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The McEliece cryptosystem is one of the best-known (classical) public-key cryptosys-
tems, which is based on algebraic coding theory. In this paper, we present a quantum

analogue of the classical McEliece cryptosystem. Our quantumMcEliece public-key cryp-
tosystem is based on the theory of stabilizer codes and has the key generation, encryption
and decryption algorithms similar to those in the classical McEliece cryptosystem. We
present an explicit construction of the quantum McEliece public-key cryptosystem using

Calderbank-Shor-Steane codes based on generalized Reed-Solomon codes. We examine
the security of our quantum McEliece cryptosystem and compare it with alternative
systems.
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1 Introduction

Multi-party quantum computation requires secure transmission of quantum information, i.e.,

quantum states. If the sender and receiver share Einstein-Podolsky-Rosen (EPR) pairs, they

can use quantum teleportation [1] to privately transmit quantum states via a dual classical

channel. Another possible solution to the problem is to use the quantum one-time pad (or

private quantum channel) [2, 3]. The quantum one-time pad encrypts quantum states in an

unconditionally secure way using shared classical keys. Encryption of a single qubit (two-level

quantum system) requires two classical bits shared between the sender and receiver. To use

the quantum one-time pad the sender and receiver have to share a secret key in advance. To

establish a secret key between the sender and receiver they can use quantum key distribution

such as the Bennett-Brassard 1984 (BB84) protocol [4]. Since BB84 has been proved to

be unconditionally secure (see, e.g., [5]), the combination of the quantum one-time pad and

BB84 achieves perfect secrecy. However, the BB84 protocol does not need entanglement but

requires a preshared secret key for authentication.

Although the two solutions suggested above completely solve the problem of secure trans-

mission of quantum states, we want a more efficient method for the problem which require

neither shared entanglement nor common randomness. Recently, the concept and some re-

alizations of a quantum public-key cryptosystem (QPKC) have been proposed [6, 7, 8, 9].

Most of the existing QPKCs encrypt classical information with a quantum public key. It

is believed that they are quantum-computationally secure, i.e., they cannot be broken by a
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quantum computer. As opposed to symmetric cryptography, public-key cryptography does

not need shared secret keys in advance but needs authentication of public keys. It seems that

a quantum public key is more difficult to authenticate than a classical public key.

The McEliece public-key cryptosystem [10] is based on algebraic coding theory and its

security relies on the difficulty of the problem of decoding general linear codes, an NP-hard

problem in coding theory. It is believed that NP-hard problems cannot be solved in polynomial

time on a quantum computer. Although Grover’s search algorithm [11] can accelerate some

classical attacks, the resulting computation cost is still exponential (see [12]). Hence the

McEliece public-key cryptosystem seems to be immune to quantum computers.

In this paper we propose a quantum analogue of the McEliece public-key cryptosystem.

Our quantum McEliece cryptosystem is based on quantum coding theory, more specifically,

the theory of stabilizer codes (or additive quantum codes), and the security of the system

relies on the hardness of the problem of decoding general stabilizer codes. The public and

secret keys used in the system are classical and the message to be encrypted may be classical

or quantum.

The structure of the paper is as follows. In Section 2 we review the classical McEliece

and Niederreiter public-key cryptosystems, which is helpful in understanding our quantum

McEliece public-key cryptosystem. In Section 3, for convenience of the reader we review the

theory of stabilizer codes, which includes the definition, encoding and decoding of a stabilizer

code. We show that the problem of decoding general stabilizer codes is intractable. We

also review the Calderbank-Shor-Steane (CSS) codes and consider the decoding problem.

In Section 4 we first present the quantum McEliece public-key cryptosystem in general and

then give an explicit construction of the quantum McEliece cryptosystem using CSS codes

derived from generalized Reed-Solomon (GRS) codes. In Section 5 we study the security

of the quantum McEliece cryptosystem and show that the quantum McEliece cryptosystem

is secure against conceivable classical and quantum attacks. In Section 6 we compare our

quantum McEliece cryptosystem with an alternative system that uses the quantum one-time

pad and the Niederreiter public-key cryptosystem. We also discuss Yang’s quantum McEliece

public-key cryptosystem. Section 7 concludes the paper. The appendix gives the detail of the

construction of a family of CSS codes derived from GRS codes.

Notation: We denote by F2 the binary field {0, 1} and by C the field of complex numbers.

A bold-faced italic symbol such as a denotes a binary vector. (In Appendix A we use the

same notation for vectors with components from an extension field.) 0 denotes the zero vector

of appropriate length or the zero matrix of appropriate size. For binary vectors a and b, a∨b

denotes the bit-wise OR of a and b, a · b denotes the dot product of a and b, and wt(a)

denotes the Hamming weight of a. For a matrix A, AT denotes the transpose of A.

2 The McEliece/Niederreiter Public-Key Cryptosystem

Our quantum McEliece public-key cryptosystem (PKC) is a quantum analogue of the clas-

sical McEliece PKC [10]. For convenience of the reader we review the classical McEliece

PKC and its dual version, the Niederreiter PKC [13]. For an extensive survey of code-based

cryptography see [14, 15].
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2.1 McEliece PKC

Let C be a binary linear code of length n, dimension k, and minimum distance d ≥ 2t + 1.

We assume that C has an efficient decoder that can correct up to t errors. The McEliece

cryptosystem is given as follows.

• Setup: Bob chooses three binary matrices, G, S, and P , where G is a k × n generator

matrix of C, S is a random k × k nonsingular matrix, and P is a random n × n per-

mutation matrix. Bob computes Ĝ = SGP , publishes his public key (Ĝ, t), and keeps

secret his private key (G,S, P ).

• Encryption: Alice obtains Bob’s public key (Ĝ, t) and encodes her message m ∈ F
k
2 into

a ciphertext c = mĜ + e ∈ F
n
2 , where e ∈ F

n
2 is a randomly chosen binary vector of

Hamming weight t. Alice sends the ciphertext c to Bob.

• Decryption: Bob multiplies the received ciphertext c on the right by the permutation

P−1 to obtain cP−1 = mSG + eP−1. Note that eP−1 has Hamming weight t. Using

the decoder for C Bob corrects the error eP−1 to obtain mS. Multiplying mS on the

right by S−1, Bob obtains Alice’s message m.

If the generator matrix Ĝ is of systematic form then most of the bits of the message will be

revealed. So Ĝ must be of non-systematic form and the public key size is kn.

The security of the McEliece PKC relies on the difficulty of the problem of decoding a

general linear code. Consider the following decision problem:

COSET WEIGHTS

Instance: an m× n binary matrix A, a binary vector y of length m, and a positive integer w.

Question: does there exist a binary vector x of length n and Hamming weight up to w such

that xAT = y?

Berlekamp et al. [16] showed that the above problem is intractable.

Lemma 1 COSET WEIGHTS is NP-complete.

2.2 Niederreiter PKC

The Niederreiter public-key cryptosystem is a dual version of the McEliece cryptosystem. Let

C be the binary linear code given in the previous subsection and let H be an (n−k)×n parity

check matrix of C. Let P be as in the McEliece PKC and M be a random (n− k)× (n− k)

nonsingular matrix. The message space of the Niederreiter PKC is identified with the set of

all binary vectors of length n and weight t. The Niederreiter PKC is given as follows.

• Setup: Bob computes Ĥ =MHP , publishes his public key (Ĥ, t), and keeps secret his

private key (H,M,P ).

• Encryption: Alice obtains Bob’s public key (Ĥ, t) and encodes her message e, which

is a binary vector of Hamming weight t, into a ciphertext s = eĤT . Alice sends the

ciphertext s to Bob.

• Decryption: Bob multiplies the received ciphertext s on the right by the inverse of MT

to obtain s(MT )−1 = ePTHT . Using the decoder for C Bob obtains the binary vector

ePT and multiplying ePT on the right by P Bob obtains Alice’s message e.
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Note that the Niederreiter PKC is deterministic, while the McEliece PKC is probabilistic.

Since the message space of the Niederreiter cryptosystem is the set of all binary vectors

of length n and weight t, the number of messages is given by
(

n
t

)

, i.e., the message length

is log2
(

n
t

)

bits. Note that the ciphertext c = eĤT is no more than a syndrome of e and

has length n− k. Hence the ratio of the message length to the ciphertext length is given by
log

2 (
n

t)
n−k

. Since the public key Ĥ is a binary matrix of size (n − k) × n, the public key size is

n(n−k). However, as opposed to the McEliece PKC, we may assume that Ĥ is of systematic

form (see, e.g., [15, p. 132]). If we use a systematic form of Ĥ, then the public key size reduces

to k(n− k).

Remark 1 It has been shown [17] that the McEliece PKC is equivalent to the Niederreiter

PKC with comparable parameters.

3 Elements of the Theory of Stabilizer Codes

In this section we review the definition and the encoding and decoding of a stabilizer code. We

then consider the decoding complexity of general stabilizer codes. We also review Calderbank-

Shor-Steane (CSS) codes and consider the complexity of the problem of decoding CSS codes.

For more information about stabilizer codes, see [18, 19, 20].

3.1 Definition

Quantum systems are described by Hilbert spaces, complex vector spaces with an inner prod-

uct. Let H = C
2 be the two dimensional Hilbert space, which describes a two level quantum

system which is called a quantum bit (qubit for short). Let Hn = H⊗n be the n-fold tensor

product of n copies of H. Then Hn describes an n-qubit system. Let X and Z be the two of

the Pauli matrices defined by

X =

[

0 1
1 0

]

, Z =

[

1 0
0 −1

]

(1)

and let Y = XZ. X and Z correspond to a bit-flip error and a phase error, respectively, and

Y to both errors. Note that XZ = −ZX. We define the error group Gn on n qubits to be

the set of all n-fold tensor products of Pauli matrices X, Y , Z and the 2× 2 identity matrix

I2 with multiplicative factors ±1. For a = (a1, . . . , an), b = (b1, . . . , bn) ∈ F
n
2 we define

X(a) = Xa1 ⊗ · · · ⊗Xan (2)

Z(b) = Zb1 ⊗ · · · ⊗ Zbn . (3)

Then every element E of Gn can be written uniquely as E = (−1)cX(a)Z(b) for some

a, b ∈ F
n
2 and c ∈ F2. Let E = X(a)Z(b) and E′ = X(a′)Z(b′), where a, b,a′, b′ ∈ F

n
2 . Then

we have

EE′ = (−1)a·b
′+a

′
·bE′E. (4)

The identity element of the error group Gn is given by the n-fold tensor product of I2’s, which

is denoted by I2n . Let S be a commutative subgroup of the error group Gn not containing

−I2n . The stabilizer code Q with stabilizer S is the simultaneous eigenspace of every operator

in S with eigenvalue +1:

Q = {|ψ〉 ∈ Hn : E|ψ〉 = |ψ〉 for all E ∈ S} . (5)
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We assume from now on that S is generated by n− k independent generators, E1, . . . , En−k.

Then Q has dimension 2k. (Q encodes k qubits to n qubits.) Each generator Ei can be

written uniquely as Ei = (−1)ciX(ai)Z(bi) for some ai, bi ∈ F
n
2 and ci ∈ F2. The generator

matrix H of the stabilizer S is defined to be the (n− k)× 2n matrix over F2 whose rows are

given by (ai|bi), i = 1, . . . , n− k:

H = [HX |HZ ] =





a1 b1
. . . . . .
an−k bn−k



 . (6)

We define the alternate bilinear form on F
2n
2 by

〈(a|b), (a′|b′)〉 = a · b′ + a′ · b, (a|b), (a′|b′) ∈ F
2n
2 , (7)

where the · operation is the usual dot product of two vectors. Then, from Eq. (4) the

commutativity of the stabilizer S becomes the orthogonal relation between the vectors (aj |bj),
i.e., HXH

T
Z +HZH

T
X = 0. The generator matrix H for the stabilizer code Q is very useful in

encoding and decoding of Q, which we will review briefly in the next two subsections.

3.2 Encoding

Encoding can be performed on a quantum circuit of size O(n2) constructed from the standard

form of the generator matrix for a stabilizer code [21]. The standard form is not unique, but

if a standard form is given, the encoding circuit is completely specified by the standard form.

Remark 2 It should be noticed that using Gaussian elimination one can compute a standard

form of the generator matrix for a stabilizer code in O(n3) time on a classical computer. A

Gaussian elimination procedure transforms H = [HX |HZ ] into H
′ = [MHXP |MHZP ], where

M is some (n − k) × (n − k) nonsingular binary matrix and P is some n × n permutation

matrix.

3.3 Decoding

Let Q be the stabilizer code with stabilizer S defined in Section 3.1 The minimum distance

of Q is defined to be the minimum number of Pauli matrices (not I2 factors) in an element of

CGn
(S)\S, where CGn

(S) is the centralizer of S in Gn. We denote by [[n, k, d]] the parameters

of a stabilizer code of length n, dimension 2k and minimum distance d. If the stabilizer code

Q has minimum distance d, then Q can detect up to d−1 errors and correct up to ⌊(d−1)/2⌋
errors. To detect and correct errors we perform the measurement of the generators of the

stabilizer S, which is called the syndrome measurement. If the errors that have occurred on

the qubits are written as E = X(eX)Z(eZ) for some eX , eZ ∈ F
n
2 , the syndrome s is given

by

s = (eZ |eX)HT = eZH
T
X + eXH

T
Z . (8)

The syndrome gives the information about the errors that have occurred on qubits and using

this information error detection and correction can be done, although it may take much time

to compute the location and pattern (bit-flip or phase-flip or both) of an error. We consider

the following decision problem:

DECODING STABILIZER CODES

Instance: two m× n binary matrices A and A′ such that AA′T + A′AT = 0, a binary vector
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y of length m, and a positive integer w.

Question: do there exist two binary vectors x,x′ of length n such that xAT +x′A′T = y and

wt(x ∨ x′) ≤ w?

Lemma 2 DECODING STABILIZER CODES is NP-complete.

Proof. It is obvious that DECODING STABILIZER CODES is in NP. To prove its NP-

completeness we will show that COSET WEIGHTS can be reduced to DECODING STABI-

LIZER CODES. In fact, for a given instance (A,y, w) of COSET WEIGHTS we can set the

instance (A,A′ = 0,y, w) of DECODING STABILIZER CODES. .

From the above theorem, for a general stabilizer code minimum distance decoding, i.e., the

problem of finding a solution (eX |eZ) of Eq. (8) given a syndrome s such that wt(eX ∨eZ) is

minimum is NP-hard. In our applications we need bounded distance decoding, i.e., decoding

up to half the minimum distance. We conjecture that bounded distance decoding of general

stabilizer codes is NP-hard. A more general result on the complexity of decoding quantum

error correcting codes can be found in [22].

3.4 Calderbank-Shor-Steane codes

Calderbank-Shor-Steane (CSS) codes discovered independently by Calderbank and Shor [23],

and by Steane [24] are an important class of quantum error-correcting codes, which are con-

structed from classical binary linear codes. In fact, CSS codes are a special class of stabilizer

codes. Let C1 and C2 be two binary linear codes of length n and dimensions k1 and k2,

respectively, such that C2 ⊂ C1. The CSS code based on C1 and C2 is a stabilizer code with

the generator matrix of the stabilizer defined by

H =

[

H(C⊥
2 ) 0

0 H(C1)

]

, (9)

where H(C1) and H(C⊥
2 ) are the parity check matrices for C1 and C⊥

2 , respectively. Note

that H(C⊥
2 ) is a generator matrix for C2. Since C2 ⊂ C1, we have that H(C1)H(C⊥

2 )T = 0.

The CSS code defined above has parameters [[n, k = k1 − k2, d]], where d = min{wt(C1 \
C2),wt(C

⊥
2 \ C⊥

1 )}.

Encoding. Since a CSS code is a stabilizer code, it is encoded in the same way as presented

in Section 3.2. Since the encoding method of Cleve and Gottesman is generic, it may not be

optimum for CSS codes. It may be possible to use the CSS code structure in encoding. In

fact, Grassl et al. [25] show an encoding circuit for a CSS code, which is a little simpler than

the Cleve–Gottesman construction. Furthermore, it can be specified by a more compact data,

which leads to a smaller public key of the quantum McEliece cryptosystem to be presented

in the next section. Let G(C2) be a k2 × n generator matrix for C2 (we can take, e.g.,

G(C2) = H(C⊥
2 )). Since C2 ⊂ C1, we can extend G(C2) to a generator matrix for C1 by

adding k1 − k2 row vectors in C1. We denote by G′(C1) the matrix consisting of these rows.

So G(C2) and G
′(C1) form a k1 × n generator matrix G(C1) for C1:

G(C1) =

[

G(C2)
G′(C1)

]

. (10)
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Fig. 1. Generator matrix for C1.

By performing elementary row operations on G(C1) and exchanging the columns of G(C1),

more explicitly, by multiplying on the left by an appropriately chosen k1 × k1 nonsingular

binary matrix S of the form

S =

[

S1 0
S2 S3

]

, (11)

and on the right by an n × n permutation matrix P , we may assume that k1 × n matrix

SG(C1)P has the same form as shown in Fig. 1. This is a generator matrix for a permutation

of C1 and completely specifies an encoding circuit for the CSS code. For more details see [25].

Decoding. CSS codes can be decoded in the same way as stabilizer codes. One may think

that the special structure on CSS codes may make the decoding of the codes easier than that

of general stabilizer codes. To address this issue we consider the following decision problem:

DECODING CSS CODES

Instance: two binary matrices A and A′ of sizes m × n and m′ × n, respectively, such that

AA′T = 0, two binary vectors y and y′ of length m and m′, respectively, and a positive

integer w.

Question: do there exist two binary vectors x and x′ of length n and Hamming weight at

most w such that xAT = y and x′A′T = y′?

Lemma 3 DECODING CSS CODES is NP-complete.

Proof. It is obvious that DECODING CSS CODES is in NP. To prove its NP-completeness

we will show that COSET WEIGHTS can be reduced to DECODING CSS CODES, as in

the proof of Lemma 2. For a given instance (A,y, w) of COSET WEIGHTS set the instance

(A,A′ = 0,y,y′ = 0, w) for the DECODING CSS CODES problem. .

Remark 3 We can construct a CSS code from a binary linear code C which contains its dual

C⊥, i.e., C⊥ ⊂ C. Taking C1 = C and C2 = C⊥ in Eq. (9) the generator matrix of the

stabilizer becomes

H =

[

H(C) 0
0 H(C)

]

. (12)

Note that H(C) has the property that H(C)H(C)T = 0. The CSS code defined by H is

compactly specified by H(C) alone, but we cannot prove or disprove that the corresponding

decision problem is NP-complete. We conjecture that the problem of decoding a general dual-

containing code is NP-hard.
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4 The Quantum McEliece Cryptosystem

In this section, we first present the general structure of the quantum McEliece cryptosystem

(QMC) and then give an explicit construction of a QMC using the family of CSS codes derived

from generalized Reed-Solomon (GRS) codes. Our QMC is a generalization of the classical

McEliece cryptosystem.

4.1 Description of the QMC: The general construction

Suppose that Alice wants to send Bob a k-qubit message in (pure or mixed) state ρ. Let Q

be an [[n, k, d ≥ 2t+ 1]] stabilizer code, and let H = [HX |HZ ] be the generator matrix of the

stabilizer of Q, where HX (resp. HZ) denotes the (n− k)×n binary matrix corresponding to

the X (resp. Z) part of the stabilizer generators. We assume that there exists a fast decoding

algorithm for Q that solves Eq. (8). Our QMC is given as follows.

• Setup: Bob chooses a random (n − k) × (n − k) nonsingular binary matrix M ′ and a

random n × n permutation matrix P ′, computes [M ′HXP
′|M ′HZP

′], and transforms

it into a standard form [M ′′M ′HXP
′P ′′|M ′′M ′HZP

′P ′′], where M ′′ is an appropriate

(n−k)× (n−k) nonsingular binary matrix and P ′′ is an appropriate n×n permutation

matrix. Let M = M ′′M ′, P = P ′P ′′ and Ĥ = [MHXP |MHZP ]. Bob publishes his

public key (Ĥ, t) and keeps secret his private key (H,M,P ).

• Encryption: Alice obtains Bob’s public key (Ĥ, t) and encodes her k-qubit message ρ

to an n-qubit cipher state σ = E(ρ), where E is the encoder corresponding to Ĥ. Alice

randomly chooses t out of the n qubits and applies one of the Pauli matrices (X, Y and

Z) to each of the t qubits. Alice sends Bob the resulting state σ′.

• Decryption: Bob performs the syndrome measurement corresponding to Ĥ on the re-

ceived qubits σ′ to obtain the syndrome s, and computes s′ = s(MT )−1. From s′ he

finds the error locations and patterns (êZ |êX) with the help of the decoder for Q. Bob

applies Z(êZP )X(êXP ) to the received state σ′ to obtain σ. Finally, Bob runs the

encoder E backward and obtains E−1(σ) = E−1 ◦ E(ρ) = ρ, which is Alice’s k-qubit

message.

Remark 4 The standard form of a public key not only specifies the encoder circuit for a

stabilizer code, but also reduces the effective size of the public key.

Lemma 4 Decryption in the cryptosystem works.

Proof. Suppose the errors introduced by Alice is written as E = X(eX)Z(eZ) for some

eX , eZ ∈ F
n
2 . Then the syndrome s is given by

s = (eZ |eX)ĤT = (eZP
T |eXPT )HTMT . (13)

Bob computes s′ = s(MT )−1 = (eZP
T |eXPT )HT , and by using the decoder for Q he can find

the phase-flip errors and bit-flip errors (êZ |êX) = (eZP
T |eXPT ). He applies the permutation

P to both the errors and obtains (êZP |êXP ) = (eZP
TP |eXPTP ) = (eZ |eX), since the

permutation P satisfies PT = P−1. Finally, Bob applies the inverse E−1 = Z(eZ)X(eX) to

the received state σ′ to obtain σ. .
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Remark 5 The matrix M plays an important role in the security of the QMC. It hides the

structure of a stabilizer code and makes it impossible for Eve to recover the private key.

However, for Bob who knows the stabilizer code the matrix M is not important, since the

stabilizer (not of operator type) is a additive group. Therefore, in the decryption Bob may use

another generator matrix for the stabilizer of a permutation of Q defined by H̃ = [HXP |HZP ],

which extracts the same error patterns (eZ |eX) as Ĥ. In this case Bob does not need to

compute the inverse of MT .

4.2 Encryption of classical messages

Alice’s message may be classical or quantum. In the quantum case a message is a pure or mixed

quantum state, which may be unknown to Alice. There are some ways of encrypting classical

messages. A naive way is to identify k-bit messages m ∈ F
k
2 with k-qubit computational basis

states |m〉 ∈ Hk. If Alice wants to send a classical message m, she encodes m to |m〉 and

then encrypts it using the QMC presented in the previous section. Alice may use the first

qubit of her k-qubit message as a flag bit to tell Bob whether the message is classical or not.

A more secure but less efficient method for encryption of classical messages is to use

random Hadamard transforms. To encrypt a k/2-bit message m Alice randomly chooses a

k/2-bit string r and prepares the state |ψm,r〉 = |r〉 ⊗H(r)|m〉, where H is the Hadamard

transform

H =
1√
2

[

1 1
1 −1

]

(14)

and we have used the same notation as X(a) defined in Section 3.1. Note that |ψm,r〉 is a

superposition of computational basis states unless r = 0. Then Alice encodes the state |ψm,r〉
into a cipher state using the QMC. If he receives the cipher state, Bob decodes it to |ψm,r〉.
He measures the first k/2 qubits to obtain r and then applies H(r) to the last k/2 qubits to

obtain |m〉 (and hence the message m).

Although we show the security of the first method against some attacks in Section 5.3, we

recommend the second method for secure transmission of classical messages.

4.3 The QMC based on CSS codes

In the previous section we showed the QMC in general. Since CSS codes have special structure,

if we use a CSS code as a building block of the QMC, we can simplify the encryption and

decryption in the QMC and reduce the key size of the system.

Let H be a generator matrix of the stabilizer for a CSS code Q defined by Eq. (9) and

G = G(C1) be a generator matrix of the form Eq. (10). We assume that C1 and C⊥
2 can

correct up to t errors.

• Setup: Bob chooses a random k1×k1 nonsingular binary matrix S′ of the form Eq. (11)

and a random n × n permutation matrix P ′, computes S′GP ′, and transforms it into

a matrix of the form shown in Fig. 1, S′′S′GP ′P ′′, where S′′ is an appropriate k1 ×
k1 nonsingular binary matrix of the form Eq. (11) and P ′′ is an appropriate n × n

permutation matrix. Let S = S′′S′, P = P ′P ′′ and Ĝ = SGP . Bob publishes his public

key (Ĝ, t) and keeps secret his private key (G,S, P ).

• Encryption: Alice obtains Bob’s public key (Ĝ, t) and encodes her k-qubit message

ρ to an n-qubit cipher state σ = E(ρ), where E is the encoder corresponding to Ĝ.
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Alice randomly chooses t positions and applies the Pauli-X operator to each of the t

positions. Alice also randomly and independently chooses t positions and applies the

Pauli-Z operator to each of the t positions. Alice sends Bob the resulting state σ′.

• Decryption: Bob performs the syndrome measurement corresponding to H(C⊥
2 )P and

H(C1)P on the received qubits σ′ to obtain the syndrome s. From s Bob finds the

error locations and patterns (êZ |êX) with the help of the decoder for Q. Bob applies

Z(êZP )X(êXP ) to the received state σ′ to obtain σ. Finally, Bob runs the encoder E
backward and obtains E−1(σ) = E−1 ◦ E(ρ) = ρ, which is Alice’s k-qubit message.

The proof that the decryption works is the same as that of the general case. Note that

Bob does not use S, part of the private key, in the decryption (see Remark 5).

Remark 6 In the encryption Alice may choose dependent bit-flip (Pauli-X) and phase-flip

(Pauli-Z) errors to improve the probability of detecting an active adversary who introduces

some errors to the quantum state sent from Alice to Bob. An example is as follows: Let s be

a positive integer smaller than t, which is now part of the public key. Alice randomly chooses

t positions for X errors and then randomly chooses s out of the t positions and t − s out of

the remaining n− t positions for Z errors. Then the numbers of X, Y and Z errors is t− s,

s, t − s, respectively. This dependence of X and Z errors reduces the decoding complexity,

but enhances the capability of detecting such an adversary, since introducing some errors to

the cipher state changes the dependence of X and Z errors, which leads to the changes of the

numbers of X, Y and Z errors.

4.4 Explicit construction

Using generalized Reed-Solomon (GRS) codes we can construct a family of CSS codes with

parameters [[n = mN, k = m(N − 2K), d ≥ K + 1]], where m, N and K are positive integers

such that 1 ≤ K ≤ N ≤ 2m. There are (2m − 1)N−1 CSS codes in the family. The detail of

the construction is given in Appendix A.

Using the encoding method of Grassl et al. given in Section 3.4 the information about the

encoding circuit for a CSS code in the family is encoded in m2K(2N − 3K) bits, which is the

public key of the QMC using the CSS code. It should be noticed that CSS codes based on

GRS codes can be decoded efficiently with the Berlekamp–Massey algorithm [26, 27].

Example 1 Taking m = 8, N = 256 and K = 100 we obtain a family of [[2048, 448, d ≥ 101]]

CSS codes. The number of CSS codes in the family is about 10613.7. Another choice of the

parameters is m = 9, N = 512 and K = 200, which define a family of 101384.0 [[4608, 1008, d ≥
201]] CSS codes.

Remark 7 The Niederreiter PKC based on GRS codes can be broken by using the Sidelnikov-

Shestakov (SS) algorithm [28]. The SS algorithm computes another private key of the Nieder-

reiter PKC in polynomial time from the public key which is obtained by symbol-wise scrambling

and permutation (i.e., M and P ) of the parity check matrix for a GRS code (see Section 2.2).

Since the public key of the QMC using CSS codes based on GRS codes is obtained by bit-wise

scrambling and permutation (i.e., S and P ) of the generator matrix for the binary expansion

of a GRS code (see Section 4.3 and Remark A.1 in Appendix A), the SS algorithm cannot

apply directly to the QMC. This is the same as the reason why the SS algorithm does not
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apply to the (classical) McEliece PKC based on Goppa codes which are subfield subcodes of

GRS codes (see Remark 3.1 of [14] and Remark 3 of [15]).

5 Security of the QMC

In this section we examine the security of the QMC constructed in the previous section. To do

this we first overview some attacks on the classical McEliece PKC. A good survey of this topic

can be found in [14]. Many attacks on the McEliece PKC have been proposed so far. These

attacks are classified into three categories: ciphertext-only attack, partially-known-plaintext

attack, and chosen-ciphertext attack which includes the message-resend attack [29] and the

reaction attack [30]. Note that since a public key is available, an eavesdropper can easily

mount a chosen-plaintext attack. Since plaintexts and ciphertexts in the QMC are quantum

states, we have to carefully consider whether quantum versions of these attacks exist or not.

Note that even if a message state to be encrypted is classical i.e., a computational basis

state, its corresponding ciphertext is a quantum state (a superposition of computational basis

states). See Section 4.2 for encryption of classical messages. Since the QMC constructed in

the previous section is based on a class of CSS codes, “ciphertext-only attack” reduces to a

decoding problem for classical codes. We will show this type of attack on the QMC in the

next section.

5.1 Stern’s attack

Information set decoding (ISD) is a basic attack on the classical McEliece/Niederriter PKC.

Some variants of ISD have been proposed so far: to name a few, the Adams-Meijer algo-

rithm [31], the Lee-Brickell algorithm [32], Leon’s algorithm [33] and Stern’s algorithm [34]

and its variants [35, 36]. Recently, Bernstein et al. [37] have succeeded in breaking the

McEliece PKC with the original parameters suggested by McEliece. Their attack is an op-

timization of Stern’s algorithm and the best lower bound on the work factor for ISD based

attacks is derived from a generalization of Stern’s algorithm [38]. So we use Stern’s algorithm

for cryptanalysis of our system. The original Stern algorithm takes as input an (n − k) × n

binary matrix H and a positive integer w, and output a codeword of weight w, if any. Stern’s

algorithm is an iterative algorithm and each iteration takes T bit operations where

T =
1

2
(n− k)2(n+ k) + 2lp

(

k/2

p

)

+ 2p(n− k)

(

k/2

p

)2

/2l, (15)

where p and l are two parameters to be optimized. The probability P that each iteration

succeeds in finding a codeword of weight w is given by

P =

(

w
2p

)(

n−w
k−2p

)(

2p
p

)(

n−k−w+2p
l

)

4p
(

n
k

)(

n−k
l

) . (16)

Hence the average number of iterations required is given by 1/P and the work factor (average-

case complexity) of Stern’s algorithm is given by T/P . For more details on Stern’s algorithm

see [34]. Note that Stern’s algorithm can be applied to syndrome decoding, that is, the

problem of finding, given an (n− k)-bit syndrome s, an n-bit error vector e of weight t such

that eHT = s.
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Table 1. Proposed parameters and security analysis of the quantum McEliece PKC

QMC with [[n, k, d]] CSS [[2048, 448,≥ 101]] [[4608, 1008,≥ 201]]

# of qubits transmitted 2048 4608
# of information qubits 448 1008
Information rate 0.22 0.22
Public key size [bits] 1356800 6868800
Stern 2 · 278.6 (p = 3, l = 33) 2 · 2145.1 (p = 3, l = 37)
Grover 2 · 265.5 2 · 2103.4

Table 2. Some parameters of the Niederreiter PKC for key distribution

Niederreiter PKC with (n, t) Goppa (2600, 165) (2700, 174)

# of bits transmitted 1980 2088
# of information bits 881 926
Information rate 0.45 0.44
Public key size [bits] 1227600 1277856
# of qubits to be encrypted 440 463
Stern 279.7 (p = 4, l = 37) 279.5 (p = 4, l = 37)

Niederreiter PKC with (n, t) Goppa (6100, 365) (6200, 373)

# of bits transmitted 4745 4849
# of information bits 1987 2028
Information rate 0.42 0.42
Public key size [bits] 6429475 6550999
# of qubits to be encrypted 993 1014
Stern 2146.2 (p = 4, l = 42) 2146.3 (p = 4, l = 42)

In Table 1 we show the work factors of Stern’s attack on the quantum McEliece PKCs

using the CSS codes with the parameters given in Example 1. Note that in the decoding of

a CSS code we can separately perform bit-flip error correction and phase error correction,

which leads to the factor of 2 of the work factor in the table.

5.2 Using Grover’s algorithm to accelerate ISD

The ISD based attack against the quantum McEliece PKC we have considered is basically a

classical attack, although Eve have to perform the syndrome measurement on the transmitted

qubits. We have to investigate more sophisticated quantum attacks on the quantum McEliece

PKC. Although code based cryptography does not suffer from Shor’s factoring algorithm,

Grover’s search algorithm may speed up some ISD based attacks on the McEliece PKC. In

fact, Bernstein [12] shows that a quantum ISD algorithm is more efficient than a simple

classical counterpart. Here we give the basic quantum information set decoding algorithm for

a binary linear code C of length n, dimension k and minimum distance at least 2t+1 using an

(n− k)×n parity check matrix H for C instead of using a generator matrix as shown in [12].

Let e be an error vector of weight t and let s = eHT . We first give a classical information

set decoding algorithm and then speed up the algorithm via Grover’s algorithm. Let S be

an information set that is error-free (i.e., S contains no positions in error.) Then we can take

an (n− k)× (n− k) nonsingular matrix U such that UH is a systematic parity check matrix

with S being an information set (i.e., the submatrix corresponding to the complement of S is
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the (n− k)× (n− k) identity matrix except for the column ordering). From s = eHT , sUT

has weight t and its nonzero components correspond to supp(e). The classical information

set decoding algorithm is given as follows.

1. Randomly choose a k-set S from n positions and perform some elementary row op-

erations on [H|sT ] to obtain a matrix such that the submatrix corresponding to the

complement of S is the (n− k)× (n− k) identity matrix (this is just a Gaussian elimi-

nation procedure).

2. If the last column has weight t then the corresponding positions in the complement of

S are in error.

There are
(

n
k

)

ways of choosing k-sets from n positions and
(

n−t
k

)

ways of choosing error-free

k-sets. As shown in [12] almost 0.29 fraction of error-free k-sets are information sets. Hence

the classical information set decoding algorithm needs
(

n
k

)

/[0.29
(

n−t
k

)

] iterations on average

and each iteration requires T = (n−k)2(n+k+1)/2+(n−k) bit operations. Hence the work
factor of the algorithm is T

(

n
k

)

/[0.29
(

n−t
k

)

]. As shown in [12], by using Grover’s algorithm

one can reduce the average number of iterations into its square root and so the work factor

of the quantum version of the algorithm is T
√

(

n
k

)

/[0.29
(

n−t
k

)

] qubit operations.

In Table 1 we show the work factor of Grover’s attack on the quantum McEliece PKC

with chosen parameters. The result shows that Grover’s attack is more efficient than Stern’s

attack, although quantum computation differs from classical computation and they cannot

be compared with each other in a naive way. Grover’s attack on the quantum McEliece PKC

based on the [[2048, 448,≥ 101]] CSS code requires 266.5 qubit operations on average. This

number is critically small with respect to nowadays (classical) computing resource, but it will

be infeasible to perform such a number of qubit operations with an initial stage quantum

computer. Note that both of the encoding and syndrome measurement of an [[n, k]] quantum

error-correcting code require at most n(n − k) qubit operations. In our [[2048, 448,≥ 101]]

CSS code case we need at most 221.6 qubit operations, which is far below 266.5 and will be

achievable with a quantum computer that can perform up to three and a half million of qubit

operations in real time.

5.3 On (in)security of classical messages against some attacks

In this section we will consider some attacks on the QMC based on GRS-CSS codes for

classical messages using the encoding method of Grassl et al. presented in Section 3.4 and the

first method for encryption of classical messages presented in Section 4.2. As explained there,

Alice may use a flag bit to tell Bob whether the message is classical or not. The flag bit and

the message are encoded together into a quantum state. Hence, even if Eve intercepts the

quantum state, Eve cannot decide whether the message is classical or not until she decodes

the quantum state and measures the flag bit. Below we assume that Eve somehow knows

that Alice sends a classical message to Bob.

5.3.1 Ciphertext-only attack

When Eve decodes the quantum state into which Alice encoded a classical message, Eve does

not need to correct phase errors. To obtain the message Eve first measures the quantum state

in the computational basis to obtain c1+c2+e, where c1 is the codeword of C1 corresponding



194 Quantum McEliece public-key cryptosystem

to the message, c2 is a random codeword of C2 and e is a bit-flip error pattern that Alice has

added. Eve has only to correct the bit-flip errors e introduced by Alice. So the complexity

of information set decoding for the classical message case is half of the complexity for the

quantum message case.

As presented in Section 3.4, by using the generator matrix G(C1) of the standard form

in Fig. 1 c1 and c2 can be written as c1 = mG′(C1) and c2 = rG(C2), respectively, where

m is a (k1 − k2)-bit message and r is a random k2-bit vector. Since G(C2) is of systematic

form, most of the bits of r are revealed, although Eve does not know which bits are correct

and which ones are in error. On the other hand, since the block in G(C2) above the identity

matrix in G′(C1) is nonzero, c1 + c2 + e does not reveal the massage m apparently. It is

well-known that if the distribution on the message space is uniform then we may put the

public key into the systematic form (see, e.g., [15, pp. 128–129]).

Remark 8 Since r is not relevant to the message m, Eve may not decode r and she has only

to find a k2-bit vector r
′ and an n-bit error vector e′ such that c1+c2+e = c1+r′G(C2)+e′.

It is possible for Eve to find such a pair of r′ and e′ if she knows the syndrome of e with

respect to C2, but in fact she only knows the syndrome of e with respect to C1 which is part of

the syndrome of e with respect to C2. So, what Eve can do is to find a C1-codeword c1 + c2

(and hence m and r) and the true error vector e.

Remark 9 To find the bit-flip errors e Eve may use the generator matrix version of Stern’s

algorithm instead of the parity check matrix version as presented in Section 5.1. For more

details on the generator matrix version of Stern’s algorithm see [14]. The problem reduces to

the one of finding a codeword of weight t in the [n, k1+1, t] binary code that is the binary code

C1 augmented by e. For the CSS code of length 2048 in Example 1 the constituent binary

codes C1 and C2 have parameters [2048, 1248,≥ 101] and [2048, 800,≥ 157], respectively. In

this case the problem is to find a codeword of weight 50 in the [2048, 1249, 50] code. The

complexity of the generator matrix version of Stern’s algorithm is 278.8, which is almost the

same as the parity check matrix version (see Table 1).

Remark 10 Since the first (naive) encryption method for classical messages using the CSS

code based QMC encrypts a classical message into bit values of a quantum state, the reader

may think that phase errors introduced by Alice do not play any role. However, introducing

phase errors as well as bit errors increases the security of a message and it is important

that Bob measures the syndrome for phase error correction and checks whether the phase

errors are correctable or not, since Eve may introduce some errors beyond the error-correction

capability of the CSS code. Only if both bit-flip and phase errors are corrected, the message

is independent of Eve with high probability and hence is probably secure. The same comment,

of course, applies to the security of a quantum message (cf. Example 2).

5.3.2 Partially known plaintext attack

If Eve knows part of a classical message, then she can easily perform a partially known

plaintext attack as in the classical case (see, e.g., [14]). Partial knowledge on the message

reduces the complexity of information set decoding.
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5.3.3 Message-resend attack

We briefly review the message-resend attack on the classical McEliece cryptosystem presented

by Berson [29]. We use the notation introduced in Section 2. Alice sends a ciphertext

c = mĜ + e to Bob, where m is a message and e is an error vector of weight t. Eve who

pretends to be Bob intercepts the ciphertext c and asks Alice to resend a ciphertext. Alice

sends another ciphertext c′ = mĜ+e′ to Bob, where e′ is an error vector which differs from e

with high probability. Eve again intercepts c′ and compute the bit-wise XOR (modulo 2 sum)

c + c′ to obtain e + e′. The nonzero components of e + e′ give (part of) the error locations

of e or e′. The key observation is that since e and e′ are random error vectors (of weight t),

the position where e + e′ is zero is error-free with high probability. This observation makes

it possible for Eve to accelerate ISD. For more details on the message-resend attack see [29].

We now consider a quantum version of the message-resend attack. If Eve measures the

quantum state corresponding to a classical message in the computational basis, then the

measurement outcome takes the form c1+c2+e, where c1 is the codeword of C1 corresponding

to the message, c2 is a random codeword of C2 and e is an error vector that Alice has added.

Eve who pretends to be Bob asks Alice to resend another quantum state that encrypts the

same classical message as before. If Eve measures the quantum state in the computational

basis, then the measurement outcome also has the same form c1+c′2+e′, where c′2 is another

codeword of C2 that is different from c2 with high probability and e′ is an error vector added

by Alice that is also different from e with high probability. Taking the bit-wise XOR of the

two outcomes Eve obtains c2 + c′2 + e + e′. Since c2 and c′2 are different from each other,

the sum c2 + c′2 is a nonzero codeword of C2. So Eve cannot obtain e + e′. Thus, the

message-resend attack does not apply to this case.

Remark 11 Eve may find the sum e + e′ with Stern’s algorithm. Consider again the CSS

code of length 2048 in Example 1. In this case we have t = 50. From the same analysis as

done by Berson [29] the average weight of e + e′ is 97.6. Suppose that e + e′ has weight 98

(note that e+ e′ has even weight) and consider the [2048, 801, 98] binary code obtained from

C2 by adding c2 + c′2 + e + e′ to it. Note that C2 has parameters [2048, 800,≥ 157]. Then

e+e′ is a minimum weight codeword of the augmented code and we can find such a codeword

by using (the generator matrix version of) Stern’s algorithm. The complexity of finding such

a codeword is 282.4, which is higher than the complexity of a ciphertext-only attack. Similarly,

if e+ e′ has weight 96, then the complexity is 281.0.

5.3.4 More on attacks on the QMC for classical messages

It may be interesting to further investigate quantum analogs of classical attacks on the classical

McEliece cryptosystem (CMC). The reaction attack [30] is an example of a chosen ciphertext

attack on the CMC. Suppose that Alice sends a ciphertext to Bob. Eve intercepts the cipher-

text and flips a few bits of it to generate a new ciphertext which is sent to Bob. Bob receives

the modified ciphertext and try to decode it. If he fails to decode the received ciphertext, he

asks Eve who pretends to be Alice to resend the ciphertext again. This reaction of Bob gives

Eve some information about the error vector which Alice generated in her encryption.

We have to carefully consider whether a quantum analog of the reaction attack exists or

not. The problem depends on the definition of a quantum protocol which exchanges quantum

information as well as classical information between two distant parties. A good definition is
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not trivial and we here do not give any definition.

Finally, we comment on the second method for encryption of classical messages presented

in Section 4.2. The second encryption method resists the ciphertext-only attack, the partially

known plaintext attack and the message-resend attack presented above. In fact, if Eve mea-

sures the cipher state in the computational basis then the original message cannot perfectly

be reconstructed. So, the second method is more secure (though less efficient) than the first

one.

5.4 Malleability

A stabilizer code with stabilizer S cannot detect an error in the centralizer CGn
(S) of its

stabilizer S. Suppose that Alice sends a (classical or quantum) message to Bob using the

QMC. Eve intercepts the quantum state sent by Alice, applies a unitary transformation in

CGn
(S)\S to the state, and finally resends the modified version of the quantum state to Bob.

In this case Bob cannot detect Eve’s cheating.

A simple way to protect classical messages against the malleability attack is to use a

hash function to check the validity of a message, that is, Alice computes the hash value of

a message, concatenates it with the message and then encrypts the modified message using

the quantum McEliece cryptosystem. After decoding Bob computes the hash value of the

message and checks whether or not the value is the same as the one added by Alice.

6 Comparison of the QMC and Alternative Systems

Let us recall the task that we want to perform: Alice wants to send a quantum message to

Bob. They can use an insecure classical channel and an insecure quantum channel, but they

have neither entanglement nor shared randomness. An adversary, Eve, wants to obtain the

quantum message that Alice sends to Bob. Our QMC can accomplish this task. The task can

also be performed by the quantum one-time pad (QOTP) with a classical PKC.

6.1 QOTP with Niederreiter PKC

Any public-key cryptosystem can be used to distribute a key for QOTP encryption. Although

we have a large list of public key encryption schemes (see, e.g., [39]), most of the currently

used PKCs such as RSA and elliptic curve cryptography cannot be used since these can be

broken by Shor’s factoring algorithm [40]. Some PKCs resistant to quantum computers exist:

lattice-based cryptography, code-based cryptography and multivariate cryptography and so

on (see, e.g., [41]). For fair comparison we restrict ourself to code-based cryptography, since

our quantum McEliece PKC can be thought of as code-based cryptography.

The McEliece PKC is vulnerable to some advanced attacks (e.g., the message resend attack

[29] and the reaction attack [30]) and some modifications have been proposed. The Kobara-

Imai conversions [42] make the McEliece PKC secure against chosen ciphertext attack (CCA)

under the random oracle model. Since the random oracle model assumes an ideal random

function that does not exist in the real world (even in the future), we restrict ourself to

public-key encryption schemes in the standard model for key distribution.

We compare our quantum McEliece PKC with the combination of the Niederreiter PKC

and the quantum one-time pad. Niederreiter encryption has some advantages over the

McEliece PKC (see, i.e., [36]). Note that although the Niederreiter PKC does not suffer
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from the message-resend attack, it is vulnerable to the reaction attack. For comparison, in

Table 2 we show competitive Niederreiter PKCs with almost the same work factor of Stern’s

algorithm as the quantum McEliece PKC. We use the same system parameters used in the

description of the McEliece/Niederreiter PKC based on Goppa codes in [14, 15]. A binary

Goppa code is completely specified by three positive integers, m, n and t, where n is the length

of the code which is smaller than or equal to 2m. The binary Goppa code with parameters

(m,n, t) has dimension k ≥ n −mt and minimum distance d ≥ 2t + 1 (i.e., one can correct

t errors with bounded distance decoding). Note that the binary Goppa code is a subfield

subcode of a GRS code over the extension field F2m with 2m elements. For more details on

Goppa codes see [43]. As in [14, 15], we omit parameter m if it is clear from context.

We first compare the public-key sizes of the two systems. The proposed quantum McEliece

PKCs each have a larger key size than the competing system. This is a drawback of our

system. We next compare the communication costs required for the systems. The quantum

McEliece PKCs with proposed parameters need a larger amount of quantum communication,

but require no classical communication. On the other hand, the competing system only needs

the same amount of quantum communication as the message quantum state, but needs a larger

amount of classical communication. Although classical communication is cheaper and more

reliable than quantum communication, if the cost of quantum and classical communication

is the same (it may be possible in the future), the cost of (quantum) communication in the

quantum McEliece PKC is smaller than the total cost of quantum and classical communication

in the competing system.

Remark 12 The quantum computation cost for the QMC is higher than that for the compet-

ing system, since the QMC requires the storage and processing of a large number of qubits. For

classical computation the QMC has an advantage over the competing system, since the size of

the finite field used in the QMC is generally smaller than that used in the competing system

and so is the number of errors to be corrected (t in our notation). Note that the complexity

of the Berlekamp–Massey algorithm for GRS and Goppa codes is O(t2).

6.2 Yang’s quantum McEliece PKC

Yang [44] proposes another quantum version of the classical McEliece PKC, which is an

encryption method for quantum massages. The basic idea of Yang is to use the computational

basis to perform McEliece encryption. Using the notation used in Section 2 we review Yang’s

quantum McEliece PKC. The private key and the public key of the system are exactly the

same as those of the classical McEliece PKC: the private key is (G,S, P ) and the public key

is (Ĝ, t), where Ĝ = SGP (see Section 2 for the notation). If Alice sends a k-qubit message
∑

m
αm|m〉 to Bob, she transforms

∑

m
αm|m〉 into

∑

m
αm|mĜ+ e〉 using the public key

(Ĝ, t), where e is an error vector of weight t. Alice sends the resulting quantum state to

Bob. Bob receives it and performs some unitary operations which are essentially the same

as the decryption algorithm of the classical McEliece PKC. See [44] for more details. Yang’s

quantum McEliece PKC can be regarded as a special case of our QMC based on CSS codes.

In fact, defining C1 to be a code generated by the generator matrix G and taking C2 = {0},
the trivial code, we obtain an equivalent of Yang’s system. Note that the encryption and

decryption algorithms of Yang’s system are different from ours. Although Yang’s system

is more efficient than a QMC with nontrivial C2, it may leak some information about the
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message state as shown in the following example.

Example 2 Suppose that Alice sends Bob the cipher state
∑

m
αm|mĜ + e〉 corresponding

to the message state
∑

m
αm|m〉. Eve intercepts the cipher state and without performing

error correction she applies to the cipher state a controlled gate based on a generalized in-

verse Ĝ−1 of Ĝ (see [44]). Then she obtains the state of the form
∑

m
αm|m + eĜ−1〉 =

X(eĜ−1)
∑

m
αm|m〉. Although the state obtained in this way contains some bit-flip errors,

Eve can perform the X basis measurement on the state to obtain the same measurement

statistics as that obtained from the original message state
∑

m
αm|m〉, since the X basis

measurement and the bit-flip operator X(eĜ−1) commute. This vulnerability is due to the

fact that Alice introduces no phase errors. Note that Bob cannot detect and correct any phase

error, since C2 is trivial. A naive way to protect the system against the above attack is to

apply the Hadamard transform to the message state before encryption on Alice’s side and after

decryption on Bob’s side. In this case, however, Eve can perform the Z basis measurement

freely. A more secure way of protection might be to use a random Hadamard transform as

introduced in Section 4.2, though this reduces the efficiency of the system by half. The ran-

dom Hadamard transform enables Yang’s system to encrypt a classical message, although the

original system assumes quantum messages. Note that when a classical message with uniform

distribution is encrypted into a quantum cipher state using the combination of Yang’s system

and the randomization, Eve can still perform the above attack to obtain a bit string which

is the same as the original message at a portion of about 3/4. This is substantially large

compared to a random guess, i.e., Eve generates a random bit string where each bit equals the

corresponding bit of the original message with probability 1/2.

In [9] Yang et al. propose a quantum analog of the Niederreiter PKC. Using the notation

used in Section 2 we review their quantum Niederreiter PKC. In this case the private key

is (H,M,P ) and the public key is (Ĥ, t), where Ĥ = MHP (see Section 2 for the nota-

tion). In their quantum Niederreiter PKC a quantum message
∑

m
αm|m〉 is encrypted into

∑

m
αm|m + e〉|mĤT 〉. Since their quantum Niederreiter PKC has the same weakness as

shown in the above example, we do not compare it with our system.

7 Conclusion

In this paper we have presented the quantum analogue of the classical McEliece cryptosystem.

We have considered the quantum McEliece cryptosystem for qubits, but the extension to

arbitrary prime dimensions is straightforward. Although the QMC is not unconditionally

secure, the system with properly chosen parameters is resistant to conceivable classical and

quantum attacks and so it may provide a practical solution to secure transmission of quantum

information. Quantum states are not easy to manipulate, but this property is preferable

in cryptographic applications, since an adversary faces unknown quantum states which are

difficult to deal with than bit strings of ciphertexts in conventional public-key encryption

schemes. So our QMC may be a good candidate for a post-quantum public-key encryption

scheme especially for classical information.

Since public-key cryptography for quantum information is still in its infancy, much effort

should be made. In particular, more on quantum attacks (e.g., attacks using entanglement)

should be examined, which is our future research problem.
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Appendix A. CSS Codes from GRS Codes

We will follow the notation and definition of a generalized Reed-Solomon (RS) code in [43].

Let F2m be the finite field with 2m elements, where m is a positive integer. We first review

the generalized RS codes over F2m and then present the construction of quantum RS codes

using generalized RS codes. Let 1 ≤ K ≤ N ≤ 2m. Let α = (α1, α2, . . . , αN ), where the

αi are distinct elements of F2m , and v = (v1, v2, . . . , vN ), where the vi are nonzero (but not

necessarily distinct) elements of F2m . Then the generalized RS code, denoted by GRSK(α,v),

consists of all vectors

(v1f(α1), v2f(α2), . . . , vNf(αN )), (A.1)

where f(x) ranges over all polynomials of degree < K with coefficients from F2m . GRSK(α,v)

is an [N,K] linear code over F2m . It can be shown that GRSK(α,v) has minimum distance

D = N −K + 1.

Lemma A.1 ([43]) (a) The dual of GRSK(α,v) is GRSN−K(α,v′) for some v′.

(b) GRSK(α,v) = GRSK(α,w) if and only if v = λw for some nonzero λ ∈ F2m .

Now we construct CSS codes from generalized RS codes. Our construction is a general-

ization of the Grassl-Geiselmann-Beth construction [45] of quantum RS codes using classical

cyclic RS codes. Let B = {β1, β2, . . . , βm} be a basis of F2m over F2. Using the basis B each

element α of F2m can be written uniquely as α =
∑m

j=1 ajβj for some (a1, a2, . . . , am) ∈ F
m
2 .

We define the map φB from F2m to F
m
2 by φB(α) = (a1, a2, . . . , am). If no confusion arises,

the subscript B will be omitted.

Definition A.1 ([45]) The binary expansion of a code C of length N over F2m is a binary

code obtained from C by replacing each component of each codeword (c1, c2, . . . , cN ) of C by

its binary representation (φ(c1), φ(c2), . . . , φ(cN )). The binary code obtained from C via φ is

denoted by φ(C).

The binary expansion φ(GRSK(α,v)) of GRSK(α,v) with respect to a basis of F2m over F2

is a binary linear code of lengthmN , dimensionmK and minimum distance ≥ D = N−K+1.

Remark A.1 Let β ∈ F2m . Multiplication by β in F2m induces a linear map on F
m
2 . As-

suming that β · βj =
∑m

i=1 bijβi for some bij ∈ F2, we define M(β) = [bij ], an m×m matrix

over F2. This is the so-called matrix representation of F2m over F2. Note that M(β) de-

pends on the basis of F2m over F2 used in the construction of φ. Then, for α ∈ F2m we have

φ(αβ) = φ(α)M(β)T . If GRSK(α,v) has generator matrix G = [gij ] where gij ∈ F2m , then

the binary code φ(GRSK(α,v)) has generator matrix G̃ = [M(gij)
T ], which is obtained from

G by replacing each entry gij by its corresponding M(gij)
T . Similarly, if GRSK(α,v) has

parity check matrix H = [hij ] where hij ∈ F2m , then the binary code φ(GRSK(α,v)) has

parity check matrix H̃ = [M(hij)].

For any basis B = {β1, β2, . . . , βm} of F2m over F2, there exists a dual basis B⊥ =

{β′
1, β

′
2, . . . , β

′
m}, i.e., tr(βiβ

′
j) = δij , where tr(·) is the trace from F2m to F2: tr(α) =

∑m−1

i=0 α2i for α ∈ F2m , and δij is the Kronecker delta.

Lemma A.2 ([45]) The dual of the binary expansion of a code C over F2m with respect to

the basis B is equal to the binary expansion of the dual C⊥ of C with respect to the dual basis

B⊥, i.e.,

φB(C)
⊥ = φB⊥(C⊥). (A.2)
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Suppose now that 2K < N . Consider two GRS codes, GRSK(α,v) and GRSN−K(α,v).

We have the natural inclusion GRSK(α,v) ⊂ GRSN−K(α,v).

Lemma A.3 If GRSK(α,v)⊥ = GRSN−K(α,v′) for some v′, then we have

GRSN−K(α,v)⊥ = GRSK(α,v′). (A.3)

Proof. Consider

(v1f(α1), v2f(α2), . . . , vNf(αN )) ∈ GRSN−K(α,v) (A.4)

and

(v′1g(α1), v
′
2g(α2), . . . , v

′
Ng(αN )) ∈ GRSK(α,v′), (A.5)

where f(x) (resp. g(x)) is a polynomial of degree < N − K (resp. < K) with coefficients

from F2m . The inner product of the two vectors is

N
∑

i=1

(vif(αi))(v
′
ig(αi)) =

N
∑

i=1

(v′if(αi))(vig(αi)) = 0, (A.6)

where the last equality follows from the fact that

(v1g(α1), v2g(α2), . . . , vNg(αN )) ∈ GRSK(α,v) (A.7)

and

(v′1f(α1), v
′
2f(α2), . . . , v

′
Nf(αN )) ∈ GRSN−K(α,v′) = GRSK(α,v)⊥. (A.8)

Hence we have GRSK(α,v′) ⊆ GRSN−K(α,v)⊥. Since GRSK(α,v′) and GRSN−K(α,v)⊥

have the same dimension, we have GRSK(α,v′) = GRSN−K(α,v)⊥. .

To construct a CSS code we need a pair of binary linear codes. Let C1 = φB(GRSN−K(α,v))

and C2 = φB(GRSK(α,v)). Then we have C2 ⊂ C1. From Lemma A.1 (a) and Lemmas A.2

and A.3 we have that

C⊥
1 = φB(GRSN−K(α,v))⊥ = φB⊥(GRSN−K(α,v)⊥) = φB⊥(GRSK(α,v′)). (A.9)

Similarly, we have C⊥
2 = φB⊥(GRSN−K(α,v′)). Note that C1 and C

⊥
2 have minimum distance

≥ K + 1. The pair of binary codes, C1 and C2, defines a CSS code with parameters [[n =

mN, k = m(N − 2K), d ≥ K +1]]. From Lemma A.1 (b), for a fixed α there are (2m − 1)N−1

ways of choosing v. So we have a family of (2m − 1)N−1 CSS codes with parameters [[n =

mN, k = m(N − 2K), d ≥ K + 1]].


