XN = ZN = I , (4)

the order of τ depends on the parity of N :

τN =

{

−1, N even

1, N odd.
(5)

As a consequence we will sometimes end up using arithmetic modulo N in the odd case and

modulo 2N in the even case. To unify the notation, we introduce the symbol

N̄ =

{

N, N odd

2N, N even.
(6)

Since ZX = ωXZ, the introduction of the phase factor τ may seem unneeded. If N is odd, τ

is in fact a power of ω. The reason it is included in the even dimensional case can be traced

back to the fact that there are group elements, such as XZ, that generate cyclic subgrops of

order 2N . For us it will be crucial that the Clifford group defined below acts on H(N) as we

have defined it here.

Such a distinction between the even and odd cases also occurs when defining discreet

analogues of the Wigner function on finite-dimensional systems. A naive extension of the

odd dimensional definition does not give a function with the desired properties and the phase

space is enlarged until the function specifies the quantum state uniquely (see reference [19]

for a recent review).

To analyze the structure of the Weyl-Heisenberg group, we define the group elements

Dij = τ ijXiZj . (7)

for i, j = 0, . . . , N̄ − 1. One can then verify the central composition law

DijDlm = τ lj−imDi+l,j+m . (8)
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Because the (non-scalar) generators X,Z of H(N) are just D10 and D01 respectively, the

composition law (8) implies that any element of H(N) is of the form τkDij for suitable

integers i, j, k.

Note that the phase factor τ ij in (7) depends on ij modulo N̄ , whereas XiZj only depends

on i and j modulo N (by virtue of (4)). Hence the group law (8) says that H(N) modulo

phase factors is isomorphic to Z2
N , where ZN is the group of integers {0, . . . , N − 1} with

addition modulo N .

The situation encountered in the last paragraph will become a general theme below. De-

pending on our objective, we will take one of two points of view. Sometimes we will be

concerned with concrete matrix representations of the groups involved, in which case we will

be specific about all phase factors involved, and work with arithmetic modulo N̄ . In other

situations, however, a more abstract approach turns out to be beneficial. In these cases, we

will factor out phases and work solely in terms of the discrete group Z2
N and its symmetry

groups.

To make the abstract approach more precise, let Z(N) be the center of the Heisenberg-

Weyl group H(N). From the group law (8), it is evident that Z(N) = {τk I}k=0,...,N̄−1, its

elements are precisely the phase factors times the identity matrix. Our previous observation

can now be phrased more succinctly as

H(N)/Z(N) ≃ Z2
N . (9)

Unless N is a prime, the integers modulo N form a ring but not a field. Therefore, strictly

speaking, the “vectors” (i, j) ∈ Z2
N are elements of a module rather than of a vector space (the

reader unfamiliar with the concepts of rings, fields and modules may consult, for example,

Ref. [20]). But we permit ourselves a slight abuse of terminology and speak of vectors in Z2
N .

We will be concerned with another group: the Clifford group. It consists of all unitary

operators UG normalising the Weyl-Heisenberg group, in the sense that for all i, j there are

i′, j′, k′ such that

UGDijU
†
G = τk

′

Di′,j′ . (10)

Not all transformations (i, j) 7→ (i′, j′) are possible. The fact that the group law (8) involves

addition of vectors in Z2
N̄

suggests that any such transformation must be linear. Further, the

fact that the symplectic inner product (lj − im) modulo N̄ of the vectors (i, j) and (l,m)

appears in (8) suggests that this inner product might be an invariant

lj − im = l′j′ − i′m′ mod N̄ (11)

of the action of the Clifford group.

These intuitions turn out to be true and yield an almost exhaustive understanding of the

Clifford group [14]. More precisely, recall that SL(2, N̄) is the group of linear transformations

on ZN̄ leaving the symplectic inner product invariant. A ZN̄ -valued matrix

G =

(

α β
γ δ

)

(12)

is an element of SL(2, N̄) if and only if

detG = αδ − βγ = 1 mod N̄ . (13)
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In one direction, we have that for every G ∈ SL(2, N̄), there is an element UG in the Clifford

group such that

UGDijU
†
G = DG(ij)

. (14)

A converse statement will be given below. The unitaries appearing in (14) are known explicitly

(c.f. Ref. [14] for more details): if β is relatively prime to N̄ —so that it has a multiplicative

inverse—one finds

UG =
1√
N
eiθ

N−1
∑

u,v=0

τβ
−1(δu2−2uv+αv2)|u〉〈v| , (15)

where eiθ is an arbitrary phase. If β is not relatively prime to N̄ we can use the decomposition

(

α β
γ δ

)

=

(

0 −1
1 x

)(

γ + xα δ + xβ
−α −β

)

, (16)

where the integer x can always be chosen so that δ+ xβ is relatively prime to N̄ . We remark

that in this representation symplectic matrices are represented by unitary phase-permutation

matrices if and only if they are of the form

G =

(

α 0
γ α−1

)

. (17)

They form a rather small subgroup.

Let us return to the more abstract point of view alluded to before. Since phase factors

are left invariant by a unitary conjugation

UG(τ
k I)U †

G = τk I , (18)

the Clifford group acts on H(N)/Z(N) ≃ Z2
N . It is easy to see that the action of the Clifford

group on H(N)/Z(N) is precisely isomorphic to SL(2, N). This equivalence holds irrespective

of whether N is even or odd and delivers the converse statement promised above. A proof is

given in Appendix A.

Symplectic matrices of order 3 are of special interest. If N > 3 it can be shown that a

symplectic matrix is of order 3 if and only if its trace equals −1 mod N [14]. According to a

precise form of Zauner’s conjecture a SIC fiducial can always be chosen to be an eigenvector

of the unitary UZ representing the symplectic matrix

GZ =

(

0 −1
1 −1

)

. (19)

In the standard representation UZ is not given in monomial form (although monomial rep-

resentations of other symplectic matrices of order 3 can be found for special values of N

[14]).

The phase of UZ is chosen so that U3
Z is the identity operator; this makes the eigenvalues

third roots of unity 1, e2πi/3, e4πi/3, with corresponding eigenspaces E0, E1, E2. Using Gauss

sums one can calculate the dimension of the three eigenspaces [4], and the remaining freedom

in the phase of UZ (multiplication with a third root of unity to rotate E0, E1, E2) is used

to put the eigenspaces in decreasing order. The dimensions of the eigenspaces are given in
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Table 1 Dimension of the three eigenspaces E0, E1 and E2 of the Zauner unitary in dimension N

N dim E0 dim E1 dim E2
3k k + 1 k k − 1

3k + 1 k + 1 k k
3k + 2 k + 1 k + 1 k

Table 1. The numerical evidence [13] strongly suggests that the eigenspace E0 always contains

SIC fiducials, while if N = 3k or N = 3k + 1 the other two eigenspaces never do. The case

N = 3k + 2 does not occur if N = n2.

Finally we will be interested in the extended Clifford group, which includes anti-unitary

operators as well [14]. The determinants of the 2 by 2 matrices are then allowed to take the

values ±1. The extended Clifford group divides the set of all SICs into orbits in a natural

way: acting on a given SIC with an element of this group produces another SIC since we

assume that the SIC itself is an orbit under the Weyl-Heisenberg group.

3 Representation with phase-permutation matrices

From now on we are in a Hilbert space of dimension N = n2,

HN = Hn ⊗Hn , (20)

for any integer n > 1. We add one more phase factor to the ones we have defined already:

ω = e
2πi
N , τ = −e iπ

N , σ = e
2πi
n . (21)

Our key observation is that

ZX = ωXZ ⇒ [Xn, Zn] = 0 . (22)

Hence the Weyl-Heisenberg group admits an Abelian subgroup,

S = 〈Xn, Zn, τI〉 , (23)

of maximal order NN̄ . By diagonalising the elements of S, we define a new basis with basis

vectors labelled |r, s〉, where r and s are integers modulo n. Indeed

Xn|r, s〉 = σr|r, s〉 , Zn|r, s〉 = σs|r, s〉 . (24)

Some phase choices are still to be made. We have settled for a choice which implies that the

generators of the group are represented by

X|r, s〉 =
{

|r, s+ 1〉 if s+ 1 6= 0 mod n

σr|r, 0〉 otherwise ,

Z|r, s〉 = ωs|r − 1, s〉 .
(25)

We refer to this representation as the phase-permutation representation. It treats the two

generators X and Z in an even-handed way, so in a sense we have gone “half-way” to the

Fourier basis. The relation to the standard Weyl basis is given by

|r, s〉 = 1√
n

n−1
∑

t=0

ω−ntr|nt+ s〉 . (26)



410 The monomial representations of the Clifford group

The matrix effecting this transformation is of the form Fn⊗ I, where Fn is the n by n Fourier

matrix.

The entire Weyl-Heisenberg group is represented by phase-permutation matrices, but this

time more is true. In this representation the entire Clifford group is represented by phase-

permutation matrices. The following armchair argument explains why: In all dimensions,

the Clifford group permutes the various maximal Abelian subgroups of the Weyl-Heisenberg

group. It also preserves the order of any group element. But if N = n2 there is a unique

maximal Abelian subgroup whose elements (modulo phases) have orders that are the divisors

of n; namely the one that defines our basis. Therefore the Clifford group reorders the elements

of this Abelian subgroup, and it follows that it reorders the basis vectors while possibly

multiplying them with phases.

The permutations involved are easy to deduce. Let G be a general symplectic matrix as

given in eq. (12). Using its inverse we observe that

U †
GX

nUG = U †
GDn0UG = Dδn,−γn = τ−γδNXδnZ−γn ,

U †
GZ

nUG = U †
GD0nUG = D−βn,αn = τ−αβNX−βnZαn .

(27)

As usual the case of odd n is simpler, since τN = 1 in this case. Let us therefore assume that

n is odd to begin with. We see that

XnUG|r, s〉 = UGX
δnZ−γn|r, s〉 = σδr−γsUG|r, s〉 ,

ZnUG|r, s〉 = UGX
−βnZαn|r, s〉 = σ−βr+αsUG|r, s〉 .

(28)

It follows that UG|r, s〉 is a common eigenvector of the diagonal operators Xn and Zn, and

indeed that

UG|r, s〉 = eiθrs |δr − γs,−βr + αs〉 for n odd, (29)

where θrs is a phase to be determined. It again follows that an arbitrary symplectic unitary

is represented by a phase-permutation matrix.

The argument can be extended to the even dimensional case, but since we also need to

calculate the phases θrs we will proceed a little differently in the general case. First we define

m =

{

0 n odd
n
2 n even .

(30)

We may assume that the matrix element β is relatively prime to N̄ , because if it is not we

can fall back on the decomposition (16). Using the standard representation (15), and relation

(26) between the two bases, it is straightforward to show that

〈r′, s′|UG|r, s〉 =
eiθ

n2
τβ

−1(δs′2−2ss′+αs2)
n−1
∑

t,t′=0

ωnt(−r+β−1(−s′+αs+mα))ωnt′(r′+β−1(δs′−s+mδ)),

(31)

where m was defined in eq. (30). Performing the sums, and using the fact that αδ − βγ = 1

modulo n, we see that

〈r′, s′|UG|r, s〉 = eiθτβ
−1(δs′2−2ss′+αs2) ⇔

{

r′ = δr − γs−m δ(1+α)
β

s′ = −βr + αs+mα ,
(32)
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and zero otherwise. If n is odd then m = 0, and we have reproduced eq. (29) but with the

phases now included. If n is even we use modulo 2 arithmetic to polish the m-dependent

term; note that β = 1 modulo 2 since β is relatively prime to n. Thus we arrive at our key

result:

Theorem 1 When the dimension is a square number N = n2, the Clifford group admits a

representation by phase-permutation matrices. The Weyl-Heisenberg subgroup is represented

by eqs. (25). For an SL(2, N̄) element of the form (12), with β and N relatively prime and

m and s′ as above, the representation is given by

UG|r, s〉 = eiθτβ
−1(δs′2−2ss′+αs2)|δr − γs+mγδ,−βr + αs+mαβ〉 . (33)

The overall phase θ remains undetermined. The case when β is not relatively prime to N can

be recovered from eq. (16).

Note that if G = G′ modulo n (using modulo n arithmetic for the matrix elements) then

UG and UG′ produce the same permutations of the basis elements, that is to say they differ

only by a diagonal unitary.

The group element of most interest to us is Zauner’s unitary, corresponding to the matrix

(19). It is given explicitly by

UZ |r, s〉 = e
iπ(N−1)

12 τ r
2+2rs| − r − s−m, r〉 . (34)

Here the overall phase θ was chosen to ensure that U3
Z is the identity operator.

A general element of the extended Clifford group is obtained by replacing SL(2, N̄) with

the group ESL(2, N̄), allowing also det −1 mod N̄ . The additional matrices E ∈ ESL(2, N̄)\
SL(2, N̄) can be written as a product

E = GJ , G ∈ SL(2, N̄) , J =

(

1 0
0 −1

)

. (35)

To the matrix J there corresponds an anti-unitary operator UJ whose action on the phase-

permutation basis is given by

UJ |r, s〉 = | − r, s〉 . (36)

Hence, the extended Clifford group also acts through phase-permutation matrices on the basis

vectors.

4 Proof of Uniqueness

We have seen by construction that the Clifford group admits a representation by phase-

permutation matrices if the dimension N = n2 is a square. We will now prove the converse,

that this is possible only in square dimensions. Since the construction hinged on a special

maximal Abelian subgroup of the Weyl-Heisenberg group—it was stabilized (transformed into

itself) by the Clifford group—we begin with a theorem that shows that this is a necessary

feature of any phase-permutation representation. It actually applies to a slightly more general

situation, in which we consider a group G which may be the entire Clifford group, but which

may also be any subgroup of the Clifford group which includes the Heisenberg group H(N)

as a subgroup.
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An Abelian subgroup S of H(N) is called maximal if no element g ∈ H(N) \S commutes

with everything in S. Equivalently, S is maximal if it has the maximal possible order NN̄

[21].

Theorem 2 The following two statements are equivalent:

1. There exists a phase-permutation representation of G on CN which is irreducible when

restricted to H(N).

2. There exists a maximal Abelian subgroup of H(N) which is stabilised by G

Proof. First we establish that 2 ⇒ 1. Let S be a maximal Abelian subgroup of H(N).

Choose a basis in which all elements of S are simultaneously diagonal. If we select one repre-

sentative from every coset in S/Z(N), their diagonals define N orthogonal vectors (because

H(N)/Z(N) defines a unitary operator basis). From this one concludes that a maximal

Abelian subgroup defines a joint eigenbasis which is unique up to permutations and rephas-

ings. It is then obvious that 2 ⇒ 1. This was used in Section 3.

To prove that 1 ⇒ 2, denote the phase-permutation basis by {|ea〉}Na=1. By assumption

H(N) simply permutes the corresponding rays (vectors up to phase), and acts transitively on

them. Let S be the subgroup of the Heisenberg group leaving the particular projector |e1〉〈e1|
invariant. Since the orbit of H(N) acting on the set of projectors has size N we know that

|H(N)|/|S| = N , that is to say that

|S| = |H(N)|
N

=
N2N̄

N
= NN̄ , (37)

where N̄ is the cardinality of the center. Modulo phases, S must thus be a subgroup of H(N)

of order N . By definition, all elements of S have the common eigenvector |e1〉. But it is a

direct consequence of the commutation relations that two elements of the Heisenberg group

have a common eigenvector if and only if they commute. Therefore S is an Abelian subgroup

of H(N) and has order NN̄ . Hence S is maximally Abelian.

Now H(N) acts monomially on the joint eigenvectors of any maximal Abelian subgroup.

It also acts transitively, by irreducibility. Thus the orbit of |e1〉 under H(N) consists precisely

of the joint eigenvectors of S (up to phases). But we showed before that the orbit coincides

with {|ea〉}Na=1 �.

We now focus on the case where G is the full Clifford group. Are there cases beyond

square dimensions where there is a maximally Abelian subgroup S of H(N) stabilized by the

Clifford group? By Section 2, the orbit of an element of H(N)/Z(N) under the action of the

Clifford group corresponds to the orbit of a vector, v ∈ Z2
N , under the action of SL(2, N).

The following characterization of these orbits is implied by Lemma 27 of [21]. We re-prove it

here to make the presentation self-contained.

Recall that the order of a vector v ∈ Z2
N is the least integer k ≥ 1 such that kv ≡ 0, where

the triple bar equality sign denotes equality modulo N .

Lemma 1 The orbits of the action of SL(2, N) on Z2
N are the sets

Ok = {v ∈ Z2
N | ord v = k} (38)

of vectors of constant order.
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Proof. We first prove that S ∈ SL(2, N) cannot change the order of a vector v. Indeed,

if kv ≡ 0, then

k(Sv) ≡ S(kv) = 0 (39)

so that ordSv ≤ ord v. Replacing S by S−1, we see that ordSv ≥ ord v. Hence equality must

hold as claimed.

The comparatively difficult part is to show that SL(2, N) acts transitively on the sets Ok.

Let v ∈ Z2
N be of order k. By definition we thus have that

N | (kvi) ⇒
N

k
| vi , (40)

where vi, i = 1, 2 are the components of v. Therefore, the vector

v′ :=
1

N/k
v (41)

is well-defined as an element of Z2
N . One checks that ord v′ = N .

We go on to show that there is a symplectic matrix S ∈ SL(2, N) whose first column

equals v′. That is the case if there are integers x, y such that

1 ≡ det

(

v′1 x
v′2 y

)

= v′1y − v′2x . (42)

By Bézout’s identity, there are integers a, b such that

v′1a+ v′2b = g , (43)

where g = gcd(v′1, v
′
2). It must be the case that g and N are co-prime, for otherwise (N/g)

would be an integer smaller than N such that (N/g)v′ ≡ 0, which would contradict the fact

that ord v′ = N . Thus there exists a multiplicative inverse g−1 of g modulo N . Hence

y = g−1a, x = −g−1b (44)

provides a solution to (42).

Finally, let w be another vector of order k. Let Sv be a symplectic matrix with first

column equal to v′, and let Sw be a symplectic matrix with first column equal to w′. Then

SwS
−1
v v′ ≡ w′ ⇒ SwS

−1
v v ≡ w . (45)

Thus any two elements of Ok can be mapped onto each other by means of an element of

SL(2, N) �.

The preceding lemma allows us to decide in which dimensions there is a monomial rep-

resentation of the Clifford group just by counting orbit sizes. It seems simpler to do that in

prime-power dimensions.

Lemma 2 Let N = pq11 . . . pqkk be the decomposition of the dimension into powers of distinct

primes.

There is an order-N subgroup of Z2
N which is stabilized by SL(2, N) if and only if the

same is true for all dimensions Ni = pqii , for i = 1, . . . , k.
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The statement follows from the more general fact that the Weyl-Heisenberg group and the

Clifford group factor into direct products for composite N . It is proven in Appendix B. We

are ready to conclude this section:

Theorem 3 There exists a monomial representation of the Clifford group which contains

the Weyl-Heisenberg group as an irreducible subgroup if and only if the dimension N = n2 is

a square.

Proof. Using the notions of Lemma 2, let Ni = pqii . Let V ⊂ Z2
Ni

be a non-trivial

subspace which is invariant under the action of SL(2, N).

Let k = max{ord v | v ∈ V } be the largest order of any element in V . By Lagrange’s

Theorem, k is of the form k = pli for 0 ≤ l ≤ qi. Because v ∈ V ⇒ piv ∈ V , there is also an

element of order pl−1
i in V , and, indeed, any power of pi up to the lth appears as the order

of some element in V .

By Lemma 1 and the assumption that V be SL-invariant, we find that

V = {v ∈ Z2
Ni

| ord v ≤ pli} = pqi−l
i Z2

Ni
. (46)

Hence |V | = p2li , which is equal to Ni if and only if l = qi/2. That is possible if and only if

qi is even, which implies the claim �.

In the remaining sections we turn our attention to applications of the phase-permutation

basis. We return to our original motivation of SICs. First we discuss a general property

of SICs on the phase-permutation basis, and then in sections 6 and 7 we use this basis to

construct SICs in dimensions 22, 32, and 42. The sixteen dimensional case has so far not been

solved in the Weyl basis. Finally, in Section 8 we consider sets of Mutually Unbiased Bases

(MUB) in the phase-permutation basis.

5 Images of SICs in the probability simplex

The first outcome of this is in terms of probabilities. Recall that a pure quantum state

represented by the Hilbert space vector

(z0, z1, . . . , zN−1)
T = (

√
p0,

√
p1e

iµ1 , . . . ,
√
pN−1e

iµN−1)T , (47)

gives rise to a probability vector with components pi. This probability vector gives the

barycentric coordinates of a point within the probability simplex associated to the basis

chosen since
N−1
∑

i=0

pi = 1 . (48)

If we have a set of such pure states connected by a group represented by phase permutation

matrices, then their probability vectors will be related by permutations of the coordinate axes.

It follows that they lie on a sphere centered around the midpoint of the probability simplex.

More can be said if the vector in eq. (47) is a SIC fiducial, so that the orbit under the

Weyl-Heisenberg group forms a SIC. In the standard basis, where the subgroup generated by

Z is diagonalised, the N states Zr|ψF 〉 all project to the same probability vector. Also, the

ith component of the probability vector corresponding to Xx|ψF 〉 is pi−x. It is then the case

that [22, 23]
N−1
∑

i=0

pipi+x =

{

2
N+1 if x = 0
1

N+1 if x 6= 0 mod N .
(49)
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For x = 0, this determines the length of the probability vector, or the radius of the sphere

in which it is inscribed. The remaining equations also admit an interesting geometrical in-

terpretation [24]: these equations give not only the length of the probability vectors but also

their mutual angles. This means that the probability image of the N2 SIC vectors is itself a

regular simplex with N vertices. Once this geometrical interpretation is available it is unsur-

prising that the N equations (49) are redundant and do not by themselves determine all the

coefficients pi (unless N = 2). But they are still helpful.

The reason why the N2 vectors in the SIC give rise to only N images in the projection is

that the images form an orbit under the subgroup that is complementary to the diagonalised

subgroup. It is clear that something similar should happen in the phase-permutation basis,

where again there is an Abelian subgroup of order N that does not move the projected points.

To show this we denote the components of the SIC fiducial |ψF 〉 by zrs =
√
prse

iµrs , and find

〈ψ0|XnuZnv|ψ0〉 =
n−1
∑

r,s=0

prsσ
ru+sv

⇒ |〈ψ0|XnuZnv|ψ0〉|2 =
n−1
∑

r,s=0

n−1
∑

r′,s′=0

prspr′s′σ
(r−r′)u+(s−s′)v .

(50)

The absolute values on the left hand side are known from the condition defining a SIC. Using

this, and summing over the integers u and v, we find

n−1
∑

r,s=0

p2rs =
1

N

(

1 +
N − 1

N + 1

)

=
2

N + 1
. (51)

More generally we can take a Fourier transform of eq. (50). This gives N − 1 additional

equations for the absolute values,

n−1
∑

r,s=0

prspr+x,s+y =
1

N + 1
. (52)

Here x, y are integers modulo n, not both zero. This is analogous to what happens in the

standard basis, and the geometrical interpretation is the same: when the SIC is projected to

the basis simplex we see a regular simplex centered at the origin with just N vertices. Its

orientation differs from the projection to the standard basis (see Fig 1); the basis is better

aligned to the SIC than the standard basis. This observation will be useful in what follows.

6 SIC fiducials for N = 22 and 32

If we use the phase-permutation representation it becomes very easy to find the SICs inN = 22

dimensions. In fact the absolute values entering the fiducial are determined by Zauner’s

conjecture, normalisation, and eq. (51). Alternatively one can simply solve the equations

defining a Weyl-Heisenberg covariant SIC. Before doing so it is convenient to rephase the

basis through

(|0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉) → (τ−2|0, 0〉, τ−7|0, 1〉, τ−5|1, 0〉, |1, 1〉) . (53)
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Fig. 1 The images of an N = 4 SIC, in the two bases we discuss. The phase-permutation basis
(the large tetrahedron on the right) is aligned to the SIC (the small tetrahedron) in a way that the
standard basis (the large tetrahedron on the left) is not. The corresponding pictures for N = 9
(not shown) are eight dimensional, and would show that the faces of the eigenvalue simplex for the
phase-permutation basis are nicely aligned with the image of the SIC.

This gives the representation

X = τ









0 i 0 0
−1 0 0 0
0 0 0 1
0 0 i 0









, Z = τ









0 0 −1 0
0 0 0 1
i 0 0 0
0 i 0 0









. (54)

There are altogether 44 = 256 possible solutions for a SIC fiducial, giving rise to 16 SICs

altogether. The solutions are








x
is1

it1

iu1









,









is2

x
it2

iu2









,









is3

it3

x
iu3









,









is4

it4

iu4

x









, (55)

where si, ti, ui are integers from 0 to 3,

x =

√

2 +
√
5 , (56)

and an overall normalisation has been ignored. This simple form of the SIC vectors has been

found before by Zauner [25], who arrived at it by casting the Zauner unitary into phase-

permutation form, and from an alternative point of view by Belovs [26]. Each of the vectors

is left invariant by a Zauner unitary of order 3, and the 16 SICs form a single orbit under

the Clifford group. The result of the numerical searches [5, 13] is thus fully confirmed. The

images in the probability simplex (see Section 5, and Fig. 1) coincide for all the SICs, and

they are nicely oriented. The structure of the N = 4 SICs, and their entanglement properties,

were studied in detail recently [27].

The case of N = 32 is much harder. Lest our readers be disappointed by this, we strongly

recommend they begin by looking at the answer found—by means of a Magma calculation—in

the standard representation [13]. Afterwards our result will come as a pleasant surprise.
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With our canonical choice of UZ , Zauner’s conjecture implies that the SIC fiducial takes

the special form

|ψ〉 = −z1ω7|1, 1〉 − z2ω|2, 2〉
+ z3(ω

6|0, 2〉+ |1, 0〉+ ω8|2, 1〉) + z4(ω
6|0, 1〉+ |2, 0〉+ ω5|1, 2〉) .

(57)

We included some convenient phase factors. We exploit the arbitrariness in the overall phase

to write the zj in the form

z1 =
√
p1e

iµ0 , z2 =
√
p2e

−iµ0 , z3 =
√
p3e

iµ3 , z4 =
√
p4e

iµ4 , (58)

where it is assumed that −π/2 < µ0 ≤ π/2.

The necessary and sufficient condition for a normalized vector |ψ〉 to be a fiducial vector

is that

|〈ψ|Djk|ψ〉|2 =
1

10
(59)

for all j, k not both zero—a total of 80 equations. However the Zauner symmetry means that

if eq. (59) is satisfied for the vector (j, k) it is automatically satisfied for the (up to) two

other vectors obtained by acting with the Zauner matrix. Also, if it is satisfied for (j, k) it

is automatically satisfied for (−j,−k). Consequently we can reduce the 80 equations to 15,

which it will be convenient to group as follows

1. 2 group 1 equations

|〈ψ|D0,3|ψ〉|2 = |〈ψ|D3,6|ψ〉|2 =
1

10
(60)

Assuming normalization these equations are equivalent to eqs. (52).

2. 3 group 2 equations

|〈ψ|D3j+1,6j+2|ψ〉|2 =
1

10
(61)

with j = 0, 1, 2.

3. 9 group 3 equations

|〈ψ|D3j,6j+3k+1|ψ〉|2 =
1

10
(62)

with j, k = 0, 1, 2.

Together with normalization this gives us 16 conditions on the 7 real parameters in eq. (57),

so there is still a high degree of redundancy in the equations. The nature of the dependencies

will become clear in the course of solving them.

We begin by considering the normalization condition and group 1 equations. As can be

seen from eqs. (51) and (52) (which are equivalent to them) they only involve the absolute

values. Explicitly:

p1 + p2 + 3p3 + 3p4 = 1

p21 + p22 − p1p2 =
1

10

3p23 + 3p24 + 3p3p4 − p3 − p4 = − 1

10
.

(63)
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These equations are not hard to solve. Setting

p1 = a1 + b1 , p2 = a1 − b1 , p3 = a3 + b3 , p4 = a3 − b3 , (64)

diagonalizes them. It is then readily deduced that

a3 =
1

6
(1− 2a1) , b21 =

1

30
(1− 10a21) , b23 =

1

180
(−1 + 20a1 − 60a21) . (65)

To fix the free parameter in the expressions just derived we need to consider the group 2

equations. This will also give us the phase eiµ0 . It is convenient to write the equations in the

form
2
∑

r,s=0

σj(r−s)ere
∗
s =

1

10
(66)

with j = 0, 1, 2 and where

e0 = z1z
∗
2 , e1 = i

√
3ω2p3 , e2 = −i

√
3ω7p4 . (67)

Inverting the Fourier transform we see that eqs. (66) are equivalent to the 2 conditions

|e0|2 + |e1|2 + |e2|2 =
1

10
e0e

∗
1 + e1e

∗
2 ,+e2e

∗
0 = 0 .

(68)

The first of these is a consequence of the group 1 equations. Solving the second for e0 = z1z
∗
2

gives

z1z
∗
2 =

e22e
∗
1 − e21e

∗
2

|e1|2 − |e2|2
=

√
3(a23 − b23)(

√
3b3 − ia3)

4a3b3
. (69)

Taking the square of the absolute value on both sides and using eqs. (65) we find

(1− 40a1 + 40a21)(−11 + 100a1 − 120a21 − 800a31 + 1600a41) = 0 . (70)

Solving this equation and taking account of the requirement that b1, b3 both be real we deduce

a1 =
1

40

(

5− s05
√
3 + s03

√
5 +

√
15
)

b1 =
s2
60

√

15
(√

15 + s0
√
3
)

a3 =
1

120

(

15 + s05
√
3− s03

√
5−

√
15
)

b3 =
s1
60

√

5
(

−18− s07
√
3 + s06

√
5 + 5

√
15
)

(71)

where s0, s1 and s2 are arbitrary signs. This fixes the absolute values. Note that the only

choice of sign that affects the set of absolute values is s0, which suggests—correctly—that s0
labels two different orbits of the Clifford group.

To determine the phase eiµ0 , we substitute these expressions into eq. (69) and simplify.

We obtain

e2iµ0 =
1

4

√

2
(

6 + s0
√
3−

√
15
)

− is1
4

√

2
(

2− s0
√
3 +

√
15
)

(72)
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Taking account of the assumption that −π/2 < µ0 ≤ π/2 we deduce

eiµ0 =

√

1

2
+ c0 − is1

√

1

2
− c0 (73)

where

c0 =
1

8

√

2(6 + s0
√
3−

√
15) . (74)

Note that the numbers given in these expressions as nested square roots can be constructed

with ruler and compass, so the ancient Greeks might have approved—especially since the 9th

root of unity cannot be so constructed.

To calculate the remaining two phases we turn to the group 3 equations. It is convenient

to write the equations in the form

2
∑

r,s=0

σj(r−s)ekre
∗
ks =

1

10
(75)

with j, k = 0, 1, 2 and where

ek0 =

(

1 + 2(−1)k cos
(3k + 2)π

9

)

z∗3z4,

ek1 = −
(

τ6k−5z∗1 + τ−(6k−5)z∗2

)

z3,

ek2 = −
(

τ6k−5z1 + τ−(6k−5)z2

)

z∗4 .

(76)

Inverting the Fourier transform in eqs. (75) we see that the nine group 3 equations are actually

equivalent to the six equations

|ek0|2 + |ek1|2 + |ek2|2 =
1

10
(77)

ek0e
∗
k1 + ek1e

∗
k2 + ek2e

∗
k0 = 0 (78)

with k = 0, 1, 2. Using eq. (69) and some elementary trigonometry one finds that for all three

values of k eq. (77) is equivalent to the single condition

3(a23 − b23) + 4a1a3 =
1

10
(79)

which is an immediate consequence of the group 1 equations. We are thus left with the three

eqs. (78). It will be convenient to write them in the form

f1 = f2 = f3 = 0 (80)

where

fj =

2
∑

k=0

σjk (ek0e
∗
k1 + ek1e

∗
k2 + ek2e

∗
k0) . (81)

Writing the expressions out in full we find that f2 = τ2f1. So the nine equations with which

we started reduce to just the two equations f0 = f1 = 0. It is readily confirmed that these
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are equivalent to

e3iµ3 = − 1

2
√
p3

(

z21 + z1z2 + z22
z∗1 + z∗2

+
i
(

z21 − z1z2 + z22
)

√
3 (z∗1 − z∗2)

)

,

e3iµ4 = − 1

2
√
p4

(

z21 + z1z2 + z22
z∗1 + z∗2

− i
(

z21 − z1z2 + z22
)

√
3 (z∗1 − z∗2)

)

.

(82)

The quantities on the right hand sides are all known so these formulæ give explicit expressions

for the two remaining phases. Simplifying them and taking the cube roots we find

eiµ3 = σm3

(

−
√

1

2
− c1 + c2 + is1s2

√

1

2
+ c1 − c2

)
1
3

,

eiµ4 = σm4

(

−
√

1

2
− c1 − c2 + is1s2

√

1

2
+ c1 + c2

)
1
3

,

(83)

where

c1 =
s0
8

√

9− s04
√
3 + s03

√
5− 2

√
15 ,

c2 =
s1s0
24

√

15(−19 + s012
√
3− s09

√
5 + 6

√
15) .

(84)

Here m3 and m4 can take the values 0, 1, 2. The entire solution is given in terms of radicals,

as expected (but not understood!).

Altogether there are 23 · 32 = 72 fiducial vectors, splitting into 2 different orbits of the

extended Clifford group labelled by s0 = ±1. The solution with s0 = s1 = s2 = m3 = m4 = 1

is the fiducial 9a as labelled by Scott and Grassl [13], while switching the sign of (only) s0
leads to their fiducial 9b.

7 SIC fiducials for N = 42

The first dimension for which the approach helped in finding a new solution is N = 16 = 42.

We were unable to obtain a solution by hand as we did for N = 9. However, we were able to

obtain a solution using Magma. We use a basis such that both X4 and Z4 are diagonal. The
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change of basis is given by the matrix

T =
1

2



























































1 0 0 0 τ16 0 0 0 1 0 0 0 τ16 0 0 0

1 0 0 0 τ24 0 0 0 τ16 0 0 0 τ8 0 0 0

τ20 0 0 0 τ20 0 0 0 τ20 0 0 0 τ20 0 0 0

1 0 0 0 τ8 0 0 0 τ16 0 0 0 τ24 0 0 0

0 0 1 0 0 0 τ16 0 0 0 1 0 0 0 τ16 0

0 0 1 0 0 0 τ24 0 0 0 τ16 0 0 0 τ8 0

0 0 τ8 0 0 0 τ8 0 0 0 τ8 0 0 0 τ8 0

0 0 1 0 0 0 τ8 0 0 0 τ16 0 0 0 τ24 0

0 0 0 τ4 0 0 0 τ20 0 0 0 τ4 0 0 0 τ20

0 0 0 −τ19 0 0 0 −τ11 0 0 0 τ3 0 0 0 −τ27

0 0 0 τ20 0 0 0 τ20 0 0 0 τ20 0 0 0 τ20

0 0 0 −τ7 0 0 0 −τ15 0 0 0 τ23 0 0 0 −τ31

0 τ28 0 0 0 τ12 0 0 0 τ28 0 0 0 τ12 0 0

0 −τ23 0 0 0 −τ15 0 0 0 −τ7 0 0 0 −τ31 0 0

0 τ20 0 0 0 τ20 0 0 0 τ20 0 0 0 τ20 0 0

0 −τ27 0 0 0 −τ3 0 0 0 −τ11 0 0 0 −τ19 0 0



























































, (85)

where τ = − exp(πi/16). The Weyl-Heisenberg generators are

X =



























































0 0 0 0 0 0 0 0 0 0 0 0 τ4 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −τ9 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −τ5

0 0 0 0 0 0 0 0 τ28 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −τ13 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 τ20 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −τ25 0 0 0 0

τ20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −τ27 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −τ31 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 τ28 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −τ23 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 τ12 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −τ27 0 0 0 0 0 0 0 0



























































(86)

and

Z =



























































0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 τ12 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 τ20 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 τ4 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 τ28 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 τ12 0 0 0 0 0 0 0 0

0 0 0 0 τ4 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −τ23 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −τ5 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −τ19 0 0 0 0

0 0 0 0 0 0 0 0 −τ9 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −τ7 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −τ5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −τ27

0 0 0 0 0 0 0 0 0 0 0 0 −τ1 0 0 0



























































. (87)
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In this basis, the Zauner matrix is a permutation matrix. Hence a fiducial vector is of the

form

|ψ〉 = x0(|0〉+ |2〉+ |6〉) + x1(|1〉+ |9〉+ |10〉) + x3(|3〉+ |14〉+ |15〉)
+ x4|4〉+ x5(|5〉+ |11〉+ |12〉) + x7(|7〉+ |8〉+ |13〉) .

(88)

In order to solve the equations for these six complex variables xi, one of which can assumed

to be real, we followed the approach described in [18]. Computing a Gröbner basis modulo

a single 23-bit prime using Magma [28] took about three days and required about 30 GB of

memory. The polynomials in a Gröbner basis with respect to so-called grevlex order have co-

efficients with 90 digits in the numerators and denominators. Changing to lexicographic order

which is used to solve the equations, the coefficients grow to some 900 digits. Nonetheless,

we succeed to obtain a less complex representation of a solution. The solutions are given in

a number field

K = Q(
√
2,
√
13,

√
17, r2, r3, t1, t2, t3, t4,

√
−1) , (89)

of degree 1024, where

r2 =

√√
221− 11 ,

r3 =

√

15 +
√
17 ,

t1 =

√

15 + (4−
√
17)r3 − 3

√
17 ,

t22 = (((3− 5
√
17)

√
13 + (39

√
17− 65))r3 + ((16

√
17− 72)

√
13 + 936))t1

− 208
√
13 + 2288 ,

t3 =

√

2−
√
2 ,

t4 =
√
2 + t3 .

(90)

Note that even though we do not explicitly use a 32nd root of unity, it can be expressed as

ω32 =
1

2
((
√
2(1− t3)− 1)t4 − t4

√
−1) . (91)

The Galois group of K is isomorphic to C8 × ((C2 × C2 × C16) ⋊ C2), and K is an Abelian

extension of Q(
√
221). The coefficients of a non-normalized fiducial vector of eq. (88) are as

follows:

x0 = − 40

13

√
13r3t1t2 , (92)

x1 =
(

(

(21
√
2 + 22

√
13 + 16

√
17 + 5

√
26 + 5

√
34 + 4

√
221 +

√
442 + 74)r2r3

+ (−77
√
2− 26

√
13− 18

√
17− 33

√
26− 19

√
34 + 2

√
221− 7

√
442 + 42)r2

+ (−45
√
2 + 30

√
13− 10

√
17 + 15

√
26 + 5

√
34 + 10

√
221 + 5

√
442− 30)r3

+ (30
√
13 + 30

√
17 + 10

√
221− 70)

)

t1t4

+
(

(3
√
2 + 3

√
13 + 9

√
17−

√
26 + 7

√
34 + 11

√
221 + 3

√
442 + 121)r2r3 (93)

+ (−82
√
2− 88

√
13− 24

√
17− 74

√
26− 2

√
34 + 24

√
221− 2

√
442 + 264)r2

+ (175
√
2 + 80

√
13− 20

√
17 + 75

√
26− 25

√
34− 5

√
442 + 380)r3

+ (200
√
2 + 220

√
13− 300

√
17 + 160

√
26− 160

√
34− 20

√
221− 40

√
442 + 180)

)

t4

)√
−1
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+
(

(−10
√
2− 15

√
13− 15

√
17− 6

√
26− 8

√
34−

√
221− 21)r2r3

+ (55
√
2 + 16

√
13 + 28

√
17 + 7

√
26 + 21

√
34 + 8

√
221 + 5

√
442 + 108)r2

+ (70
√
2 + 10

√
26 + 80)r3

− 10
√
2− 130

√
13− 250

√
17− 70

√
26− 70

√
34− 30

√
221− 10

√
442− 630

)

t1t4

+
(

(10
√
2− 51

√
13− 33

√
17− 24

√
26− 22

√
34 +

√
221− 29)r2r3

+ (320
√
2− 4

√
13 + 28

√
17 + 8

√
26 + 4

√
34 + 44

√
221 + 20

√
442 + 524)r2

+ (265
√
2− 30

√
13− 50

√
17− 15

√
26− 35

√
34 + 10

√
221 + 5

√
442 + 310)r3

+ (260
√
2− 200

√
13− 560

√
17− 100

√
26− 260

√
34 + 20

√
442− 600)

)

t4 ,

x3 =
(

(

(−21
√
2− 22

√
13− 16

√
17− 5

√
26− 5

√
34− 4

√
221−

√
442− 74)r2r3

+ (77
√
2 + 26

√
13 + 18

√
17 + 33

√
26 + 19

√
34− 2

√
221 + 7

√
442− 42)r2

+ (−45
√
2 + 30

√
13− 10

√
17 + 15

√
26 + 5

√
34 + 10

√
221 + 5

√
442− 30)r3

+ (30
√
13 + 30

√
17 + 10

√
221− 70)

)

t1t4

+
(

(−3
√
2− 3

√
13− 9

√
17 +

√
26− 7

√
34− 11

√
221− 3

√
442− 121)r2r3

+ (82
√
2 + 88

√
13 + 24

√
17 + 74

√
26 + 2

√
34− 24

√
221 + 2

√
442− 264)r2

+ (175
√
2 + 80

√
13− 20

√
17 + 75

√
26− 25

√
34− 5

√
442 + 380)r3

+ (200
√
2 + 220

√
13− 300

√
17 + 160

√
26− 160

√
34− 20

√
221− 40

√
442 + 180)

)

t4

)√
−1

+
(

(10
√
2 + 15

√
13 + 15

√
17 + 6

√
26 + 8

√
34 +

√
221 + 21)r2r3 (94)

+ (−55
√
2− 16

√
13− 28

√
17− 7

√
26− 21

√
34− 8

√
221− 5

√
442− 108)r2

+ (70
√
2 + 10

√
26 + 80)r3

− 10
√
2− 130

√
13− 250

√
17− 70

√
26− 70

√
34− 30

√
221− 10

√
442− 630

)

t1t4

+
(

(−10
√
2 + 51

√
13 + 33

√
17 + 24

√
26 + 22

√
34−

√
221 + 29)r2r3

+ (−320
√
2 + 4

√
13− 28

√
17− 8

√
26− 4

√
34− 44

√
221− 20

√
442− 524)r2

+ (265
√
2− 30

√
13− 50

√
17− 15

√
26− 35

√
34 + 10

√
221 + 5

√
442 + 310)r3

+ (260
√
2− 200

√
13− 560

√
17− 100

√
26− 260

√
34 + 20

√
442− 600)

)

t4 ,

x4 =
(

(−11

26

√
13− 1

2

√
17− 3

26

√
221− 1

2
)r2r3

+ (10
√
2 +

20

13

√
26 +

10

13

√
442)r2

)

t1t2
√
−1 (95)

+
(

(
11

26

√
13 +

1

2

√
17 +

3

26

√
221 +

1

2
)r2r3

+ (10
√
2 +

20

13

√
26 +

10

13

√
442)r2

)

t1t2 ,

x5 =
(

(

(−75

2

√
2− 4

√
13− 2

√
17− 25

2

√
26− 15

2

√
34− 5

2

√
442 + 10)r2r3

+ (−22
√
2− 24

√
13− 12

√
17 + 14

√
26 + 2

√
34− 4

√
221− 2

√
442− 24)r2

+ (15
√
2− 5

√
13− 5

√
17 + 25

√
26− 5

√
34− 5

√
221 + 5

√
442 + 35)r3

+ (270
√
2 + 60

√
13 + 180

√
17 + 10

√
26 + 70

√
34 + 20

√
221 + 10

√
442 + 620)

)

t1

+
(

(−85
√
2− 28

√
13− 4

√
17− 3

√
26 +

√
34 + 4

√
221− 5

√
442− 36)r2r3

+ (−190
√
2− 86

√
13 + 22

√
17 + 34

√
26 + 22

√
34 + 22

√
221− 10

√
442 + 122)r2

+ (300
√
2− 60

√
13 + 40

√
17 + 40

√
26− 20

√
34− 220)r3

+ (650
√
2− 60

√
13 + 460

√
17 + 110

√
26− 130

√
34 + 60

√
221 + 10

√
442 + 660)

)

)√
−1
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+
(

(1
1

2

√
2 + 23

√
13 + 19

√
17− 3

2

√
26− 9

2

√
34 + 3

√
221 +

1

2

√
442 + 63)r2r3 (96)

+ (152
√
2− 20

√
17 + 28

√
26 + 24

√
34 + 4

√
221 + 12

√
442 + 64)r2

+ (−70
√
2− 5

√
13 + 15

√
17 + 10

√
34− 5

√
221 + 55)r3

+ (350
√
2− 100

√
13− 100

√
17 + 50

√
26 + 110

√
34− 20

√
221 + 10

√
442 + 60)

)

t1

+ (43
√
2 + 28

√
13 + 24

√
17− 23

√
26− 19

√
34 + 8

√
221 + 3

√
442 + 108)r2r3

+ (476
√
2− 22

√
13− 26

√
17 + 28

√
26 + 4

√
34 + 6

√
221 + 36

√
442 + 26)r2

+ (−170
√
2− 20

√
13− 40

√
17 + 50

√
26 + 10

√
34− 10

√
442 + 60)r3

+ 410
√
2− 160

√
13− 120

√
17 + 150

√
26 + 270

√
34− 30

√
442 + 280 ,

x7 =
(

(

(−1
1

2

√
2− 23

√
13− 19

√
17 +

3

2

√
26 +

9

2

√
34− 3

√
221− 1

2

√
442− 63)r2r3

+ (−152
√
2 + 20

√
17− 28

√
26− 24

√
34− 4

√
221− 12

√
442− 64)r2

+ (−70
√
2− 5

√
13 + 15

√
17 + 10

√
34− 5

√
221 + 55)r3

+ (350
√
2− 100

√
13− 100

√
17 + 50

√
26 + 110

√
34− 20

√
221 + 10

√
442 + 60)

)

t1

+
(

(−43
√
2− 28

√
13− 24

√
17 + 23

√
26 + 19

√
34− 8

√
221− 3

√
442− 108)r2r3

+ (−476
√
2 + 22

√
13 + 26

√
17− 28

√
26− 4

√
34− 6

√
221− 36

√
442− 26)r2 (97)

+ (−170
√
2− 20

√
13− 40

√
17 + 50

√
26 + 10

√
34− 10

√
442 + 60)r3

+ (410
√
2− 160

√
13− 120

√
17 + 150

√
26 + 270

√
34− 30

√
442 + 280)

)

)√
−1

+
(

(−75

2

√
2− 4

√
13− 2

√
17− 25

2

√
26− 15

2

√
34− 5

2

√
442 + 10)r2r3

+ (−22
√
2− 24

√
13− 12

√
17 + 14

√
26 + 2

√
34− 4

√
221− 2

√
442− 24)r2

+ (−15
√
2 + 5

√
13 + 5

√
17− 25

√
26 + 5

√
34 + 5

√
221− 5

√
442− 35)r3

− 270
√
2− 60

√
13− 180

√
17− 10

√
26− 70

√
34− 20

√
221− 10

√
442− 620

)

t1

+ (−85
√
2− 28

√
13− 4

√
17− 3

√
26 +

√
34 + 4

√
221− 5

√
442− 36)r2r3

+ (−190
√
2− 86

√
13 + 22

√
17 + 34

√
26 + 22

√
34 + 22

√
221− 10

√
442 + 122)r2

+ (−300
√
2 + 60

√
13− 40

√
17− 40

√
26 + 20

√
34 + 220)r3

− 650
√
2 + 60

√
13− 460

√
17− 110

√
26 + 130

√
34− 60

√
221− 10

√
442− 660 .

It turns out that the two numerical solutions with orbits labelled 16a and 16b in [13] are

related by the Galois automorphism of K induced by simultaneously changing the signs of√
13 and

√
17.

8 A remark on Mutually Unbiased Bases

Although our main emphasis has been on SICs, we note that square dimensions are special

also in the Mutually Unbiased Bases (MUB) problem. In dimensions N = n2, Wocjan and

Beth have shown that one can construct sets of Mutually Unbiased Bases using n by n Latin

squares [29]. In this section, we examine a variant of the MUB problem making use of the

phase-permutation basis.

We would like to find all vectors, and all bases, unbiased with respect to the two eigenbases

defined by two complementary cyclic subgroups of the Weyl-Heisenberg group. This problem

has been studied in connection with the MUB existence problem in dimension six [30] and in

another guise is also known as the cyclic N -roots problem [31]. The two bases can be taken

to be the standard basis |u〉0, the eigenbasis of the subgroup generated by Z, and the Fourier
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basis |u〉∞, which is the eigenbasis of the subgroup generated by X. (The labels 0 and ∞ do

have a logical explanation [23].) We are looking for all unit vectors |ψ〉 such that

|〈ψ|u〉0|2 = |〈ψ|u〉∞|2 =
1

N
, (98)

for all N values of u. The answer is known for N ≤ 9. Interestingly, for any |ψ〉 satisfying

eq. (98), there always exists N − 1 other vectors also satisfying eq. (98) which together form

a third basis unbiased with respect to the standard and Fourier bases. Here we just want to

report what this problem looks like when N = n2 and the phase-permutation basis is used.

The two eigenbases are now given by

|a+ nb〉0 =
1√
n

n−1
∑

r=0

σ−br|r, a〉 , Z|a+ nb〉0 = ωa+nb|a+ nb〉0 , (99)

|a+ nb〉∞ =
1√
n

n−1
∑

r=0

σ−brω−ar|a, r〉 , X|a+ nb〉∞ = ωa+nb|a+ nb〉∞ . (100)

We look for bases unbiased with respect to this pair, of the specific form

|a+ nb〉k =
1√
n

n−1
∑

r=0

ωk(r, a, b)|r, λk(r, a)〉 . (101)

Here ωk(r, a, b) is a phase factor, and λk is a map from Zn ×Zn to Zn, where Zn is the set of

integers modulo n.

Unbiasedness with respect to the standard basis holds if and only if the function λk(r, a) is

injective for fixed a. To see this, we argue by contradiction. Suppose λk(r, a) is not injective

for some fixed a, then there exists an integer x ∈ Zn such that λk(r, a) 6= x for all r. Now

consider the inner product

〈x+ nb′|0 a+ nb〉k =
1

n

n−1
∑

r=0

qb
′rωk(r, a, b)δz,λk(r,a) = 0 , (102)

since by assumption, δx,λk(r,a) = 0 for all r. Hence, if λk is not injective there is at least one

vector from the standard basis that is orthogonal to the new basis. There are is no way to

choose the phases ωk to make it unbiased to every vector in the standard basis.

Similarly, unbiasedness with respect to the Fourier basis holds if and only if the function

is injective for fixed r. This means that the function λk(r, a) defines a Latin square, an n by

n array such that each row and column contain the symbols from an n-letter alphabet exactly

once.

As an example, let n = p be a prime number. Then the Weyl-Heisenberg group contains

p + 1 cyclic subgroups altogether. Two of them were accounted for from the start, and the

remaining p− 1 examples give rise to the choice

λk(r, a) = a+ kr , k ∈ {1, 2, . . . , p− 1} . (103)

By inspection one finds that these p − 1 bases are maximally entangled. In addition, the

Latin squares that define the bases are Mutually Orthogonal, which ensures that we have a

collection of p+ 1 Mutually Unbiased Bases.
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The fact that x − 1 Mutually Orthogonal Latin squares of order n give rise to x + 1

Mutually Unbiased Bases—regardless of whether they originate from group theory or not—

was first observed by Wocjan and Beth [29]. The only new observation here is that Latin

squares appear naturally in the cyclic N -roots problem when the phase-permutation basis is

used.

To illustrate the idea, consider dimension N = 22. The two eigenbases are given by

|0〉0 =
1√
2
(|0, 0〉+ |1, 0〉) , |2〉0 =

1√
2
(|0, 0〉 − |1, 0〉) ,

|1〉0 =
1√
2
(|0, 1〉+ |1, 1〉) , |3〉0 =

1√
2
(|0, 1〉 − |1, 1〉) ,

(104)

and

|0〉∞ =
1√
2
(|0, 0〉+ |0, 1〉) , |2〉∞ =

1√
2
(|0, 0〉 − |0, 1〉) ,

|1〉∞ =
1√
2
(|1, 0〉 − i|1, 1〉) , |3〉∞ =

1√
2
(|1, 0〉+ i|1, 1〉) .

(105)

The Latin square λ1 = a+ r, then generates the third basis

|0〉1 =
1√
2
(|0, 0〉+ θ0|1, 1〉) , |2〉1 =

1√
2
(|0, 0〉+ θ2|1, 1〉) ,

|1〉1 =
1√
2
(|0, 1〉+ θ1|1, 0〉) , |3〉1 =

1√
2
(|0, 1〉+ θ3|1, 0〉) ,

(106)

unbiased with respect to eqs. (104) and (105). We have removed an overall phase from each

vector leaving the remaining free phases θ0, . . . , θ3. The conditions for the vectors to form a

basis are simply that 1 + θ0θ2 = 0 and 1 + θ1θ3 = 0.

In dimension N = 4, this method constructs the complete set of solutions to the cyclic N -

roots problem. In dimension 9 however, whilst we find the two parameter family of solutions,

there are 6,156 other isolated points [32].

9 Conclusion

Our main result is that the entire Clifford group admits a representation using only monomial

phase-permutation matrices if and only if the dimension is a square number. The “if” part,

or existence, is established in Theorem 1 (Section 3) as the explicit representation eq. (33).

The “only if” part is established in Theorem 3 (Section 4), using a few facts about the Weyl-

Heisenberg and Clifford groups that we suspect are known, but have included since we were

unable to find them in the literature.

In Section 5 we use this representation to gain some insight into the SIC problem. It

shares with the standard representation the elegant property that its probability vectors span

a regular simplex within the component-wise probability simplex, with N rather than N2 ver-

tices. In addition, in the phase-permutation representation, the component-wise probability

simplex (that corresponds to the basis) is better aligned to that of the SICs than when using

the standard basis. This simplifies the coordinate expressions for the SIC fiducials greatly.

We exemplify this in Section 6 where we find that calculating SICs in dimension N = 4 is
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now trivial, while the case N = 9 can still be solved by hand. In the standard basis, the latter

requires a computer and considerable effort. More significantly, in Section 7, we find for the

first time an exact solution to the SIC problem in dimension N = 16.

The phase-permutation representation can also be used in connection with Mutually Un-

biased Bases, to find vectors unbiased with respect to both the standard and the Fourier bases

(see Section 8). Families of solutions can then be constructed naturally from Latin squares.

As a final note, quantum mechanics in a square-dimensional Hilbert space is of particular

importance because it admits bipartite entanglement; we therefore expect that the phase-

permutation representation will have many other applications.
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We thank Åsa Ericsson for the idea of Section 8 and Steve Donkin for discussions on Ap-

pendix B. The authors gratefully acknowledge the hospitality of the Nordita workshop on the

Foundations of Quantum Mechanics. We thank Berge Englert for inviting IB to CQT, which

led to some motivating discussions.

DMA was supported in part by the U. S. Office of Naval Research (Grant No. N00014-

09-1-0247). Research at Perimeter Institute is supported by the Government of Canada

through Industry Canada and by the Province of Ontario through the Ministry of Research

& Innovation. IB is supported by the Swedish Research Council under contract VR 621-2007-

4060. SB was supported by the EU FP7 FET-Open research project COMPAS (Contract

No. 212008). DG gratefully acknowledges support by the Institut Mittag-Leffler (Djursholm,

Sweden), where his contribution to this work was done. DG’s research is supported by the

German Science Foundation (DFG grants CH 843/1-1 and CH 843/2-1) and the Swiss Na-

tional Science Foundation.

References

1. H. Weyl: Theory of Groups and Quantum Mechanics, Dutton, New York 1932.
2. D. I. Fivel, Remarkable phase oscillations appearing in the lattice dynamics of Einstein-Podolsky-

Rosen states, Phys. Rev. Lett. 74 (1995) 835.
3. D. Gottesman, A theory of fault-tolerant quantum computation, Phys. Rev. A 57 (1998) 127.
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Appendix A: Action of the Clifford group

Lemma A.1 The action of the Clifford group on H(N)/Z(N) ≃ Z2
N is isomorphic to

SL(2, N).

Proof. Let G : Z2
N → Z2

N be a transformation induced by the action of a Clifford unitary

on H(N)/Z(N). First, we show that G must be an element of SL(2, N). That G is linear

follows from the fact that H(N)/Z(N) is a projective representation of Z2
N . Now consider

the following commutation relation, which is a simple consequence of (8):

DijDkl = ωkj−ilDklDij (A.1)

for i, j, k, l ∈ ZN . Conjugate every matrix appearing in the relation above by the Clifford

unitary UG. All the phase factors τk
′

appearing in the definition (10) cancel, because they
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occur on both sides of the equality. With (i′, j′) = G(i, j) and (k′, l′) = G(k, l), we conclude

that

ωkj−il = ωk′j′−i′l′ . (A.2)

Because ω has order N , G preserves symplectic inner products modulo N . Thus, G ∈
SL(2, N) as claimed.

Next, we have to show that every transformation in SL(2, N) can be realized. For N odd,

this is the content of (14) proven in Ref. [14]. Hence, we only need to consider the case of

even N . In this case, (14) says that if G ∈ SL(2, N̄), then GmodN may be realized as a

transformation of H(N)/Z(N). Therefore, what remains to be shown is that every matrix G

in SL(2, N) can be written as ḠmodN for some Ḡ ∈ SL(2, 2N).

Write N as N = 2ln for n odd. In Appendix B, we show that

H(N) ≃ H(2l)×H(n), SL(2, N̄) ≃ SL(2, 2l+1)× SL(2, n). (A.3)

What is more, “the even and the odd parts do not mix” in the sense that SL(2, 2l+1) only

acts on H(2l) and SL(2, n) only acts on H(n). Therefore, we need to prove the claim only

for the case N = 2l.

So let G ∈ SL(2, N). Then detG = kN + 1 for some integer k. If k is even, then

detG ≡ 1 mod 2N and therefore G ∈ SL(2, 2N), so we are done. Thus we assume that k is

odd. Not all matrix elements of G are even, for then the range of G would consist only of

vectors with even components. This would contradict that fact that G is invertible. Assume

for now that α, the top left matrix element of G, is odd (we label the matrix elements of G

as in (12)). Then it has an inverse α−1 modulo 2N . Now let

Ḡ =

(

α β
γ δ + α−1N

)

. (A.4)

Then

det Ḡ = detG+ αα−1N = (k + αα−1)N + 1 ≡ 1 mod 2N. (A.5)

Thus Ḡ ∈ SL(2, 2N). The cases where one of the other matrix elements of G is odd are

treated analogously �.

Appendix B: Tensor Product Representation

The Weyl-Heisenberg group in dimension N is defined in terms of three generators X̃, Z̃

and τ̃ and the relations between them. We denote the abstract group elements with a tilde;

their standard unitary representations, defined in eq. (3), appear without. In odd dimensions,

the Weyl-Heisenberg group, H(N) is given by
〈

X̃, Z̃, τ̃ : X̃N = Z̃N = τ̃N = 1, Z̃X̃ = τ̃ X̃Z̃, τ̃ X̃ = X̃τ̃ , τ̃ Z̃ = Z̃τ̃
〉

, (B.1)

whilst for N even, we choose to enlarge the centre and define H(N) to be
〈

X̃, Z̃, τ̃ : X̃N = Z̃N = τ̃2N = 1, Z̃X̃ = τ̃2X̃Z̃, τ̃ X̃ = X̃τ̃ , τ̃ Z̃ = Z̃τ̃
〉

. (B.2)

When the dimension has the prime factorization N = n1n2 . . . nr, where nj = p
uj

j , the

group is a direct product of smaller groups,

H(N) = H(n1)×H(n2)× · · · ×H(nr). (B.3)
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To see this, we construct an isomorphism as follows. Let the group elements of H(nj) be

generated by X̃j , Z̃j and τ̃j and define elements of H(n1)× · · · ×H(nr) as

x = (X̃1, . . . , X̃r),

z = (Z̃1, . . . , Z̃r),

t = (τ̃1, . . . , τ̃r).

(B.4)

The elements x, z and t satisfy the relations for the group H(N) since, for example,

xN = ((X̃n1
1 )N/n1 , (X̃n2

2 )N/n2 , . . . , (X̃nr

2 )N/nr ) = (1, 1, . . . , 1). (B.5)

Therefore, the map

θ : X̃aZ̃bτ̃ c → xazbtc (B.6)

is a homomorphism.

The image of θ is given by all elements of the form xazbtc and we now show that it

contains the group H(n1) × · · · ×H(nr). The Chinese remainder theorem tells us that since

nj and nk are coprime for all j 6= k there exists an integer λ1 such that λ1 ≡ 1 mod n1 and

λ1 ≡ 0 mod nj for j = 2, . . . , r. The integer λ1 picks out the first component of x,

xλ1 = (X̃λ1
1 , X̃λ1

2 , . . . , X̃λ1
r ) = (X̃1, 1, . . . , 1). (B.7)

In the same way, there exist integers, λ2, . . . , λr and µ1, . . . , µr such that

xλj = (1, . . . , 1, X̃j , 1, . . . , 1)

zµj = (1, . . . , 1, Z̃j , 1, . . . , 1).
(B.8)

The components of the element t are computed modulo n̄j so we need to modify our

argument slightly. In even dimensions, the Chinese remainder theorem still applies since only

one of the factors, say n1, is even. The integer 2n1 is therefore coprime to nj for all j, and

we can again find integers ν1, . . . , νr such that

tνj = (1, . . . , 1, τ̃j , 1, . . . , 1). (B.9)

Finally, the size of the two groups are equal, |H(N)| = N2N̄ = |H(n1)× · · · ×H(nr)| so θ is

an isomorphism.

Now for the Clifford group C(N). We use the fact that C(N) is the semi-direct prod-

uct of H(N) and SL(2, N̄). We start by taking elements of SL(2, N̄) and computing their

components modulo n̄j , that is,

Fj ≡
(

αj βj
γj δj

)

, (B.10)

where αj = α mod n̄j , βj = β mod n̄j , γj = γ mod n̄j and δj = δ mod n̄j . Then the map

Γ : SL(2, N̄) → SL(2, n̄1)× · · · × SL(2, n̄r), (B.11)

defined by

Γ(F ) = (F1, . . . , Fr) , (B.12)
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is an isomorphism. The proof follows a similar argument to the above and implies that

C(N) ≃ H(n1)× · · · ×H(nr)× SL(2, n̄1)× · · · × SL(2, n̄r)

≃ H(n1)× SL(2, n̄1)× · · · ×H(nr)× SL(2, n̄r)

≃ C(n1)× · · · × C(nr).

(B.13)

These two observations mean that every displacement operator can be written as a tensor

product of displacement operators in smaller Hilbert spaces because of the following fact from

finite group theory (see for example Theorem 19.18 of Ref. [33]). Let G and J be groups,

then every irreducible representation of the group G× J is a tensor product of an irreducible

representation of G with an irreducible representation of J. The Weyl-Heisenberg and Clifford

groups are direct products of the groups defined over the prime factorization and therefore all

irreducible representations can be written as a tensor product of irreducible representations

of the smaller groups.

Care is required when writing down the isomorphisms in terms of the standard unitary

representation, X, Z and τ , defined in eq. (3). If we define the map

η : xazbtc → (τ c1 . . . τ
c
r )
(

Xa
1Z

b
1 ⊗ · · · ⊗Xa

rZ
b
r

)

, (B.14)

we have the problem that in general,

τ c1 . . . τ
c
r 6= τ c, (B.15)

meaning that the right hand side of eq. (B.14) cannot be the image of θ under any unitary

induced mapping. To fix this problem, we redefine η to be

η′ : xazbtc → (τκ1c
1 . . . τκrc

r )
(

Xa
1Z

κ1b
1 ⊗ · · · ⊗Xa

rZ
κrb
r

)

, (B.16)

where κj is the multiplicative inverse of N/nj mod n̄j . The map η′ then satisfies all of the

required properties to be an isomorphism.

To construct the isomorphism for the standard unitary representation of the Clifford group,

we take the image of the symplectic matrices, Fj to be UF ′

j
, where

F ′
j =

(

αj κ−1
j βj

κjγj δj

)

, (B.17)

rather than UFj
. Whilst we did not need the explicit form of the two isomorphisms in this

paper, we hope that it will prove a useful tool elsewhere.


