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We introduce the concept of the locally unextendible non-maximally entangled basis
(LUNMEB) in Hd

⊗

Hd. It is shown that such a basis consists of d orthogonal vectors
for a non-maximally entangled state. However, there can be a maximum of (d − 1)2

orthogonal vectors for non-maximally entangled state if it is maximally entangled in (d−
1) dimensional subspace. Such a basis plays an important role in determining the number
of classical bits that one can send in a superdense coding protocol using a non-maximally
entangled state as a resource. By constructing appropriate POVM operators, we find

that the number of classical bits one can transmit using a non-maximally entangled state
as a resource is (1+ p0

d

d−1
) log d, where p0 is the smallest Schmidt coefficient. However,

when the state is maximally entangled in its subspace then one can send up to 2 log(d−1)
bits. We also find that for d = 3, former may be more suitable for the superdense coding.
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1 Introduction

It is the Einstein, Podolsky, and Rosen (EPR) paper where for the first time entangled states

[1] were used to explore the mysterious nature of the formalism of quantum mechanics. In the

course of time, it has been recognized by the scientific community that the difference between

factorisable and entangled (non-factorisable) quantum states is pivotal in understanding the

deepest nature of reality. In 1964, Bell was the first person to show that this entanglement

implies lack of local realism in quantum mechanics [2]. It was quite surprising when it was

found that there are sets of product states which nevertheless display a form of nonlocality

[3, 4]. It was shown that there are sets of orthogonal product vectors S (say) of a tensor

product Hilbert space Hn
⊗

Hm (n,m > 2) such that even in the complementary set there

are product states which are orthogonal to every state in the set S. However, we will never
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be able to find enough states so as to complete the set to form a full basis of the Hilbert

space Hn
⊗

Hm (n,m > 2). Such a basis is called an Uncompletable Product Basis (UCPB)

[3]. It is called Unextendible Product Basis (UPB) if it is not possible to find at least one

product vector in the complement of the set S which is orthogonal to all the members of

the set S [4, 5, 6, 7, 8, 9, 10]. The notion of unextendibility gives rise to two important

quantum phenomena. (i) The mixed state which lies on the subspace complementary to

the subspace spanned by UPB is a bound entangled state [5, 6]. It is bound in the sense

that no free entanglement can be distilled from it. In reference [4], a systematic way of

constructing bound entangled states had been provided for the first time. (ii) The states

comprising a UPB are locally immeasurable [11], i.e. an unknown member of the set cannot be

reliably distinguished from the others by applying local measurements and by communicating

classically. Recently, the notion of unextendible maximally entangled basis (UMEB) in a

restricted situation Hd
⊗

Hd has been introduced. The basis set consists of fewer than d2

vectors and has no additional maximally entangled vectors orthogonal to all of them. It was

shown that UMEBs do not exist for d = 2 and there exists a 6-member and 12- member

UMEB for three and four dimensional cases [12]. In this paper, we introduce the notion of

locally unextendible non-maximally entangled basis (LUNMEB) in Hd
⊗

Hd. We show that

if we start with a non-maximally entangled state in Hd
⊗

Hd and if one party applies local

unitary operations, we will have d2 vectors out of which we can build up d classes. Each class

has d non-maximally entangled vectors, in such a way that they are mutually orthogonal to

each other. We show that there does not exist any local unitary transformation that will

create a non-maximally entangled vector orthogonal to each of these d orthogonal states. So,

these d orthogonal vectors will form a basis which is unextendible in the sense that they can

not be extended locally. Let us first of all give the formal definition of locally unextendible

non-maximally entangled basis (LUNMEB).

Definition: A set of states {|ψa〉 ∈ Hd
⊗

Hd}, a = 1, 2, ..n is called LUNMEB iff

(i) all states |ψa〉 are non-maximally entangled.

(ii)〈ψa|ψb〉 = δa,b.

(iii) For all a and b, there exists local unitary transformation Uba such that (Uba

⊗

I)|ψa〉 =
|ψb〉.
(iv) If 〈ψa|ψ〉 = 0, ∀a = 1, 2, .., n, then there exists no unitary transformation U , such that

(U
⊗

I)|ψa〉 = |ψ〉, ∀a = 1, 2, .., n.

One can in principle construct an unextendible non-maximally entangled basis differently

and it can have more than d orthogonal vectors. The importance of considering the restricted

class of locally unextendible non-maximally entangled basis lies in the context of super dense

coding. In super dense coding, we create the orthogonal vectors by applying local unitaries.

In this context, it is interesting to study those vectors which are local unitary equivalent. One

can then answer the question: given an non-maximally entangled resource, what is the amount

of classical information one can communicate. We will see that this locally unextendible non-

maximally entangled basis (LUNMEB) is going to play an important role in determining the

number of bits that one can communicate through a super dense coding protocol.

The organization of the paper is as follows. In section 2 and 3, we construct locally

unextendible non-maximally entangled basis (LUNMEB) for H2
⊗

H2 and H3
⊗

H3 system.
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In section 4, we give the most general construction for Hd
⊗

Hd systems. In section 5, we

construct a set of POVM operators for a genuinely non-maximally entangled set of vectors.

In the next section, we discuss the importance of LUNMEB in the context of super dense

coding. Finally, we conclude in the last section.

2 Locally Unextendible Non-Maximally Entangled Basis in H2
⊗

H2

Let us first of all consider a non-maximally entangled state |φ2〉 inH2
⊗

H2, explicitly written

in the Schmidt decomposition form as

|φ2〉 =
1

∑

k=0

Ck|kk〉 = C0|0〉|0〉+ C1|1〉|1〉. (1)

We show that this state gives rise to an unextendible non-maximally entangled basis of di-

mension two under local unitary operations. Let us consider a set of local unitary operators,

in d dimension, which itself forms a basis

Unm =

d−1
∑

k=0

e
2iπnk

d |k ⊕m〉〈k|, (2)

where n,m = 0 to d− 1. In the case for d = 2, this set of unitary operators can be rewritten

as

U00 = |0〉〈0|+ |1〉〈1|,
U01 = |0〉〈1|+ |1〉〈0|,
U10 = |0〉〈0|+ eiπ|1〉〈1|,
U11 = |0〉〈1|+ eiπ|1〉〈0|. (3)

Let us apply this set of linearly independent unitary operators {U00, U01, U10, U11} on the

state |φ2〉 locally on one of its qubit. Then we have

|φ00〉 = (U00

⊗

I)|φ2〉 = [C0|0〉|0〉+ C1|1〉|1〉],

|φ01〉 = (U01

⊗

I)|φ2〉 = [C0|1〉|0〉+ C1|0〉|1〉],

|φ10〉 = (U10

⊗

I)|φ2〉 = [C0|0〉|0〉 − C1|1〉|1〉],

|φ11〉 = (U11

⊗

I)|φ2〉 = [C0|1〉|0〉 − C1|0〉|1〉]. (4)

In this set {|φ00〉, |φ01〉, |φ10〉, |φ11〉} the states with different m values are orthogonal to one

another. But the states with same m values need not be orthogonal. In any set of three

states, at least two states will have the same m value. So all of these three states are not

going to be mutually orthogonal. So the pairs for n = 0, n = 1 are given by {|φ00〉, |φ01〉},
{|φ10〉, |φ11〉}.

Here we note that by taking a vector from each of the above classes one can also form

orthogonal pairs like {|φ00〉, |φ11〉}, {|φ10〉, |φ01〉}. Even then one can not extend the dimension

of the basis formed by these pairs. We see that one can have orthogonal basis {|φnm〉, |φn′
m

′ 〉}
for both n = n

′

, n 6= n
′

. It is clearly evident that the orthogonality condition is independent
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of the value of n. The only requirement to be a member of the pair is that the states must

have different m values (m 6= m
′

).

Now, for a given pair, there is no vector in the remaining set, which is orthogonal to the

pair. As an illustration, if we try to include |φ10〉 in the first pair {|φ00〉, |φ01〉}, it will be

orthogonal to |φ01〉which has different m value. However, it is not going to be orthogonal to

|φ00〉 with the same m value. This argument runs for every pair. This does not depend on the

values of the index n. Thus, we see that the index m actually discriminates the orthogonal

vectors. More formally, we show that indeed there exists no unitary transformation which will

increase the cardinality of the set of the orthogonal vectors or in other words can extend the

dimension of the basis. This shows that the basis is unextendible as far as the local unitaries

are concerned. To see this, let us consider the general unitary transformation

V =
∑

p,q

fpqUpq. (5)

Here fpq are complex coefficients and p, q vary from 0 to d− 1. In the above expression Upq’s

are unitary so is V . This in particular implies
∑

p,q

|fpq|2 = 1. (6)

The action of the general unitary transformation on |φ2〉 is given by,

|Φ〉 = V |φ2〉 =
∑

p,q

fpqUpq|φ2〉 =
∑

p,q

fpq
∑

k

Cke
iπkp|k ⊕ q〉|k〉. (7)

At this point, we would like to see whether the state |Φ〉 is orthogonal to {|φ00〉, |φ11〉} or

not. Without any loss of generality, we have taken n = n
′

and in particular n = n
′

= 0. The

argument also runs if n = n
′

= 1 and also for n 6= n
′

. If these states are orthogonal, then we

will be able to find an additional state which is orthogonal to each of these two states. So in

order to check that we consider the inner products

〈φ0m|Φ〉 =
∑

p

fpm
∑

k

|Ck|2eiπkp. (8)

For it to be zero for all m, we need 〈φ00|Φ〉 = 0 and 〈φ01|Φ〉 = 0. This implies that

f00
∑

k

|Ck|2 + f10
∑

k

|Ck|2eiπk = 0,

f01
∑

k

|Ck|2 + f11
∑

k

|Ck|2eiπk = 0. (9)

For this to be true we must have

f00 + f10 = 0, f00 − f10 = 0 ⇒ f00 = f10 = 0,

f01 + f11 = 0, f01 − f11 = 0 ⇒ f01 = f11 = 0. (10)

This implies that all fpq = 0 and hence V = 0. This clearly indicates that there does not

exist a unitary transformation, that can increase the cardinality of the set of orthogonal states

{|φ00〉, |φ01〉}. Thus, we cannot extend the dimension of the basis formed by this set.
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3 Locally Unextendible Non-Maximally Entangled Basis in H3
⊗

H3

Let us take a non-maximally entangled state |φ3〉 in H3
⊗

H3 given by

|φ3〉 = C0|0〉|0〉+ C1|1〉|1〉+ C2|2〉|2〉. (11)

The set of local unitary operators {U00, U01, U02, U10, U11, U12, U20, U21, U22} to be applied

on |φ3〉 are given in equation (2). Quite similar to the qubit case, on applying these local

unitaries on |φ3〉, we will get the set of nine vectors {|φnm〉, n,m = 0, 1, 2}. Out of this set of

nine vectors if we take any three of them independent of n, having different m values, we will

find them to be mutually orthogonal. However, if we try to include more than three vectors

in this subset, the mutual orthogonal property is no longer obeyed. Thus, none of the vectors

in the complementary subspace spanned by these three vectors are orthogonal to all of these

three vectors. Mathematically, we can see this just like the qubit case. We use the same

general unitary transformation as defined in equation (5). The action of this general unitary

operator on |φ3〉 is given by

|Ψ〉 = V |φ3〉 =
∑

p,q

fpqUpq|φ3〉 =
∑

p,q

fpq
∑

k

Cke
iπkp|k ⊕ q〉|k〉. (12)

Next, we check whether the vector |Ψ〉 is orthogonal to all the three vectors |φ0m〉 or not. Here
also without any loss of generality we have considered the case, when n values of the members

of the set are equal. In particular, here we have taken n = 0. One can also take n = 1, 2. The

argument holds true even when the n values are no longer equal. On equating these inner

products to zero, and on further simplification, the condition for having a vector orthogonal

to all these three vectors boils down to the condition of having a non trivial solution to the

following three simultaneous equations

f00 + f10 + f20 = 0,

f00 − f10 + f20 = 0,

f00 + f10 − f20 = 0. (13)

Since the determinant value of the coefficient matrix of the above set of simultaneous equation

is not equal to zero, so the only possible solution to these equations is the trivial solution.

This implies that the most general unitary operator V is a null operator. This proves that

indeed in general there does not exist any unitary operator that can increase the dimension

of the subspace spanned by the set of orthogonal states {|φ00〉, |φ01〉 |φ02〉}. Thus, LUNMEB

in H3
⊗

H3 is only of dimension three.

4 Locally Unextendible Non-Maximally Entangled Basis in Hd
⊗

Hd

In this section, we construct locally unextendible non-maximally entangled basis (LUNMEB)

for a d
⊗

d dimensional system. In order to do that, we start with a non-maximally entangled

state and then apply local unitaries to it. We consider two types of non-maximally entangled

states. In the first subsection, we consider a genuinely non-maximally entangled state. In the

second subsection, we consider non-maximally entangled state which is however maximally

entangled in its subspace. In the first case we construct a LUNMEB of dimension d, while in

the second case the basis is of dimension (d− 1)2.
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4.1 Non-Maximally Entangled states in Hd
⊗

Hd

Let us consider a non-maximally entangled set of vectors in Hd
⊗

Hd. The elements of this

non-maximally entangled set of vectors are given by,

|φnm〉 = Nnm

d−1
∑

j=0

cnmj |j〉|j ⊕m〉, (14)

where Nnm is the normalization constant and is equal to 1
√

∑

d−1

j=0
|cnm

j
|2
. If the above set

is part of a set of d2 orthonormal basis vectors, then the coefficients cnmj should satisfy the

following condition,

NnmNpm

d−1
∑

k=0

c∗nmk c
pm
k = δnp, (15)

where the indices n, p, m and k take integer values between 0 and d− 1. For a system of two

qudits, these vectors {|φnm〉} naturally fall into d classes. Each class is labeled by n. Within

each class, there are d states, which are labeled by m. We now prove the central result of this

paper.

Theorem: For a given non-maximally entangled state, we can construct at most d mutually

orthogonal states by applying local unitary transformations. This set of states is being labeled

as locally unextendible non-maximally entangled basis (LUNMEB).

Proof: To prove this, we start with any one of the basis vector from the set {|φnm〉} and

apply a specific set of linearly independent unitary operators to see that for a fixed value of n

there are only d vectors which are orthogonal to each other. However, the question remains

whether there exists any unitary transformation which will extend the dimension of this basis

from d to d + 1. We find the answer to this question is no. Let us consider a vector (qudit)

from this set of vectors {|φnm〉}, written explicitly in the Schmidt decomposition form as

|φ〉 =
d−1
∑

k=0

Ck|kk〉. (16)

Here we consider a specific set of linearly independent unitary operators Unm which itself

form a basis. This set of unitary operators are Unm =
∑d−1

k=0 e
2iπnk

d |k ⊕m〉〈k|. The action of

these unitary operators on a specific state |p〉 is given by

Unm|p〉 =
d−1
∑

k=0

e
2iπnk

d |k ⊕m〉〈k|p〉 = e
2iπnp

d |p⊕m〉. (17)

Next we apply two different general unitary transformations Unm, Un
′
m

′ on |φ〉 to see how

many of these states could be orthogonal. After applying the unitary transformations the

resultant states are given by

|ψnm〉 = Unm|φ〉 =
d−1
∑

p=0

Cpe
2iπnp

d |p⊕m〉|p〉,
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|ψn
′
m

′ 〉 = Un
′
m

′ |φ〉 =
d−1
∑

q=0

Cqe
2iπn

′

q

d |q ⊕m
′〉|q〉. (18)

Here we would like to find out the range of n,m, n
′

,m
′

, for which the states |ψnm〉 and |ψn
′
m

′ 〉
are orthogonal to each other. Now, taking the inner product between these two vectors we

obtain

〈ψnm|ψn
′
m

′ 〉 =
∑

p,q

C∗
pCqe

−2iπnp

d e
2iπn

′

q

d 〈p⊕m|q ⊕m
′〉δpq

=
∑

p

|Cp|2e
2iπ(n

′

−n)p
d 〈p⊕m|p⊕m

′〉. (19)

This implies that we have

δnn′ δmm
′ =

∑

p

|Cp|2e
2iπ(n

′

−n)p
d δmm

′ (20)

or
∑

p

|Cp|2e
2iπ(n

′

−n)p
d = δnn′ . (21)

The condition obtained in equation (19) can be satisfied only when m 6= m
′

. So the set of

orthogonal states will have different m values. The orthogonality condition is independent

of n and will hold for both n = n
′

and n 6= n
′

. So, without any loss of generality, we built

up the classes for fixing the values of n. Since n runs from 0 to d− 1, we can have d classes

and for each class we will have d orthogonal vectors as m varies from 0 to d − 1. For a

given n, this set is given by {|ψn0〉, |ψn1〉, ....., |ψn(d−1)〉}. So this set of basis vectors clearly

satisfies the first three conditions of the definition of LUNMEB. Next we wish to show that

if we apply most general unitary transformations on any of the basis state we cannot get

an additional orthogonal state. Let us consider the most general unitary transformation V

already defined in equation (5). Without any loss of generality, let us choose |ψ00〉 from the

set {|ψ00〉, ....., |ψ0(d−1)〉} and apply the most general unitary transformation. The resultant

state after this transformation is given by

|Φ〉 = V |ψ00〉 =
∑

p,q

fpqUpq|ψ00〉 =
∑

p,q

fpq
∑

k

Cke
2iπkp

d |k ⊕ q〉|k〉. (22)

At this point we would like to see whether the state |Φ〉 is orthogonal to |ψ0m〉 or not. If it is,
then we will be able to find an additional state which is orthogonal to each of these d states.

So in order to check that we consider the inner products

〈ψ0m|Φ〉 =
∑

j

C∗
j 〈j ⊕m|〈j|Φ〉

=
∑

p,q

fpq
∑

k

|Ck|2e
2iπkp

d 〈k ⊕m|k ⊕ q〉

=
∑

p

fpm
∑

k

|Ck|2e
2iπkp

d . (23)
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Next we would like to see whether the above expression can be zero for all m, i.e
∑

p

fpm
∑

k

|Ck|2e
2iπkp

d = 0, ∀m .

This implies that we have

∑

p

fpm(|C0|2 + e
2iπp

d |C1|2 + ....+ e
2iπ(d−1)p

d |Cd−1|2) = 0.∀m (24)

Since |Ck|2 6= 0, this can only be zero, if we have the following set of equations
∑

p

fpm = 0,

∑

p

fpme
2iπp

d = 0,

....,
∑

p

fpme
2iπ(d−1)p

d = 0. (25)

One solution for this above set of equations is the trivial solution, i.e, fpm = 0, ∀m. This

implies that V = 0. This shows that we cannot construct additional orthogonal vector. The

question still remains whether there exists a non trivial solution for this set of equations or

not. We note that these conditions are independent of m. So if there is a non trivial solution

for one m, then it will be true for all m. For a non trivial solution to exist we must have

det(e
2iπpk

d ) = 0, where p, k = 0, 1, ..., (d− 1). Since we know that e
2iπpk

d√
d

is an unitary matrix

with a determinant value equal to 1, so this implies det(e
2iπpk

d ) 6= 0. Therefore, the only

solution for the system of equations is the trivial solution, i.e fpm = 0. This clearly indicates

that there exists no local unitary transformation which can extend the basis beyond this d

orthogonal vectors. We conclude that the set of of states {|ψn0〉, |ψn1〉, ....., |ψn(d−1)〉} forms

a LUNMEB in Hd
⊗

Hd.

4.2 Maximally Entangled states in subspace of Hd
⊗

Hd

In this subsection, we consider the case when a non-maximally entangled set in Hd
⊗

Hd is

maximally entangled in the subspace Hd−1
⊗

Hd−1. Let us consider a maximally entangled

state in this subspace which is given by

|φ′〉 = 1√
d− 1

d−2
∑

k=0

|kk〉. (26)

Here we see that there exists a set of unitary operators which when acted on this particular

state locally gives rise to a set of (d − 1)2 set of orthogonal basis vectors. We call this set

of these basis vectors locally unextendible in the sense that there exists no vectors in the

complementary subspace which will be orthogonal to all of these vectors. The set of unitary

operators which are going to serve our purpose is given by

U
′

nm =
d−2
∑

k=0

e
2iπnk
d−1 |k ⊕m〉〈k|. (27)
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Quite similar to the previous subsection, here also we apply two general unitary transforma-

tions U
′

nm and U
′

n
′
m

′ on |φ′〉 to see how many of them are orthogonal to each other. Taking

the inner products between the two resultant vectors |ψ′

nm〉 and |ψ′

n
′
m

′ 〉, we get the condition,

〈ψ′

nm|ψ′

n
′
m

′ 〉 = 1

d− 1

d−2
∑

p=0

e
2iπ(n

′

−n)p
d−1 δmm

′ . (28)

This implies that we have

δnn′ =
1

d− 1

d−2
∑

p=0

e
2iπ(n

′

−n)p
d−1

⇒ δnn′ = δn−n
′0. (29)

This expression is true for all values of n and n
′

. Not only that it is also independent of m.

So for each value of n there are m = 0, 1, ....(d−2) orthogonal vectors and n itself ranges from

0, 1, ..., (d−2). Therefore, together the basis contains (d−1)2 vectors. Thus we see that if we

start with a non-maximally entangled state which is maximally entangled in its subspace and

apply local unitaries we can generate a basis of dimension (d−1)2. For example, in the case of

d = 3, 4, the number of orthogonal basis vectors are 4, 9 respectively. One can show this basis

to be unextendible in the sense that if one applies the most general unitary transformation on

|φ′〉 , the resultant state obtained is not orthogonal to all members of the basis. Thus we see

that in principle we are able to generate a LUNMEB in Hd
⊗

Hd of dimension (d−1)2. This

is only possible if the non-maximally entangled state to start with is maximally entangled in

the largest subspace.

5 POVM for Unambiguous discrimination of non-maximally entangled state of

vectors

For general d2 non-maximally entangled states of vectors we have seen that there are d

classes of vectors each containing d vectors which are mutually orthogonal to each other. So

in principle we can distinguish these d vectors. However, if we take one vector from each of

these d classes, they are not orthogonal to each other. It turns out that we can distinguish

these states unambiguously, if not perfectly, by constructing the appropriate POVM operators.

Let us consider the following d non-orthogonal vectors each taken from d different classes,

|ψl0〉 ≡ |ψl〉 =
d−1
∑

k=0

√
pke

2πilk
d |kk〉, (30)

where pk are the Schmidt coefficients and the index l takes values from 0, 1, ...(d − 1). Also

pk = C2
k . Our goal is not necessarily to construct optimal set of POVM operators, but just a

set of operators for unambiguous discrimination of these states. One technique to construct

a set of such operators is to find a orthogonal vector corresponding to each vector in such a

way that it is not orthogonal to the remaining d− 1 vectors. One such construction is

|ψ̄l〉 = N [−d− 1√
p0

|00〉+
d−1
∑

k=1

1√
pk
e−

2πilk
d |kk〉], (31)
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where l = 0, 1, ...(d− 1) and N is the normalization constant.

The POVM operators are then given by,

P0 = A|ψ̄0〉〈ψ̄0|, P1 = A|ψ̄1〉〈ψ̄1|, ...,

Pd−1 = A| ¯ψd−1〉〈 ¯ψd−1|, PE = I −
d−1
∑

i=0

Pi. (32)

where A is a constant and PE is the operator corresponding to the inconclusive outcome. We

choose the constant A such that the operator PE is positive. Without any loss of generality,

we assume the ordering of the Schmidt’s coefficients to be pd−1 > pd−2 > ..... > p0. Then we

can choose A as p0

d(d−1)|N |2 to make PE positive. Therefore the the probability of failure for

not discriminating the states is given by, Perror = 〈ψ0|PE |ψ0〉 = p1 + p2 + ...+ pd−1 − p0

d−1 =

1 − p0
d

d−1 . The probability of the success Psuccess = 1 − Perror = p0
d

d−1 . Thus we show

that in principle we can construct POVM operators which can distinguish these states with

a certain probability of success.

The probability of distinguishing d non-maximally entangled states of a qudit has also been

considered in Ref [13]. However, there appropriate POVM operators were not constructed.

Instead, the approach of Duan and Guo [14] was taken. Their method is based on finding an

appropriate unitary operator and post selection of measurement action.

6 Applications in Superdense Coding

Superdense coding is a technique used in quantum information theory to transmit classical

information by sending quantum systems [13, 15, 16, 17, 18, 19, 20, 21, 22]. In the simplest

case, Alice wants to send Bob a binary number x ∈ {00, 01, 10, 11}. She picks up one of the

unitary operators {I,X, Y, Z} according to x she has chosen and applies the transformation

on her qubit (the first qubit of the Bell state shared by them). Alice sends her qubit to Bob

after one of the local unitaries are applied. The state obtained by Bob will be one of the

four basis vectors, so he performs the measurement in the Bell basis to obtain two bits of

information. It is quite well known that if we have a maximally entangled state in Hd
⊗

Hd

as our resource, then we can send 2 log d bits of classical information. In the asymptotic

case, we know one can send log d + S(ρ) amount of bit when one considers non-maximally

entangled state as resource [23, 24, 25, 26]. As an application of our result, we see that any

entangled state is suitable for superdense coding. We have seen that when Alice and Bob

share a non-maximally entangled state, then Alice can create d2 vectors with the aid of local

unitaries. Out of which these d2 vectors we can create d classes; each class containing d vectors

which are mutually orthogonal and thus forming an unextendible basis. In principle Bob will

be able to distinguish d orthogonal vectors. However, Bob will not be able to distinguish

perfectly the remaining vectors from these vectors as they are not mutually orthogonal. So

Alice in principle can send (1+ p) log d (where p is the success probability of distinguishing d

non-orthogonal states) bits of classical information. It has been seen in the previous section

that by constructing the appropriate POVM operators we can have the success probability p

equals to p0
d

d−1 , where p0 = C2
0 is the smallest Schmidt coefficient. For this set of POVM

operators, the total number of bits Alice can send to Bob is (1 + p0
d

d−1 ) log d which is more

than log d bits which can be sent without entanglement. We also note that if we start with



I. Chakrabarty, P. Agrawal, and A.K. Pati 281

a non-maximally entangled state which is maximally entangled in a subspace of the original

Hilbert space, then there is a set of local unitaries which will create (d−1)2 orthogonal vectors.

In this case, Alice can send at most 2 log2(d − 1) bits. This is even true for the asymmetric

cases like Hd1
⊗

Hd and Hd
⊗

Hd1 (where d1 < d and the maximal value d1 can take is

d− 1)

We can compare the maximum classical bits that can be sent using the state maximally

entangled in the subspace with the state which is not. We see that (1 + p0
d

d−1 ) log d >

2 log2(d − 1), if p0 > fd where fd = ( d−1
d log d

) log( (d−1)2

d
). In such a situation, fully non-

maximally entangled state would be more suitable for superdense coding. The function fd
has been plotted in Fig 1. Since p0 <

1
d
, we note that the fully non-maximally entangled

state is more suitable for superdense coding when d ≤ 3. For d = 3, the value of p0 needs

to be between 0.175 and 0.333. For d = 2, any allowed value of p0 will suffice. We note that

our POVM operators may not be optimum, so it may be possible that a fully non-maximally

state is more suitable for superdense coding even for d > 3.

4 6 8 10
d

-0.4

-0.2

0.2

0.4

0.6

0.8

fd

Fig. 1. The function fd is plotted against the dimension d of the basis

7 Conclusion

We have introduced the notion of locally unextendible non-maximally entangled basis (LUNEMB).

They are unextendible in the sense that, there is no local unitary operator which will cre-

ate a vector orthogonal to all members of the basis. We build up the work by constructing

this set of basis vectors for d = 2, d = 3 and then generalizing it for arbitrary d. We find

that such a basis in Hd
⊗

Hd will have d orthonormal vectors. We began with a genuinely

non-maximally entangled state and applied a given set of unitary operators on one side of

it. We find that out of the resultant vectors we can build up d classes; each containing d

vectors. Each of these d vectors are mutually orthogonal. We also showed that there does

not exist any unitary operator which can extend the dimension of the basis formed by this

set of d vectors. However, if we consider a non-maximally entangled state which is maximally

entangled in the sub space H(d−1)
⊗

H(d−1), then we can construct a basis which has (d−1)2

orthonormal vectors. This result has application for superdense coding protocol. It shows
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that any entangled state can be used for superdense coding. By explicitly constructing a set

of POVM operators, we find that Alice can send at least (1 + p0
d

d−1 ) log d (where p0 is the

smallest Schmidt’s coefficient) bits of information to Bob. In the case of a maximally entan-

gled state in the subspace, Alice can send at most 2 log(d − 1) bits of information. We also

find that for d = 3 we can send more classical bits with a fully non-maximally entangled state

than with the state maximally entangled in the subspace. This happens when the smallest

Schmidt coefficient p0 lies between 0.175 and 0.333.
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