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We consider two two-level atoms fixed at different positions, driven by a resonant
monochromatic laser field, and interacting collectively with the quantum electromag-
netic field. A Born-Markov-secular master equation is used to describe the dynamics of

the two atoms and the steady-state is obtained analytically for a configuration of the
atoms. The steady-state populations of the energy levels of the free atoms, entanglement,
quantum and geometric discords and degree of mixedness are calculated analytically as
a function of the laser field intensity and the distance between the two atoms. It is
found that there is a possibility of considerable steady-state entanglement and left/right
quantum discord and that these can be controlled either by increasing/decreasing the
intensity of the laser field or by increasing/decreasing the distance between atoms. It is
shown that the system of two atoms can be prepared in a separable mixed state with

non-zero quantum discord that turns into an X-state for high laser field intensities. The
behavior and relationships between the different correlations are studied and several
limiting cases are investigated.
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1 Introduction

For the past two decades there has been an ever growing interest in quantifying and char-

acterizing the correlations in the states of quantum systems. This was initially provoked by

the realization that quantum correlations known as entanglement could be harnessed as a

resource to bring significant advantage for computing and information processing [1]. Now,

one of the main interests is to identify which correlations are responsible for these advan-

tages. Moreover, it has been recognized that quantifying correlations in quantum systems is

a difficult task and, in general, several measures are needed to capture all of their subtleties.

In order to understand correlations, one generally starts with bipartite systems. Consider

two quantum systems A and B. The state of the composite system A + B can be described

by a density operator ρAB which contains both classical and quantum correlations. A widely

accepted measure of the total correlations in ρAB is the quantum mutual information. It is

defined as

I(ρAB) = S(ρA) + S(ρB)− S(ρAB) , (1)
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232 Steady-state correlations of two atoms interacting with a reservoir

where ρA (ρB) is the density operator of A (B) and S(ρ) = −Tr[ρlog2(ρ)] is the von Neumann

entropy of ρ (the trace is taken in the state space where ρ is a density operator). It has been

found that I(ρAB) measures the asymptotically minimal amount of local noise one has to add

to turn ρAB into a product state [2]. Also, I(ρAB) is the maximum amount of information

that Alice can send secretly to Bob using ρAB as a one-time pad [3].

Once the total correlations in ρAB have been quantified, it is natural to ask whether these

can be clearly divided into a classical and quantum part. Several axioms have been proposed

as requirements of a measure of the classical correlations Ccl(ρAB) in ρAB [4]. These consist

in being zero for product states, being invariant under local unitary transformations and non-

increasing under local operations, and being equal to S(ρA) = S(ρB) for pure states ρAB.
Also, it has been pointed out that a measure of the classical correlations should quantify the

correlation between A and B instead of a property of only one of them. Taking these axioms

as a basis, the following measures for the classical correlations in ρAB have been proposed [4]:

Ccl
B (ρAB) = S(ρA)−min{Bi}

∑

i

piS(ρ
i
A) , (2)

Ccl
A(ρAB) = S(ρB)−min{Aj}

∑

j

p′jS(ρ
j
B) , (3)

where the minimum is taken over all sets {Bi} ({Aj}) of one-dimensional projectors of B (A)

that sum up to the identity and that constitute measurements performed only on B (A). Here

we have restricted to one-dimensional projective measurements, but the original reference [4]

uses POVM. Also,

ρiA =
1

pi
TrB

[

(I ⊗Bi)ρAB(I ⊗B†
i )
]

with pi = TrAB
[

(I ⊗Bi)ρAB(I ⊗B†
i )

]

, (4)

is the density operator of A after obtaining the result associated with Bi in a measurement

of B (similar equations hold for ρjB and p′j). These measures satisfy the axioms mentioned

above and are equal to zero if and only if ρAB = ρA ⊗ ρB. Hence, it is in accordance with

the accepted idea that only product states are devoid of correlations. Nevertheless, these

measures for the classical correlations are dependent on which system is measured, that is,

Ccl
A(ρAB) 6= Ccl

B (ρAB) in general. Thus, they depend on the properties of each subsystem.

Let us now turn to quantum correlations. Quantum states ρAB are normally divided into

separable or entangled. Let us remember that ρAB is separable if it can be expressed in the

form

ρAB =
∑

j

pjρA,j ⊗ ρB,j (5)

with ρA,j (ρB,j) density operators of A (B), and pj ∈ [0, 1] such that
∑

j pj = 1. If ρAB is not a

separable state, then it is an entangled one. It was thought that entanglement embodied all the

quantum correlations in ρAB, and that separable states were purely classical. Nevertheless, it

has been realized that entanglement is not the only aspect of quantum correlations, since some

separable states may still present non-classical correlations [5]-[9]. One way to measure the

non-classicality of the correlations in ρAB is to use the quantum discord [5]. This quantity is

defined to be the difference between the quantum mutual information (1) and the correlations

(2):

DQ
A(ρAB) = I(ρAB)− Ccl

A(ρAB) ,
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DQ
B (ρAB) = I(ρAB)− Ccl

B (ρAB) , (6)

DQ
A(ρAB) (DQ

B (ρAB)) is usually referred to as the left (right) quantum discord. It has been

shown that DQ
A(ρAB), D

Q
B (ρAB) are always non-negative [5]. In fact, DQ

A(ρAB) = 0 if and

only if

ρ =
∑

k

pk|ψk〉〈ψk| ⊗ ρk (7)

where {|ψk〉} is an orthonormal basis of A, ρk are density operators of B, and pk are non-

negative numbers such that
∑

k pk = 1 [5]. A similar result holds for DQ
B (ρAB) = 0.

In general DQ
A(ρAB) 6= DQ

B (ρAB). The quantum discord DQ
A(ρAB) can be interpreted

to be a measure of the information of B contained in the correlations between A and B
in ρAB that cannot be extracted by performing (one-dimensional projective) measurements

only on A [5]. Hence, if DQ
A(ρAB) is large, a lot of information of B is destroyed by any

measurement on A alone; if DQ
A(ρAB) is small, almost all the information about B contained

in the correlations between A and B in ρAB can be obtained by measurements only on A.

Moreover, if DQ
A(ρAB) = 0, then I(ρAB) = Ccl

A(ρAB) and there is a non-selective measurement

(namely that defined by the { |ψk〉 } in (7)) such that the state of A+B after the measurement

coincides with that before the measurement, that is, there is a non-selective measurement that

does not perturb the state of the system. It follows that if classical information is understood

as correlations that can be obtained without perturbing the state of the system, then Ccl
A(ρAB)

is a measure of the classical correlations in ρAB and ρAB is a classically correlated state when

DQ
A(ρAB) = 0 [5]. Similar interpretations hold for the case DQ

B (ρAB) = 0.

Once quantum discord is recognized as a measure of non-classical correlations, it is natural

to ask if it measures the same correlations as entanglement. Given that some separable

mixed states have non-zero quantum discord and separable states by definition do not have

entanglement, it is concluded that entanglement and quantum discord are in general different

quantities. Nevertheless, they do coincide when ρAB is a pure state or a mixture of Bell states

[6]. Furthermore, it has been found that in general the quantum discord of ρAB is not simply

the sum of some measure of the entanglement in ρAB and some other non-classical correlation

[6, 7].

It is the purpose of this article to study the entanglement, quantum discord, classical

correlations, and degree of mixed-ness in the steady-state of the following open quantum

system: two two-level atoms (qubits in the jargon of quantum information) at fixed positions

driven by a resonant monochromatic laser field and interacting collectively with all the modes

of the quantum electromagnetic field. In the notation used above, A will be one of the atoms

(say, the atom at position r1) and B will be the other atom (say, the atom at position r2).

Here we also have a third party C playing a decisive role in the dynamics: the quantum

electromagnetic field which we will consider as a reservoir. The system is open because we

are interested in studying only the subsystem A+B of the complete system A+B+ C. Since
the two atoms are interacting collectively with the reservoir, C acts as a medium that can

allow quantum correlations to be formed between the two atoms for some time. In order that

these correlations have the possibility of being long-lived and not being ultimately destroyed

by the reservoir, the two atoms will be driven by a laser field.

Using the same system as ours, but without the driving field, the dynamical generation

of entanglement between two atoms due to the collective interaction with the reservoir has
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been recently studied [10, 11]. It was found that, as a result of the interaction through the

reservoir, the system develops non-negligible entanglement (as measured by the concurrence)

for a period of time if the atoms are close enough and if initially one is in the excited state

and the other is in the ground state. Also, it was reported that entanglement initially present

in the system of two atoms is more robust when the two atoms are close when compared

to the case where the atoms are far apart. The entanglement present in a system of two

driven non-identical two-level atoms in a special configuration (namely one atom is located at

a node while the other atom is placed at an antinode of a driving laser field with a standing

wave cosine structure) has also been studied [12]. The steady-state density operator of the

system was obtained numerically and the concurrence was evaluated. It was found that

the two-atom system decays to a stationary entangled state only when the Rabi frequency

equals the difference between the two atoms’ transition frequencies. The entanglement in

systems similar to ours has also been studied [13]-[15]. Using the same system as ours (but

with a plane-wave laser field) the time-evolution of the entanglement of the two atoms has

been studied when they are subject to the same Rabi frequency [13]. Analytical results were

given for the steady-state density operator of the system and a mechanism was proposed

to prepare the two atoms in a Bell state that involves two or zero excitations. Also, [14]

studied a system composed of two driven qubits coupled through a dipole-dipole interaction

and interacting with independent reservoirs. Analytical results characterizing the stationary

entanglement were given and it was shown how to propagate this entanglement in a quantum

network. Finally, [15] studied the pairwise entanglement of two qubits extracted from a driven

multiparticle ensemble that interacts with a vacuum reservoir and that occupies a region much

smaller than the wavelength associated with the qubits transition frequency. The dynamics

of both the quantum discord and the entanglement have been studied also in other open

quantum systems [16]-[22]. In particular, it has been found that the quantum discord can be

more robust than entanglement in open systems interacting with dissipative/non-dissipative

environments. Moreover, it appears that it can only decay exponentially and not abruptly

(no sudden-death) under Markovian reservoirs.

The present article is organized as follows. In Sec. II we summarize some results on

measures of correlations for two qubit systems. In Sec. III the system of interest is described

and the master equation governing the dynamics of the two atoms is established. In Sec. IV,

the steady-state density operator is calculated analytically for a special configuration of the

two atoms. Analytic expressions for the populations of the eigenstates of the free Hamiltonian

of the two atoms, the degree of entanglement, the quantum discord, and the degree of mixed-

ness of the two atoms are calculated as functions of the laser field intensity and of the distance

between the atoms. The conclusions are given in Sec. V.

2 Quantifying Correlations in Two Qubit Systems

In this article we will be considering two two-level atoms (qubits) which we will number by

1 and 2. In the following sections these labels will correspond to the atom at position r1

and to the atom at position r2, respectively. In terms of the notation of the Introduction,

1 will replace A, while 2 will replace B. We will now show how to calculate all correlations

by simple formulas. We will only give the algorithms and refer the interested reader to the

original articles for the proofs.
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The kets |j : +〉 and |j : −〉 will denote the excited and ground states of the jth atom

(j = 1, 2), respectively. In the following we will be making constant use of the triplet-singlet

basis

B = { |1, 1〉, |1, 0〉, |1,−1〉, |0, 0〉 } , (8)

for the state space of the two atoms:

|1, 1〉 = |1 : +〉 ⊗ |2 : +〉 , |1, 0〉 = 1√
2
( |1 : +〉 ⊗ |2 : −〉+ |1 : −〉 ⊗ |2 : +〉 ) ,

|1,−1〉 = |1 : −〉 ⊗ |2 : −〉 , |0, 0〉 = 1√
2
( |1 : +〉 ⊗ |2 : −〉 − |1 : −〉 ⊗ |2 : +〉 ) . (9)

We shall also use the usual tensor product basis

B
′ = { |+,+〉, |+,−〉, |−,+〉, |−,−〉 } , (10)

where

|+,+〉 = |1 : +〉 ⊗ |2 : +〉 , |+,−〉 = |1 : +〉 ⊗ |2 : −〉 ,
|−,+〉 = |1 : −〉 ⊗ |2 : +〉 , |−,−〉 = |1 : −〉 ⊗ |2 : −〉 . (11)

Furthermore, we will denote the density operator of the two atoms by ρ12.

We are interested in quantifying the degree of entanglement of the system of two atoms.

We will use the concurrence C, which can be calculated as [23, 24]:

C = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4} , (12)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the eigenvalues of the matrix

M = [ρ12]B′(σy ⊗ σy)[ρ12]
∗
B′(σy ⊗ σy) . (13)

Here σy is the well-known Pauli matrix, [ρ12]B′ is the matrix representation of ρ12 in the

basis B′, and [ρ12]
∗
B′ is the element-wise complex conjugate of the density matrix [ρ12]B′ . The

concurrence takes values between 0 and 1. It is 1 when the atoms are in a maximally entangled

state, while it is zero when the atoms are in a separable state.

Evaluation of the quantum discord [5]-[8] given by (6) in general requires considerable

numerical minimization. Nevertheless, a method to calculate easily the classical correlations

and quantum discord for a general two-qubit X-state has been developed [6].

If ρ12 has a matrix representation [ρ12]B′ with respect to the tensor-product basis B
′ of

the form

[ρ12]B′ =









R11 0 0 R14

0 R22 R23 0
0 R32 R33 0
R41 0 0 R44









, (14)

then [ρ12]B′ is called an X-state due to the visual appearance resembling the letter X. The

eigenvalues of (14) are

λ0± =
1

2

[

R11 +R44 ±
√

(R11 −R44)2 + 4|R14|2
]

,
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λ1± =
1

2

[

R22 +R33 ±
√

(R22 −R33)2 + 4|R23|2
]

. (15)

The quantum mutual information (1) of the state ρ12 can then be calculated

I(ρ12) = S(ρ1) + S(ρ2) +
∑

j=0,1

∑

i=±
λjilog2λji , (16)

where ρj is the density operator of atom j obtained by tracing ρ12 over the degrees of freedom

of the other atom, and

S(ρ1) = − [ (R11 +R22)log2(R11 +R22) + (R33 +R44)log2(R33 +R44) ] ,

S(ρ2) = − [ (R11 +R33)log2(R11 +R33) + (R22 +R44)log2(R22 +R44) ] . (17)

We will consider one-dimensional projective measurements only for atom 2. Hence, we will

calculate the right quantum discord DQ
2 (ρ12) and right classical correlations Ccl

2 (ρ12). Later

on we will also show how to calculate both the left quantum discord DQ
1 (ρ12) and the left

classical correlations Ccl
1 (ρ12), obtained when one-dimensional projective measurements are

carried out on atom 1. It is very important to distinguish on which atom the measurements

are made, since in general DQ
1 (ρ12) 6= DQ

2 (ρ12) and Ccl
1 (ρ12) 6= Ccl

2 (ρ12). This will be seen

explicitly in the results of the following sections.

Define the quantities

p0 = (R11 +R33)k + (R22 +R44)l ,

p1 = (R11 +R33)l + (R22 +R44)k ,

θ =

√

Θ+ [ (R11 −R33)k + (R22 −R44)l ]
2

[ (R11 +R33)k + (R22 +R44)l ]
2 ,

θ′ =

√

Θ+ [ (R11 −R33)l + (R22 −R44)k ]
2

[ (R11 +R33)l + (R22 +R44)k ]
2 ,

Θ = 4kl
[

|R14|2 + |R23|2 + 2 · Re(R14R23)
]

− 16m · Re(R14R23) + 16n · Im(R14R23) ,

S0 = −1− θ

2
log2

(

1− θ

2

)

− 1 + θ

2
log2

(

1 + θ

2

)

,

S1 = −1− θ′

2
log2

(

1− θ′

2

)

− 1 + θ′

2
log2

(

1 + θ′

2

)

, (18)

where k + l = 1 and Re and Im denote the real and imaginary parts of a complex number,

respectively.

It can be shown that the classical correlations Ccl
2 (ρ12) in (2) are given by

Ccl
2 (ρ12) = S(ρ1)−min{Bi} (p0S0 + p1S1) . (19)

Furthermore, the minimum with respect to the variables k, l, m, and n in (19) is achieved at

one of the following points:

(k, l,m, n) = (0, 1, 0, 0), (1, 0, 0, 0),

(

1

2
,
1

2
, 0, 0

)

,

(

1

2
,
1

2
, 0,±1

8

)

,
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(

1

2
,
1

2
,
1

4
, 0

)

or

(

1

2
,
1

2
,
1

4
,±1

8

)

. (20)

Once the minimum has been identified, the classical correlations are easily calculated from

(17) and (19). Finally, the quantum discord for the X-state is easily calculated from (16) and

(19)

DQ
2 (ρ12) = I(ρ12)− Ccl

2 (ρ12) . (21)

Here we must give a word of caution. This algorithm only works when the product

R23R14 6= 0. It fails when such a condition is not met [6, 25].

Now suppose that we make measurements only on the atom at position r1. Instead of

going through the whole process of calculating conditions analogous to those in (15)-(21), we

only need to find the matrix representation of the density operator ρ12 with respect to the

basis B′′ in which the order of atoms 1 and 2 has been interchanged

B
′′ = { |2 : +〉 ⊗ |1 : +〉, |2 : +〉 ⊗ |1 : −〉, |2 : −〉 ⊗ |1 : +〉, |2 : −〉 ⊗ |1 : −〉 } , (22)

and apply the procedure described above in (15)-(21) to obtain the quantum discord DQ
1 (ρ12)

and the classical correlations Ccl
1 (ρ12). It is easy to find such matrix representation. Suppose

that the density operator ρ12 has the following matrix representation with respect to B
′

[ρ12]B′ =









R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44









. (23)

Then the matrix representation of ρ12 with respect to B
′′ has the following form:

[ρ12]B′′ =









R11 R13 R12 R14

R31 R33 R32 R34

R21 R23 R22 R24

R41 R43 R42 R44









. (24)

Note that [ρ12]B′′ is obtained by interchanging columns 2 and 3 and rows 2 and 3 of [ρ12]B′ .

For a general two-qubit density matrix the quantum discord is not easily calculated from its

direct operational definition [8]. Therefore, several alternative measures have been proposed.

One in particular calculates the distance of ρ12 to the set of zero discord states Ω0 given by

(7) if measurements are made on atom 1 [26]. It is called the geometric measure of left discord

and it is denoted by D
(2)
1 (ρ12). It was found that

D
(2)
1 (ρ12) = minχ∈Ω0

||ρ12 − χ||2F =
1

4

(

xTx+ ||T ||2F − kmax
)

. (25)

Here x is a real column vector whose three components are given by xi = Tr(ρ12σi ⊗ I), T

is a 3× 3 real matrix whose components are given by Tij = Tr(ρ12σi ⊗ σj), and kmax is the

largest eigenvalue of the matrix K = xxT +TTT . Note that σi is the i-th Pauli matrix. Also,

the distance is measured using the usual Hilbert-Schmidt-Frobenius norm:

||A||2F = Tr(A†A) , (26)
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with A a linear operator in the state space of the system (it could also be a matrix). Using

(23) and (24) one can determine the geometric measure of right discord D
(2)
2 (ρ12).

To quantify the degree of mixed-ness we will use the linear entropy SL [27] defined as

SL(ρ12) = 1− Tr
[

ρ212
]

. (27)

Recall that SL(ρ12) = 0 if ρ12 is a pure state, while SL(ρ12) = 3/4 if ρ12 is a maximum mixed

two-qubit state.

3 Two Driven Two-Level Atoms Collectively Interacting with a Reservoir

We consider two identical two-level atoms with transition frequency ωA at fixed positions r1
and r2, driven by a classical monochromatic laser field, and interacting with the modes of

the quantum electromagnetic field. In the following we will refer to the latter as the reservoir

and, in some occasions, to the atom at position rj as atom j.

The Hamiltonian of the system in the long-wavelength approximation and in the electric

dipole representation is

H(t) = H0 + V + VAL(t) (28)

where H0 is the free hamiltonian of the two atoms and of the reservoir

H0 =
h̄ωA

2
σ3 +

∑

j

h̄ωj

(

a†jaj +
1

2

)

, (29)

V is the electric dipole interaction between the two atoms and the electric field E(r) of the

reservoir

V = −d1 ·E(r1) − d2 ·E(r2) , (30)

and VAL(t) is the electric dipole interaction in the rotating-wave-approximation between the

two atoms and the classical monochromatic electric field EL(r, t) of frequency ωA

VAL(t) = −
2

∑

j=1

h̄G(rj)
(

σ+je
−iωAt + σ−je

iωAt
)

. (31)

Notice that we have assumed that the laser field is resonant with the atomic transition.

Here |j : +〉 and |j : −〉 are the excited and ground states of the jth atom (j = 1, 2),

respectively, and σ3 = (σ31 + σ32) with σ3j = |j : +〉〈j : +| − |j : −〉〈j : −| is the inversion

operator. Furthermore, dj is the electric dipole moment operator of the jth atom and, since

the atoms are identical and have two levels, can be expressed as

dj = d01σ+j + d∗
01σ−j , (32)

where σ±j = |j : ±〉〈j : ∓| are the transition operators for the j-th atom and d01 = 〈1 :

+|d1|1 : −〉. The quantum electric field E(r) at position r is given by its expansion in terms

of plane waves

E(r) = i
∑

j

√

h̄ωj

2ǫ0V
aje

ikj ·rej + h.c. , (33)



L. Octavio Castaños 239

where V is the quantization volume, aj(a
†
j) is the annihilation (creation) operator of a photon

in mode j, and
∑

j is a sum over the modes of the quantum electromagnetic field. The

wave and polarization vectors of mode j are kj and ej , respectively, while ωj = ckj is the

corresponding angular frequency.

We have taken the driving electric field EL(r, t) of the form

EL(r, t) = g(r)
(

ELe
−iωAt + E

∗
Le

iωAt
)

(34)

where g(r) is a real-valued function describing the spatial structure of the field and EL a

constant complex vector which contains the polarization of the electric field. Also, the Rabi

frequency G(r) = g(r)(d01 · EL)/h̄ is assumed to be a real quantity, and in the following we

shall denote G(rj) by Gj .

In the model presented above it is assumed that the two atoms interact with all the modes

of the quantum electromagnetic field except for those in a very small solid angle with vertex at

the atoms. In this solid angle there is a single mode that corresponds to the driving laser field.

The solid angle has to be very small so one can approximate the interaction of the two atoms

with the reservoir to be an interaction with all the modes of the quantum electromagnetic

field. This model is useful in describing experiments with trapped cold atoms in free space

or in a cavity and driven by a resonant monochromatic laser field in the optical regime. Here

the transition frequency of the atoms must be different from that associated with the trap. In

the case of atoms in a cavity, the aforementioned solid angle corresponds to that subtended

by the cavity, the laser field would coincide with the mode of the cavity, and g(r) is usually

of the following form [28]

g(r) = cos
(ωA

c
z
)

exp

(

−x
2 + y2

w2
0

)

, (35)

where w0 is the waist of the mode. Cavities that subtend a very small solid angle are common

in cavity quantum electrodynamics experiments at optical frequencies [29].

We will denote the density operator of the complete system (two atoms plus reservoir) by

ρ(t), while ρ12(t) will denote the density operator of the two atoms. Recall that ρ12(t) is the

reduced density operator obtained by tracing ρ(t) over the reservoir degrees of freedom. Also,

we assume that the initial state of the system is a separable state of the form

ρ(0) = ρ12(0)⊗ ρB(0) , (36)

where ρB(0) is either the vacuum state of the quantum electromagnetic field or a thermal

state at a temperature T such that the expected value of the number of photons in any mode

of frequency ωA is approximately zero, that is, N(ωA) = TrB [ρB(0)a
†
jaj ] ≃ 0 for all modes

j such that ωj = ωA. For example, at optical frequencies ωA ∼ 1015 1/s and temperatures T

between 0.1 and 300 Kelvin one has N(ωA) ≤ 10−11.

When the interaction with the reservoir is neglected (V is zero in (28)), ρ12(t) is determined

by von Neumann’s equation:

ih̄
d

dt
ρ12(t) =

[

h̄ωA

2
σ3 + VAL(t), ρ12(t)

]

. (37)
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On the other hand, when there is no driving field (VAL(t) is zero in (28)), the dynamics of the

density operator ρ12(t) of the two atoms can be described by a Born-Markov-secular master

equation [30]:

d

dt
ρ12(t) = − i

h̄

[

h̄(ωA +∆A)

2
σ3 +Hdd, ρ12(t)

]

+ D[ρ12(t)] . (38)

The dissipator D is given by

D(ρ) = D1(ρ) + D2(ρ) + D3(ρ) , (39)

where Dj (j = 1, 2) is the same as the dissipator of a single atom interacting with the reservoir

[27]

Dj(ρ) = γ1

(

σ−jρσ+j −
1

2
{ σ+jσ−j , ρ }

)

(j = 1, 2), (40)

and D3 describes an effective dissipative interaction between the two atoms induced by the

collective interaction with the reservoir

D3(ρ) =
3

2
γ1F12

(

σ−1ρσ+2 −
1

2
{σ+2σ−1, ρ}+ σ−2ρσ+1 −

1

2
{σ+1σ−2, ρ}

)

. (41)

Here {·, ·} is the anti-commutator and γ1 is equal to the spontaneous emission rate of a

two-level atom interacting with all the modes of the quantum electromagnetic field

γ1 =
1

4πǫ0
· 4|d01|2ω3

A

3h̄c3
.

The function F12 is defined bya

F12 ≡ d2⊥
|d01|2

· sin(x)
x

+

(

3
d2⊥

|d01|2
− 2

)

cos(x)− sin(x)
x

x2
, (42)

with

x =
ωA

c
|r1 − r2| , (43)

and d2⊥ the square of the norm of the projection of d01 onto the plane perpendicular to r1−r2.

The coherent dipole-dipole interaction Hdd induced by the collective interaction with the

reservoir is given by

Hdd = h̄Ω12(σ+1σ−2 + σ−1σ+2) , (44)

wherea

Ω12 =
3

4
γ1

[

− d2⊥
|d01|2

cos(x)

x
+

(

3
d2⊥

|d01|2
− 2

)(

sin(x)

x2
+

cos(x)

x3

) ]

. (45)

Meanwhile, ∆A is a frequency shift produced by the interaction with the reservoir. We note

that, in writing the master equation (38), we have already used N(ωA) ≃ 0.

aNotice that we have chosen a slightly different notation than the one in [30]. In particular, that article uses
the component of d01 along r1 − r2 and (3/2)F12 instead of d⊥ and F12, respectively.
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Applying the approximation of independent rates of variation [31], the master equation

for ρ12(t) which takes into account the interaction of the two atoms with the reservoir and

with the laser field is given by

d

dt
ρ12(t) = − i

h̄

[

h̄(ωA +∆A)

2
σ3 +Hdd + VAL(t), ρ12(t)

]

+D [ρ12(t)] (t ≥ 0). (46)

In the following we will neglect the frequency shift ∆A since |∆A| ≪ ωA.

Passing to the interaction picture (IP) defined by the unitary transformation U0(t, 0) =

exp(−iωAσ3t/2) we obtain the master equation

d

dt
ρ12(t) = − i

h̄

[

V I
AL +Hdd, ρ12(t)

]

+D [ρ12(t)] (t ≥ 0) , (47)

where

V I
AL = −

2
∑

j=1

h̄G(rj) (σ+j + σ−j) , (48)

and ρ12(t) is now the IP density operator of the two atoms.

The dipole-dipole coupling Ω12 is zero for certain values of d⊥ whenever x ≤ 2.8, see (43)

and (45) and Fig. (1). In the following we will restrict to the region 0 < x ≤ 2.8 and we will

assume that d⊥ is chosen for each x such that Ω12 ≃ 0. In this case the master equation (47)

reduces to
d

dt
ρ12(t) = − i

h̄

[

V I
AL, ρ12(t)

]

+D [ρ12(t)] (t ≥ 0) . (49)
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Fig. 1. (Color online) Contour plot of Ω12/γ1 as a function of d2
⊥
/|d01|2 and x = ωA|r1 − r2|/c.

The contours Ω12/γ1 = 0.1 (blue-dashed line), 0 (red-solid line), and −0.1 (black-dot-dashed line)

are shown. They indicate the region in which Ω12/γ1 ≃ 0.
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4 G(r2) = 0

We assume that one of the atoms is fixed at a position where the classical electric field (34)

is zero, while the other atom is fixed at a position where it is not zero. Therefore, we take

G2 = G(r2) = 0. Notice that increasing (decreasing) the intensity of the laser field increases

(decreases) |G1| = |G(r1)| (see the definition of G1 following (34)). Therefore, the Rabi

frequency G1 can be made to vary by increasing or decreasing the intensity of the electric

field (34). Furthermore, the distance |r1 − r2| between the two atoms can also be varied

independently of G1. For example, one of the atoms could be placed at a node of a stationary

wave to have G2 = 0, the other atom could be placed anywhere else (except at a position

where G1 = 0), and the intensity of the laser field could be varied to have |G1| = |G(r1)| take
on any positive value.

We will calculate the steady-state solution ρST
12 of (49) for this special configuration. Recall

that ρST
12 is a steady-state solution of (49) if ρST

12 is not explicitly time dependent and

− i

h̄

[

V I
AL, ρ

ST
12

]

+D
[

ρST
12

]

= 0 . (50)

It is found that the populations of the solution ρST
12 of (50) in the triplet-singlet basis (9)

are given by

〈1, 1|ρST
12 |1, 1〉 =

18

κ

[

16F 2
12Ḡ

6
1 + 9(4− F 2

12)F
2
12Ḡ

4
1

]

,

〈1, 0|ρST
12 |1, 0〉 =

1

κ

[

µ−Ḡ
6
1 + ν−Ḡ

4
1 + η−Ḡ

2
1

]

,

〈1,−1|ρST
12 |1,−1〉 = 1− 〈1, 1|ρST

12 |1, 1〉 − 〈1, 0|ρST
12 |1, 0〉 − 〈0, 0|ρST

12 |0, 0〉 ,

〈0, 0|ρST
12 |0, 0〉 =

1

κ

[

µ+Ḡ
6
1 + ν+Ḡ

4
1 + η+Ḡ

2
1

]

, (51)

where

Ḡ1 = G1/γ1 ,

κ = Ḡ6
1(2048 + 1152F 2

12) + Ḡ4
1(2560 + 5184F 2

12 − 1296F 4
12)

+ Ḡ2
1(864 + 144F 2

12 + 486F 4
12) +

9

8
(2 + 3F12)

2(2− 3F12)
2(4− F 2

12) ,

µ± = 32(16± 12F12 + 9F 2
12) ,

ν± = 18(32± 48F12 + 68F 2
12 − 9F 4

12) ,

η± = 9(2± 3F12)
2(4− F 2

12) . (52)

On the other hand, the coherences of ρST
12 are given by

〈0, 0|ρST
12 |1, 1〉 = i

9
√
2

κ
Ḡ3

1F12

[

3(2 + 3F12)(4− F 2
12) + 8(4 + 2F12 − 3F 2

12)Ḡ
2
1

]

,
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〈1, 0|ρST
12 |1, 1〉 = i

9
√
2

κ
Ḡ3

1F12

[

3(2− 3F12)(4− F 2
12) + 8(4− 2F12 − 3F 2

12)Ḡ
2
1

]

,

〈1,−1|ρST
12 |1, 0〉 = −i

√
2

4κ
Ḡ1

[

32(32− 12F12 − 18F 2
12 + 27F 3

12)Ḡ
4
1

+ 36(32− 24F12 − 4F 2
12 + 54F 3

12 − 9F 4
12)Ḡ

2
1

+ 9(2− 3F12)
2(2 + 3F12)(4− F 2

12)
]

,

〈1,−1|ρST
12 |0, 0〉 = −i

√
2

4κ
Ḡ1

[

32(32 + 12F12 − 18F 2
12 − 27F 3

12)Ḡ
4
1

+ 36(32 + 24F12 − 4F 2
12 − 54F 3

12 − 9F 4
12)Ḡ

2
1

+ 9(2 + 3F12)
2(2− 3F12)(4− F 2

12)
]

,

〈1,−1|ρST
12 |1, 1〉 =

3

2κ
F12Ḡ

2
1

[

−256Ḡ4
1 − 9(64)F 2

12Ḡ
2
1 + 9(16− 40F 2

12 + 9F 4
12)

]

,

〈0, 0|ρST
12 |1, 0〉 =

Ḡ2
1

κ

[

512Ḡ4
1 + 36(16 + 16F 2

12 − 9F 4
12)Ḡ

2
1 + 9(16− 40F 2

12 + 9F 4
12)

]

.

(53)

The rest of the matrix elements can be obtained using the hermiticity of ρST
12 .

Using the following argument it can be shown that the density operator ρ12(t) of the two

atoms tends to the state ρST
12 above for any initial state ρ12(0) if G2 = 0. Equation (49) with

the initial condition ρ12(0) can be expressed as an initial value problem (IVP) of the form

ẋ(t) = Ax(t) , x(0) = x0 , (54)

where x(t) is a 16 component column complex vector associated with ρ12(t), A is a 16 × 16

constant complex matrix, and x0 is a 16 component column complex vector defined by ρ12(0).

The IVP in (54) has a unique solution x(t) [32]. It can be shown that the matrix A has

15 eigenvalues with negative real part and one eigenvalue is zero. Hence it follows that

x(t) → xST as t→ +∞ where xST is associated with ρST
12 above [32]. Therefore, ρ12(t) → ρST

12

as t→ +∞ for any initial condition ρ12(0).

There are several limiting cases of interest. First, if Ḡ1 → 0, then it is seen from (51) and

(53) that ρST
12 → |1,−1〉〈1,−1|. This result is expected since the atoms are located at different

positions and, without the driving field, the reservoir ultimately leaves the two atoms in their

respective ground states.

Another limiting case of more interest occurs when the laser field is very intense (|Ḡ1| →
+∞). From (51)-(53) we see that the matrix representation of ρST

12 in the tensor product

basis B′ (11) takes the form of an X-state

[ρST
12 ]B′ =















9

4
F 2

12

16+9F 2

12

0 0 − 3F12

16+9F 2

12

0 1
2 −

9

4
F 2

12

16+9F 2

12

− 3F12

16+9F 2

12

0

0 − 3F12

16+9F 2

12

9

4
F 2

12

16+9F 2

12

0

− 3F12

16+9F 2

12

0 0 1
2 −

9

4
F 2

12

16+9F 2

12















. (55)

Therefore, one can prepare the system of two atoms in an X-state by simply adjusting the

laser field intensity regardless of the initial state of the two atoms.
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Continuing with the case of high laser field intensities, the corresponding populations of

the triplet-singlet basis B (9) take the form

〈1, 1|ρST
12 |1, 1〉 =

9
4F

2
12

16 + 9F 2
12

,

〈1, 0|ρST
12 |1, 0〉 =

1

4
− 3F12

16 + 9F 2
12

,

〈1,−1|ρST
12 |1,−1〉 =

1

2
−

9
4F

2
12

16 + 9F 2
12

,

〈0, 0|ρST
12 |0, 0〉 =

1

4
+

3F12

16 + 9F 2
12

. (56)

Noting that −0.224 < F12 ≤ 2/3, we can establish bounds on the populations in (56).

When the laser field is very intense, the populations of the states |1, 1〉 and |0, 0〉 cannot

grow more than 1/20 and 1/4 + 1/10, respectively, and these maximum values are achieved

when the atoms are close. At the same time the populations of the states |1,−1〉 and |1, 0〉
take on their respective minimum values of 1/2 − 1/20 and 1/4 − 1/10. We note that the

dissipative interaction of the two atoms embodied by D3(ρ) in (41), is responsible for the non-

zero population of the state |1, 1〉 (recall that the dipole-dipole interaction is zero). Moreover,

this interaction is not very effective, since this population can only grow to a relatively small

value of 1/20 for high laser field intensities.

A final limiting case of interest occurs when the laser field intensity is low (|Ḡ1| ≪ 1).

From (51)-(53) we find to second order in Ḡ1 that the steady-state density matrix in the

triplet-singlet basis B (9) takes the form

[ρST
12 ]B =



















0 0
3F12Ḡ

2

1

1−( 3

2
F12)

2 0

0
2Ḡ2

1

(1+ 3

2
F12)

2 i
√
2Ḡ1

1+ 3

2
F12

2Ḡ2

1

1−( 3

2
F12)

2

3F12Ḡ
2

1

1−( 3

2
F12)

2 −i
√
2Ḡ1

1+ 3

2
F12

1− 2Ḡ2

1

(1+ 3

2
F12)

2 − 2Ḡ2

1

(1− 3

2
F12)

2 −i
√
2Ḡ1

1− 3

2
F12

0
2Ḡ2

1

1−( 3

2
F12)

2 i
√
2Ḡ1

1− 3

2
F12

2Ḡ2

1

(1− 3

2
F12)

2



















. (57)

Notice that Ḡ2
1 must be sufficiently small in order for (57) to make sense, since it can be seen

that the population of the state |0, 0〉 (component 4, 4 above) diverges as the distance between

the atoms tends to zero. In fact, it must occur that

Ḡ2
1 ≤ 1

4
·
(

1− 3
2F12

)2 (
1 + 3

2F12

)2

1 +
(

3
2F12

)2 , (58)

to have 〈1, 0|ρST
12 |1, 0〉 + 〈0, 0|ρST

12 |0, 0〉 ≤ 1. If one substitutes in (57) the bound in (58) it

follows that

〈1, 0|ρST
12 |1, 0〉 =

1

2
−

3
2F12

1 +
(

3
2F12

)2 → 0 as |r1 − r2| → 0+

〈0, 0|ρST
12 |0, 0〉 =

1

2
+

3
2F12

1 +
(

3
2F12

)2 → 1 as |r1 − r2| → 0+. (59)
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Fig. 2. (Color online) Figures (2a) and (2b) show the steady-state concurrence CST of the two
atoms as a function of Ḡ1 = G1/γ1 and the population ρ00 of the state |0, 0〉, respectively. The
inside figure in (2a) shows a close-up of the entanglement sudden death. Results are shown when
x = ωA|r1 − r2|/c = 0.01 (red-solid line), 1 (blue-dashed line), and 2 (black-dot-dashed line).

Hence, for a weak driving field and small distance between the atoms, the level |0, 0〉 is much

more populated than the level |1, 0〉.
We now discuss the degree of entanglement of ρST

12 as measured by the concurrence CST .

We observe that as the intensity of the laser field increases (Ḡ1 increases), CST increases,

takes on a maximum value, then decreases, and finally dies abruptly, Figs. (2a) and (3a).

Therefore, for a fixed distance between the two atoms, increasing/decreasing the laser field

intensity allows one to control the amount of entanglement between the two atoms. Also, the

sudden death of entanglement as a function of the Rabi frequency G1 is found for all values of

the distance between the atoms 0 < x ≤ 2.8, Fig. (3a). Moreover, CST takes on large values

only when the intensity of the laser field is such that Ḡ1 = G1/γ1 ≤ 1. Notice that the atoms

become entangled by exchanging spontaneously emitted photons, a process embodied by the

term D3(ρ) in (41).

To understand the behavior of the steady-state concurrence we consider the case of a weak

driving field. The concurrence of the density operator in (57) is easily calculated to be

CST =
3

2
|F12|

[

2Ḡ2
1

(

1− 3
2F12

)2 +
2Ḡ2

1
(

1 + 3
2F12

)2

]

,

=
3

2
|F12| ·

(

〈0, 0|ρST
12 |0, 0〉+ 〈1, 0|ρST

12 |1, 0〉
)

, (60)

to second order in Ḡ1. Hence, we observe that for weak driving fields the steady-state con-

currence is determined by the populations of the states |0, 0〉 and |1, 0〉. Since x ≤ 2.8, the

atoms are close and from (59) we conclude that the population of the level |0, 0〉 dominates

over that of the state |1, 0〉. Hence, the population of |0, 0〉 and the function F12 determine the

behavior of the steady-state concurrence. This is illustrated in Fig. (2b) where it is seen that

the population of |0, 0〉 is responsible to a large extent of the behavior of the concurrence not

only for weak laser field intensities. From that figure we observe that the concurrence grows

with the population of the level |0, 0〉 and is maximized when the latter is maximized. As the

population of the state |0, 0〉 decreases to its asymptotic value (that is, when Ḡ1 → +∞), the

concurrence decreases to zero. Notice that when the atoms are more separated, F12 is smaller
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and, hence, the population of |1, 0〉 has a greater contribution in the concurrence, see (59) and

(60). This is observed in the case x = 2 in Fig. (2b), where the concurrence does not exhibit

such a sharp dependence on the population ρ00 of |0, 0〉 when compared to the cases x = 0.01

and x = 1. Why the concurrence disappears when the laser field becomes very intense can

be explained by the asymptotic X-form of the density matrix in the product state basis (55).

There we observe that the laser field has reached such a high intensity that many coherences

have decreased to zero and the atomic transitions are saturated. The latter is taken to mean

that the populations have reached their asymptotic value. Furthermore, the concurrence of

this particular X-state can be easily calculated to be zero.

(a) (b)

Fig. 3. (Color online) Figures (3a) and (3b) show contour plots of the steady-state concurrence

CST and steady-state linear entropy SST
L as a function of x = ωA|r1 − r2|/c and Ḡ1 = G1/γ1,

respectively.

In the preceding paragraphs we have established that for any distance 0 < x = ωA|r1 −
r2|/c ≤ 2.8 between the two atoms, the amount of entanglement present in the system can

be controlled adjusting the laser field intensity. Moreover, the entanglement can be made to

disappear if the laser field intensity is high enough (that is, Ḡ1 has achieved a sufficiently

high value). Therefore, it is natural to ask whether all quantum correlations disappear if the

laser field intensity is sufficiently high. This is specially important in quantum technologies,

because other quantum correlations constitute a resource that might be exploited to bring

advantage in information transmission and processing [33, 34].

Recall that ρST
12 has the form of an X-state in the limit |Ḡ1| → +∞, see (55). Therefore,

we can use the method introduced in (21)-(24) to obtain analytic expressions of the left and

right quantum discord of ρST
12 in the limit of high laser field intensities (that is, |Ḡ1| → +∞).

We will first consider the case of the right quantum discord. It is found that the steady-

state quantum mutual information I(ρST
12 ) is given by (16):

I(ρST
12 ) =

−4 +
√
y

2
√
y

log2(−4 +
√
y) −

9
2F

2
12

y
log2

(

9

2
F 2
12

)

+
1

2
log2(y)

+
4 +

√
y

2
√
y

log2(4 +
√
y) − 16 + 9

2F
2
12

y
log2

(

16 +
9

2
F 2
12

)

− 1 , (61)
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where y = 16 + 9F 2
12. Meanwhile, the classical correlation Ccl

2 (ρST
12 ) is given by (19):

Ccl
2 (ρST

12 ) = 1 +
1− 4|b|

2
log2

(

1− 4|b|
2

)

+
1 + 4|b|

2
log2

(

1 + 4|b|
2

)

, (62)

where b = −3F12/(16 + 9F 2
12) = −3F12/y. The right quantum discord DQ

2 (ρ
ST
12 ) of the state

ρST
12 is given by (21):

DQ
2 (ρ

ST
12 ) = I(ρST

12 )− Ccl
2 (ρST

12 ) . (63)

Notice that all these correlations are functions of F12. The origin of this is that these correla-

tions build up as the atoms exchange spontaneously emitted photons, a process that depends

on F12 and that is embodied by D3(ρ) in (41) (recall that the dipole-dipole interaction is

zero).
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Fig. 4. (Color online) Figure (4a) shows the steady-state quantum mutual information IST (red-

solid line), classical correlations C
cl(ST )
2 (blue-dashed lined), and right quantum discord D

Q(ST )
2

(black-dot-dashed line) as a function of x = ωA|r1 − r2|/c in the limit |Ḡ1| → +∞. Here mea-

surements are performed on the atom at position r2. Figure (4b) illustrates the right quantum

discord D
Q(ST )
2 (red-solid line) and the right geometric discord D

(2)(ST )
2 (blue-dashed line) as a

function of x = ωA|r1 − r2|/c in the limit |Ḡ1| → +∞..

Figure (4a) shows these three correlations as a function of x = ωA|r1 − r2|/c. The first

observation is that ρST
12 has both quantum and classical correlations even though the entan-

glement is long gone (from Fig. (3a) we see that it died abruptly around Ḡ1 = 2). Also,

the quantum discord is approximately constant for 0 < x ≤ 2.8, while the quantum mutual

information and the right classical correlations decrease as x increases. Therefore, increas-

ing/decreasing the distance between atoms allows one to control the amount of right classical

correlations maintaining (approximately) the same amount of right quantum discord. In

particular, the latter is smaller than the right classical correlations except for 2 < x ≤ 2.8.

Given that the quantum discord can be calculated exactly for X-states, it is of great

interest to compare it with the geometric measure of quantum discord given in (25) to see

how well the latter estimates the exact result. Using that equation, the right geometric discord

D
(2)
2 (ρST

12 ) is easily calculated to be

D
(2)
2 (ρST

12 ) =
36F 2

12

(16 + 9F 2
12)

2
. (64)
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From Fig. (4b) we observe that there is good qualitative agreement between the estimate

D
(2)
2 (ρST

12 ) and the exact DQ
2 (ρ

ST
12 ). Nevertheless, notice that the exact quantum discord is

considerably larger than that given in (64), so, in general, the quantitative agreement between

DQ
2 (ρ

ST
12 ) and D

(2)
2 (ρST

12 ) is not so good.

The geometric discord in (25) allows us to calculate easily an estimate of the quantum

discord for the general case (51)-(53). The results are analytic, but the expressions are so large

that they are not presented. Figures (5a) and (6a) show that for a fixed distance between the

atoms the geometric discord quickly achieves the stationary value given in (64).

2 4 6 8
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Γ1

0.02

0.04

0.06

0.08

D2
H2L ST

(a)

2 4 6 8

G1

Γ1

0.02

0.04

0.06

0.08

D1
H2L ST

(b)

Fig. 5. (Color online) Figures (5a) and (5b) show the steady-state right D
(2)ST
2 and left D

(2)ST
1

geometric discords as a function of Ḡ1 = G1/γ1 for x = ωA|r1 − r2|/c = 0.355 (red-solid line), 1
(blue-dashed line), and 2 (black-dot-dashed-line).

(a) (b)

Fig. 6. (Color online) Figures (6a) and (6b) show contour plots of the steady-state right D
(2)ST
2

and left D
(2)ST
1 geometric discords as a function of Ḡ1 = G1/γ1 and x = ωA|r1 − r2|/c.

We now consider the case of the left quantum discord in the limiting case where |Ḡ1| →
+∞. Using (16), (19), and (21) we find that the quantum mutual information I(ρST

12 ) is exactly

the same as before (61), but the left quantum discordDQ
1 (ρ

ST
12 ) is now zero and the left classical

correlations Ccl
1 (ρST

12 ) are equal to I(ρST
12 ). Hence, all information of the atom at position r2
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contained in the correlations between the atoms in ρST
12 can be extracted by (one-dimensional

projective) measurements on the atom at r1 [5]. Also, ρST
12 is not perturbed by (certain) non-

selective measurements on the atom at r1 [5]. This contrasts greatly with the case considered

above, that is, with the case were the measurements are performed on the atom at r2. There

we found that ρST
12 presents non-negligible quantum discord. Thus, when measurements are

performed only on the atom at r2, ρ
ST
12 is perturbed and there is information about the atom

at r1 that cannot be extracted [5]. Furthermore, we have here another example were both

the quantum discord and the classical correlations are not symmetric: DQ
1 (ρ

ST
12 ) 6= DQ

2 (ρ
ST
12 )

and Ccl
1 (ρST

12 ) 6= Ccl
2 (ρST

12 ). Given that the atoms are very close it would be difficult (if not

impossible) to carry out measurements on only one of the atoms. Nevertheless, the quantum

discord can still be used as a measure of quantum correlations and its interpretations are still

valid. Moreover, we find that by fixing the distance between the two atoms and adjusting the

laser field intensity one is able to prepare the system of two atoms in a mixed separable state

with non-zero right quantum discord and zero left quantum discord.

Again, the use of the geometric discord (25) allows us to give an estimate of the quantum

discord in the general case (51)-(53). From Figs. (5b) and (6b) we note that the left geometric

discord is smooth by parts as a function of Ḡ1, since it exhibits edges. Also notice that there

is no sudden death of D
(2)
1 (ρST

12 ) and, hence, of the left quantum discord. This behavior was

also observed in the time-evolution of the quantum discord of a similar system in [20]. Finally,

observe that D
(2)
1 (ρST

12 ) is drastically different from D
(2)
2 (ρST

12 ) (compare Figs. (6a) and (6b)).

We now turn to discuss the degree of mixed-ness of ρST
12 as measured by the steady state

linear entropy SST
L ≡ SL(ρ

ST
12 ), see Fig. (3b). We observe that, as the intensity of the laser

field is increased (Ḡ1 increases), SST
L increases until it acquires an asymptotic value which is

easily calculated from (55):

SST
L =

3

4
− 4

16 + 9F 2
12

. (65)

Notice that the system is never in a maximum mixed state and that the maximum value

11/20 of SST
L occurs when the atoms are very close. Moreover, one can control the degree of

mixedness of the state of the two atoms by adjusting the laser field intensity.

To end this section we discuss the relationship between the steady-state quantum corre-

lations considered above (concurrence and right and left geometric discords) and the degree

of mixed-ness as measured by the linear entropy SST
L . From Fig. (7a) we observe that, as

ρST
12 becomes more mixed, the entanglement (as measured by the concurrence) increases until

SST
L reaches a certain value, after which the entanglement decays to zero. This behavior il-

lustrates the known fact that a mixed state of two qubits cannot contain an arbitrary amount

of entanglement, and that the more mixed the state becomes, the less entanglement it can

have [35]. To the best of our knowledge, an analogous result has not been established for the

quantum and geometric discords. Nevertheless, figures (7b) and (7c) show that the left and

right geometric discords exhibit a similar behavior to that of the concurrence as a function of

SST
L . Notice that only the left geometric discord decreases to zero, Fig. (7b).

5 Conclusions

In this article we considered two two-level atoms (qubits) fixed at different positions, driven

by a resonant monochromatic laser field, and interacting collectively with the quantum elec-
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Fig. 7. (Color online) Figures (7a), (7b), and (7c) show the steady-state concurrence CST , left

D
(2)ST

1 and right D
(2)ST

2 geometric discords as a function of the steady-state linear entropy SST
L

for x = ωA|r1 − r2|/c = 0.355 (red-solid line), 1 (blue-dashed line), and 2 (black-dot-dashed line).

tromagnetic field. A Born-Markov-secular master equation was used to describe the dynamics

of the two atoms and their steady-state was studied for a configuration in which one atom

was located in a region where the driving electric field is zero while the other was in a position

where it is not zero. Furthermore, the direction of the matrix element of the electric dipole

moment operator between the excited and ground states of each atom was chosen in such a

way that the dipole-dipole coupling was zero.

The steady-state density operator ρST
12 was obtained analytically and it was shown that any

initial state of the two atoms tends to ρST
12 . Therefore, it does not matter how the system of

two atoms is initially prepared, the quantum state of the two atoms is ρST
12 once the transient

terms are negligible. The steady-state density operator is entangled and has non-zero left and

right quantum discords if the laser field intensity is not very high. High laser field intensities

turn ρST
12 into a separable mixed X-state that has non-zero right quantum discord. Moreover,

the amount of entanglement is highly dependent on the population of |0, 0〉.
Steady-state quantum correlations (entanglement and quantum discord) are created as

the atoms exchange spontaneously emitted photons and can be controlled by adjusting the

laser field intensity. Increasing the laser field intensity eventually leads to steady-state entan-

glement sudden death, but the quantum discord still survives. For high laser field intensities,

increasing/decreasing de distance between the atoms allows one to control the amount of

classical correlations while maintaining the quantum discord (approximately) constant.

The model studied could be useful in experiments with trapped cold atoms in free space

or in a cavity and driven by a resonant monochromatic laser field. In the case of atoms in a

cavity, the laser field would coincide with the cavity mode and the solid angle subtended by

the cavity would have to be very small. The results of the article are relevant for experimental

studies, because it was found that, regardless of the initial state of the two atoms, the steady-

state density operator of the two atoms is ρST
12 and the amount of (quantum and classical)

correlations in it can be controlled by adjusting the laser field intensity. Moreover, by adjusting

the laser field intensity one can prepare the system of two atoms in a separable mixed state

with non-zero left and right quantum discords. Increasing the laser field intensity allows one

to prepare the two atoms in a separable mixed X-state whose classical correlations can be

manipulated by varying the distance between the two atoms while maintaining the non-zero

right quantum discord approximately constant.
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