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In a realistic situation, the secret sharing of classical or quantum information will involve
the transmission of this information through noisy channels. We consider a three qubit

pure state. This state becomes a mixed-state when the qubits are distributed over noisy
channels. We focus on a specific noisy channel, the phase-damping channel. We propose
a protocol for secret sharing of classical information with this and related noisy channels.
This protocol can also be thought of as cooperative superdense coding. We also discuss

other noisy channels to examine the possibility of secret sharing of classical information.
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1 Introduction

Quantum entanglement [1] plays a pivotal role in understanding the deepest nature of reality.

In classical world there is no counter part of quantum entanglement. Entanglement is a very

useful resource in the sense that using entanglement a lot of things can be done that cannot

be done otherwise. Entanglement is also essential for the communication tasks like quantum

teleportation [2], quantum cryptography [3] and quantum secret sharing [4].

In a secret sharing protocol, one distributes a secret message among a group of people.

This is done by allocating a share of the secret to each of these participants. The beauty of

the entire secret sharing process lies in the fact that, if there is a dishonest member in the

group of participants, he will not be able to find the secret without the collaboration of other

members. In other words, the secret can be reconstructed only when a sufficient number of

shares are combined together; individual shares are of no use.

The secret sharing protocol in a quantum scenario was first introduced in Ref [4]. After

its introduction, Karlsson et.al.[5] studied the similar quantum secret sharing protocol using

bipartite pure entangled state. Many authors studied the concept of quantum secret sharing

using tripartite pure entangled states and also for multi partite states like graph states [6,

7, 8, 9, 10, 11]. Recently Q. Li et.al. proposed semi-quantum secret sharing protocols using

maximally entangled GHZ state which was shown to be secure against eavesdropping [12].
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Recently in [13], it was shown that Quantum secret sharing is possible with bipartite two

qubit mixed states (formed due to noisy environment). Quantum secret sharing can also be

realized in experiment [14, 15, 16, 17].

The purpose of this paper is to introduce a protocol which can be used to secretly share

classical information in the presence of noisy quantum communication channels. We first

show that this secret sharing scheme is deterministically possible for a shared pure three

qubit GHZ state. Then, we consider a realistic situation where a source creates a pure GHZ

state and then the qubits are distributed to different parties through noisy channels. These

noisy channels convert the initial pure state into a mixed state. We carry out the analysis and

find the number of classical bits that can be secretly shared for a specific noisy channel, the

phase-damping channel. One of the important feature of this channel is that it describes the

loss of quantum information without loss of energy. We also talk about several other noisy

channels and comment on the possibility of secret sharing using those channels.

The organization of the paper is as follows. In Section II, we describe our protocol for

pure three qubit GHZ state. In Section III, we deviate from the ideal scenario and consider

the realistic situation where qubits are transferred through phase-damping channels and rein-

vestigate our secret sharing scheme. In the last section, we discuss other noisy channels and

present our conclusions.

2 Secret sharing scheme with shared pure GHZ state

In this section, we introduce a protocol for quantum secret sharing with shared pure GHZ

state. In this protocol, three parties start with a shared pure GHZ state. Then one of the

members encodes secret by doing some local unitary operation on her qubit. Thereafter, she

sends her qubit to one of the other two members. Interestingly neither of these two members

would be able to know about the local unitaries performed by the encoder individually. How-

ever, we show that if they agree to collaborate, then one of the parties can decode the two

bit secrets. Our protocol goes like this.

Step I: Pure GHZ State shared by three parties

Let us consider three parties say, Alice (A), Bob (B) and Charlie (C) share a pure GHZ state

|Ψ〉ABC =
1√
2
[|000〉+ |111〉]. (1)

Step II: Unitary operations performed by Alice

In this step, Alice encodes two bits of secret information by performing one of the {I, σx, iσy, σz}
unitary operations on her qubit. After performing one of the unitary operations the state (1)

transforms correspondingly to one of the following states

(I ⊗ I ⊗ I)|Ψ〉ABC =
1√
2
[|000〉+ |111〉],

(σx ⊗ I ⊗ I)|Ψ〉ABC =
1√
2
[|100〉+ |011〉],

(iσy ⊗ I ⊗ I)|Ψ〉ABC =
1√
2
[|100〉 − |011〉],
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(σz ⊗ I ⊗ I)|Ψ〉ABC =
1√
2
[|000〉 − |111〉]. (2)

Alice then sends her qubit to Bob.

Step III: Charlie performs single-qubit measurement

The above set of equations (2) can be rewritten as

|Ψ〉IBBC =
1

2
[|Φ+〉 ⊗ (|0〉+ |1〉) + |Φ−〉 ⊗ (|0〉 − |1〉)],

|Ψ〉XBBC =
1

2
[|Ψ+〉 ⊗ (|0〉+ |1〉)− |Ψ−〉 ⊗ (|0〉 − |1〉)],

|Ψ〉YBBC =
1

2
[|Ψ+〉 ⊗ (|0〉 − |1〉)− |Ψ−〉 ⊗ (|0〉+ |1〉)],

|Ψ〉ZBBC =
1

2
[|Φ+〉 ⊗ (|0〉 − |1〉) + |Φ−〉 ⊗ (|0〉+ |1〉)], (3)

where |Φ±〉 = 1√
2
[|00〉 ± |11〉], |Ψ±〉 = 1√

2
[|01〉 ± |10〉].

At this stage, it is not possible either for Bob or for Charlie to decipher the secret encoded

by Alice. However, Bob can unmask the secret if Charlie agrees to cooperate with him. Since

Charlie now has a single particle at his disposal, he performs a single-qubit measurement

in the Hadamard basis { |0〉+|1〉√
2

,
|0〉−|1〉√

2
}. Then he can help Bob to decode the message by

conveying to him the outcomes of his measurement.

Step IV: Bob performs Bell-state measurement

According to the measurement outcomes announced by Charlie, Bob performs a Bell-state

measurement on his two qubits. According to his Bell-state measurement outcome, he can

find the secret encoded by Alice. The two bits secret decoded by Bob as a result of the

declaration of the measurement outcome by Charlie is given in the following table.

TABLE I:

Qubits at Charlie’s Measurement Secrets deciphered
Bob’s side Outcome by Bob
|Φ+〉BB

1√
2
[|0〉C + |1〉C ] I

1√
2
[|0〉C − |1〉C ] σz

|Φ−〉BB
1√
2
[|0〉C + |1〉C ] σz

1√
2
[|0〉C − |1〉C ] I

|Ψ+〉BB
1√
2
[|0〉C + |1〉C ] σx

1√
2
[|0〉C − |1〉C ] iσy

|Ψ−〉BB
1√
2
[|0〉C + |1〉C ] iσy

1√
2
[|0〉C − |1〉C ] σx

3 Secret sharing with mixed state

In this section, we consider a more realistic situation in which a party, say, Charlie generates

a three qubit pure GHZ state in his laboratory. Then he keeps one qubit with him and sends

the other two qubits through two identical noisy channels to two of his friends Alice (A) and
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Bob (B). As a result of the interaction of the qubit with the environment, the three parties

share a three-qubit mixed state after the distribution of the qubits. We would consider the

case of phase-damping channel as the noisy channel. The action of a phase-damping channel

are given by the set of three Kraus operators E0 =
√
1− pI,E1 =

√
p|0〉〈0|, E2 =

√
p|1〉〈1|,

where p (0 < p < 1) is the channel parameter [18]. In this case, our protocol for secret sharing

may be described in the following steps:

Step I: Transferring qubits through phase-damping channels

Let us assume that Charlie prepares a three-qubit pure GHZ state. Thereafter, he keeps

one qubit with him and sends the other two qubits through two phase-damping channels to

two of his friends Alice and Bob. As a result of the action of the channels, described by the

above Kraus operators, on their respective qubits, the resultant state shared by the three

parties becomes a mixed state

ρABC =
1

2
[|000〉〈000|+ |111〉〈111|] + (1− p)2

2
[|000〉〈111|+ |111〉〈000|]. (4)

Step II: Local Unitary operation by Alice

After receiving the qubits from Charlie, one of the party say Alice encodes two bits of

information by carrying out the local unitary transforms {I(00), σx(01), iσy(10), σz(11)} on

her qubit. After performing one of the unitary operations the state transforms to one of the

following states

I : ρABC
I =

1

2
[|000〉〈000|+ |111〉〈111|] + (1− p)2

2
[|000〉〈111|+ |111〉〈000|],

σx : ρABC
X =

1

2
[|100〉〈100|+ |011〉〈011|] + (1− p)2

2
[|100〉〈011|+ |011〉〈100|],

iσy : ρABC
Y =

1

2
[|100〉〈100|+ |011〉〈011|]− (1− p)2

2
[|100〉〈011|+ |011〉〈100|],

σz : ρABC
Z =

1

2
[|000〉〈000|+ |111〉〈111|]− (1− p)2

2
[|000〉〈111|+ |111〉〈000|]. (5)

Then Alice sends her qubit to Bob through the same phase-damping channel, described

by the channel parameter p. Bob now has two qubits with him while the third qubit is with

Charlie. As a result, the three-qubit density operators representing the above states reduce

to the states

ρBBC
1 =

1

2
[|000〉〈000|+ |111〉〈111|] + (1− p)3

2
[|000〉〈111|+ |111〉〈000|],

ρBBC
2 =

1

2
[|100〉〈100|+ |011〉〈011|] + (1− p)3

2
[|100〉〈011|+ |011〉〈100|],

ρBBC
3 =

1

2
[|100〉〈100|+ |011〉〈011|]− (1− p)3

2
[|100〉〈011|+ |011〉〈100|],

ρBBC
4 =

1

2
[|000〉〈000|+ |111〉〈111|]− (1− p)3

2
[|000〉〈111|+ |111〉〈000|]. (6)

Step III: Charlie performs single qubit measurement
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After receiving the particle from Alice, Bob has two particles at his disposal. But, it is

not possible either for Bob or for Charlie independently to decode the information encoded

by Alice. However, Bob can decode the secret if Charlie is willing to help him. Charlie co-

operates by conveying his measurement outcomes. Charlie performs a measurement on his

qubits in the basis {|+〉 = α|0〉 + β|1〉, |−〉 = β|0〉 − α|1〉}, (where α2 + β2 = 1). As a result

of this measurement, the state that collapses on Bob’s side are given by the following table.

TABLE II:

Secret State shared by Charlie’s Measurement Qubits at
Encoded Bob and Charlie Outcomes Bob’s side

I(00) ρBBC
1 |+〉 ρBB+

1

|−〉 ρBB−
1

σx(01) ρBBC
2 |+〉 ρBB+

2

|−〉 ρBB−
2

iσy(10) ρBBC
3 |+〉 ρBB+

3

|−〉 ρBB−
3

σz(11) ρBBC
4 |+〉 ρBB+

4

|−〉 ρBB−
4

where

ρBB+

1 = α2|00〉〈00|+ β2|11〉〈11|+ αβ(1− p)3(|11〉〈00|+ |00〉〈11|),
ρBB−
1 = β2|00〉〈00|+ α2|11〉〈11| − αβ(1− p)3(|11〉〈00|+ |00〉〈11|),

ρBB+

2 = α2|10〉〈10|+ β2|01〉〈01|+ αβ(1− p)3(|01〉〈10|+ |10〉〈01|),
ρBB−
2 = β2|10〉〈10|+ α2|01〉〈01| − αβ(1− p)3(|01〉〈10|+ |10〉〈01|),

ρBB+

3 = α2|10〉〈10|+ β2|01〉〈01| − αβ(1− p)3(|01〉〈10|+ |10〉〈01|),
ρBB−
3 = β2|10〉〈10|+ α2|01〉〈01|+ αβ(1− p)3(|01〉〈10|+ |10〉〈01|),

ρBB+

4 = α2|00〉〈00|+ β2|11〉〈11| − αβ(1− p)3(|11〉〈00|+ |00〉〈11|),
ρBB−
4 = β2|00〉〈00|+ α2|11〉〈11|+ αβ(1− p)3(|11〉〈00|+ |00〉〈11|). (7)

Charlie sends his results to Bob through a classical channel by spending one classical bit.

This is done by encoding 0 for |+〉 and 1 for |−〉 respectively.
Step IV: Bob performs two qubit projective measurement and POVM

As we see in the above table when Charlie’s measurement result is |+〉 then Bob can

have one of the four possible states ρBB+

1 , ρBB+

2 , ρBB+

3 , ρBB+

4 . Similarly when Charlie’s

qubit collapses into the state |−〉, Bob can have any one of the state four possible states

ρBB−
1 , ρBB−

2 , ρBB−
3 , ρBB−

4 at his disposal.

If Charlie sends 0, then Bob guesses that the two qubit states in his possession would

be either ρBB+

1 or ρBB+

2 or ρBB+

3 or ρBB+

4 . He then performs projective measurements

P1 = |00〉〈00| + |11〉〈11| and P2 = |01〉〈01| + |10〉〈10| to get close to identify the secret. The

projectors P1 and P2 classify the above four states into two classes as C1 = {ρBB+

1 , ρBB+

4 }
and C2 = {ρBB+

2 , ρBB+

3 } respectively. The states within the two classes are now lying in a

two dimensional subspace spanned by {|00〉, |11〉} and {|01〉, |10〉} respectively.
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After classifying the states, Bob performs optimal POVM to identify the state in which

secret is encoded. First of all he considers the class C1 = {ρBB+

1 , ρBB+

4 } and constructs the

optimal POVM operators Π1, Π2 for discriminating the density matrices present in the class.

The optimal POVM measurement is the one that minimizes the error rate

ER =
1

2
[Tr[Π1ρ

BB+

4 ] + Tr[Π2ρ
BB+

1 ]. (8)

subject to the constraints that they forms a complete set of projectors (i.e Π1 +Π2 = I) [19].

The optimal POVM elements are

Π1 =
1

2

(

1 1
1 1

)

,Π2 =
1

2

(

1 −1
−1 1

)

. (9)

and the error rate in discriminating the states ρBB+

1 and ρBB+

4 is [19]

ER =
1

2
(1− 2αβ(1− p)3). (10)

Similarly, Bob can distinguish the mixed states belonging to the other class C2 = {ρBB+

2 , ρBB+

3 }
by using the same set of POVM operators Π1 and Π2. The error rate ER in this case will

also be the same. Therefore the total probability of success in distinguishing these states is

PS = 2αβ(1− p)3. (11)

In such a situation, the total number of classical bits that Bob can extract are

B = 1 + 2αβ(1− p)3. (12)

Clearly, the amount of classical information that can be extracted by Bob will depend

upon the channel noise (p) and also on the basis that Charlie uses for the measurement. We

note that when p = 1, the channel is totally noisy, and Bob can extract at most one classical

bit. This can also be seen from Figure 1. B is independent of α and is always equal to 1

when p = 1. The limit p = 0 corresponds to the case when there is no noise. In this case,

B is maximum when measurement has been done in the Hadamard basis (i.e α = β = 1√
2
).

This is also clear from the Figure 1. In general, B have the largest value when Charlie makes

his measurement in Hadamard basis. In such a scenario

B = 1 + (1− p)3. (13)

In Figure 2, we have plotted B as a function of the channel parameter (p). It takes maxi-

mum value 2 when p = 0 and the minimum value 1 when p = 1.

Thus we see that deterministic secret sharing is not possible with a phase-damping channel.

We also find that the amount of classical information decoded by Bob is dependent on the

noise parameter (p) and also on the choice of basis. In a practical situation when we carry

out quantum information processing task we face the decoherence problem and we always

have mixed state at our disposal. As a consequence of which the tasks which can be done

deterministically in case of pure states, can not be done so for the mixed states.
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Fig. 1. B (the classical bits decoded by Bob) is plotted against the parameters α and p.
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Fig. 2. B (the classical bits decoded by Bob) is plotted against the channel parameter p when the
measurement is done in the Hadamard basis.
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4 Discussion and Conclusions

In this paper, we have introduced a protocol for secret sharing which is different from the

existing secret sharing schemes. We have considered a realistic scenario where there are noisy

quantum channels. In such a scenario, the deterministic secret sharing is not possible. We

consider POVM measurements to implement our protocol and find out the number of classical

bits that Alice can share with Bob with the help of Charlie. The answer is 1+(1−p)3 classical

bits with p characterizing the noisy channel. The earlier scheme of secret sharing with pure

GHZ state was more like cooperative teleportation while our scheme of secret sharing is like

cooperative dense coding. The three-qubit mixed state considered here is generated by passing

the qubits through noisy channels. In particular, we have shown how the phase-damping noisy

channel generated three-qubit mixed state can be used in our secret sharing protocol.

Now it would be important to ask that whether our secret sharing scheme succeeds only

when the noisy channel is a phase-damping channel. Indeed the answer is ’no’. We find

that if phase-flip channel is the noisy channel, then our secret sharing scheme would succeed.

However, one needs to explore further if the secret sharing scheme can succeed with noisy

channels like amplitude-damping channel, depolarizing channel, bit-flip channel, bit-phase

flip channel or two Pauli channels. In the case of phase-damping and phase-flip channels, the

Kraus operators are diagonal and it is not difficult to construct appropriate POVM operators.

We also note that these channels are related by unitary transformations. Therefore, it appears

that our proposed protocol would succeed if the noisy channel is related to phase-damping

channel by a unitary transformation. The reason behind the success of our protocol may be

the diagonal form of the Kraus operators that represent the noisy channels. The cases of

other noisy channels that are described by the Kraus operators with off-diagonal elements

may involve loss of energy and need further exploration. In these cases, probabilistic secret

sharing may be possible with more complicated POVM measurements.
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