
Quantum Information and Computation, Vol. 12, No. 1&2 (2012) 0029–0062
c© Rinton Press

BLACK-BOX HAMILTONIAN SIMULATION
AND UNITARY IMPLEMENTATION

DOMINIC W. BERRY

Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia

ANDREW M. CHILDS

Department of Combinatorics & Optimization and Institute for Quantum Computing

University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Received July 8, 2011

Revised November 1, 2011

We present general methods for simulating black-box Hamiltonians using quantum walks.
These techniques have two main applications: simulating sparse Hamiltonians and imple-
menting black-box unitary operations. In particular, we give the best known simulation

of sparse Hamiltonians with constant precision. Our method has complexity linear in
both the sparseness D (the maximum number of nonzero elements in a column) and
the evolution time t, whereas previous methods had complexity scaling as D4 and were

superlinear in t. We also consider the task of implementing an arbitrary unitary oper-
ation given a black-box description of its matrix elements. Whereas standard methods
for performing an explicitly specified N × N unitary operation use Õ(N2) elementary
gates, we show that a black-box unitary can be performed with bounded error using

O(N2/3(log logN)4/3) queries to its matrix elements. In fact, except for pathological
cases, it appears that most unitaries can be performed with only Õ(

√
N) queries, which

is optimal.

Keywords: Quantum computation, quantum query complexity, Hamiltonian simulation,
quantum walk

Communicated by: R Jozsa & B Terhal

1 Introduction

One of the major applications of quantum computation is the simulation of Hamiltonian

dynamics. Hamiltonian simulation is the basis for simulating quantum systems—the original

motivation for quantum computers [1]—and also has applications to quantum algorithms

[2, 3, 4, 5].

An explicit procedure for simulating local Hamiltonians on a quantum computer was

given by Lloyd [6]. This result was later substantially generalized to the simulation of sparse

Hamiltonians by Aharonov and Ta-Shma [7]. References [8, 9] improved these results by

providing a simulation scheme with complexity that scales close to linearly in the evolution

time t and as the fourth power of the sparseness parameter D, the maximum number of

nonzero elements in a column.

In this paper, we consider the general task of simulating Hamiltonians, without necessarily

29

30 Black-box Hamiltonian simulation and unitary implementation

assuming sparsity. As particular applications, we provide improved methods for simulating

sparse Hamiltonians and implementing unitary transformations. Similar to previous work on

Hamiltonian simulation [7, 8, 9], we assume throughout that the Hamiltonian is specified by

an oracle. Specifically, in our model, a black-box function computes the matrix element Hjk

for any desired row index j ∈ {1, 2, . . . ,M} and column index k ∈ {1, 2, . . . ,M}. To simul-

taneously treat the case of sparse Hamiltonians, we also consider a black box that computes

the positions of the nonzero matrix elements. (See Sec. 2.1 for a detailed discussion of our

model and its relationship to prior work.)

An algorithm for computing the matrix elements of H can be used to construct such a

black box. In particular, this means that the black-box model applies to common physical

Hamiltonians such as those considered by Lloyd [6]. Such Hamiltonians are a sum of local

terms, each acting on a limited number of subsystems. Thus they are sparse, and there is an

efficient method for computing the matrix elements of the overall Hamiltonian. An advantage

of the black-box model of Hamiltonian simulation is that it can be applied not only to physical

Hamiltonians, but as a basis for designing algorithms for other problems [2, 4, 5].

In contrast to previous work on Hamiltonian simulation [6, 7, 2, 8, 9], most of which

is based on Lie-Trotter-Suzuki formulae, we use a new approach based on a quantum walk

[10]. A limitation of the Lie-Trotter-Suzuki approach is that it relies on limiting the error

by using many short time steps. As a result, the complexity of the simulation always scales

superlinearly in t. The quantum walk approach provides scaling that is strictly linear in t

[10], which is known to be optimal [9]. Another limitation of the Lie-Trotter-Suzuki approach

is that it relies on decomposing the Hamiltonian into 1-sparse matrices, which results in poor

scaling in the sparseness D. In Ref. [9] the scaling was Õ(D4), which was recently improved

to Õ(D3) [11].a In contrast, by using quantum walks we improve the scaling to linear in

D. This represents the best known constant-precision simulation of sparse Hamiltonians.

Furthermore, if we are willing to accept superlinear scaling in t, the scaling in D may be

improved to Õ(D2/3) in general, and in many cases to Õ(D1/2).

The quantum walk approach to Hamiltonian simulation was proposed in Ref. [10], though

without providing an explicit method to implement the steps of the quantum walk in the

general case. Here we present a complete method for Hamiltonian simulation by showing

how to implement the steps of the quantum walk for a general Hamiltonian that may or may

not be sparse. We use the method of Ref. [10] together with a range of other tools, which

we combine and improve on in nontrivial ways to obtain our final result. In particular, our

approach introduces the following techniques.

1. In Sec. 4, we modify the method of Ref. [10] by using phase estimation to correct a lazy

quantum walk, giving a more efficient simulation.

2. In Sec. 5, we describe how to perform steps of the quantum walk using state preparation

by amplitude amplification (similar to a method proposed in Ref. [12]), improving the

efficiency in the non-sparse case.

3. We modify the state to be prepared by using an ancilla qubit to satisfy an orthogonality

condition for the lazy quantum walk (compare Eqs. (11) and (24)). This facilitates more

aWe use a tilde to indicate that subpolynomial scaling is ignored—that is, f = Õ(g) if f = O(g1+η) for any
η > 0.

A. M. Childs and D. W. Berry 31

efficient state preparation by amplitude amplification in Sec. 5 (outperforming direct

application of Ref. [12]), and even allows us to prepare the state in only O(1) queries in

the sparse case described in Sec. 4.

4. In Sec. 7, we further improve the simulation in the non-sparse case by decomposing the

Hamiltonian as a sum of terms and recombining these terms using Lie-Trotter-Suzuki

formulae. The decomposition depends on the magnitudes of the matrix elements, giving

an approach that is fundamentally different from previous applications of Lie-Trotter-

Suzuki formulae.

While our results on simulating non-sparse Hamiltonians may be of interest in their own

right, additional motivation for studying this problem comes from the related task of im-

plementing general unitary transformations. Standard methods for implementing an arbi-

trary N ×N unitary transformation on a quantum computer work by decomposing it into a

product of two-level unitary matrices [13, 14] and performing the two-level unitaries via the

Solovay-Kitaev theorem [15, 16, 17]. This method uses N2 poly(logN) gates. Since counting

arguments show that Ω(N2) elementary gates are required even to approximate a general

unitary transformation [14, 18, 17], such an implementation is nearly optimal.

Instead of considering an explicit unitary operation, we study the problem of performing

a unitary transformation specified by a black box for its matrix elements, similar to the

black box for a non-sparse Hamiltonian described above. In such an oracle model, counting

arguments for unitary implementation no longer apply, since the black box depends on the

unitary. While the question of how many queries are required to implement a general unitary

in this model seems quite natural, to the best of our knowledge it has not been studied

previously.

Implementation of unitaries is closely connected to Hamiltonian simulation, because one

can implement a unitary by simulating a related Hamiltonian. Reference [19] used this idea

to provide a method for implementing sparse unitaries. However, their approach relies on a

decomposition into 1-sparse Hamiltonians, so it performs poorly in the non-sparse case.

Using Hamiltonian simulation via quantum walks, we show that the complexity of imple-

menting a general (non-sparse) N × N unitary scales with N as Õ(N2/3). We also present

numerical evidence that typical unitaries can be implemented in only Õ(
√
N) queries (al-

though it is possible to construct unitaries for which our method uses more queries). This

is much less than the Ω(N2) elementary gates required to implement a general unitary given

an explicit description instead of a black box. The best lower bound we are aware of is

Ω(
√
N), because implementation of a black-box unitary operation can be used to solve a

search problem [20].

Implementation of black-box unitary transformations is closely related to the task of

preparing an N -dimensional quantum state given a black box for its amplitudes in a fixed

basis. Grover showed that the query complexity of this task is Θ(
√
N) [12]. As mentioned

above, we build on his technique in order to implement black-box unitaries. It is an open

question whether black-box unitaries can be implemented in O(
√
N) queries in general, or if

there is a fundamental separation between the query complexity of implementing unitaries

and the query complexity of preparing states.

Since implementing unitary transformations is a basic task in quantum computation, we

32 Black-box Hamiltonian simulation and unitary implementation

expect this result to have applications to quantum algorithms. For example, our approach

could serve as an alternative to previous methods for efficiently implementing general unitary

transformations on a logarithmic number of qubits, with improved performance provided the

matrix elements can be computed quickly.

The remainder of this article is organised as follows. In Sec. 2 we give a technical summary

of our main contributions. Then, in Sec. 3, we summarise the method of Ref. [10] for simulating

Hamiltonian evolution. Our main result, that a black-box Hamiltonian can be simulated

with Õ(D2/3) queries to its matrix elements, is proven in Sec. 7, building on a foundation

established in Secs. 4 through 6. Some of these intermediate results may be of interest in

their own right; in particular, in Sec. 4, we present a simple method to perform the steps of

the quantum walk of Ref. [10] that is especially suitable for sparse Hamiltonians. We explain

how Hamiltonian simulation can be used to implement black-box unitaries in Sec. 8. In Sec. 9

we give some examples of the simulation as applied to particular unitary operations. We

conclude in Sec. 10 with a summary of the results and a discussion of some open problems.

2 Model and results

2.1 Model

We formulate the Hamiltonian simulation and unitary implementation problems using an

oracle model, in which a description of the Hamiltonian or unitary is provided by a black box.

For Hamiltonian simulation, the matrix elements of some Hermitian matrix H ∈ C
M×M are

given by a black box OH acting as

OH |j, k〉|z〉 = |j, k〉|z ⊕Hjk〉, (1)

where j, k ∈ {1, 2, . . . ,M}. Here the matrix element Hjk is represented by its real and

imaginary parts written in binary, and ⊕ denotes the bitwise XOR of such representations.

Similarly, for the problem of implementing a unitary U ∈ C
N×N , we are given a black box

OU acting as

OU |j, k〉|z〉 = |j, k〉|z ⊕ Ujk〉, (2)

where j, k ∈ {1, 2, . . . , N}. The error of the simulation or implementation must be no greater

than δ as quantified by the trace distance. In practice, the black box OH or OU provides the

matrix elements to some finite precision, ζ, using O(log 1
ζ) qubits. We assume that ζ ≪ δ, so

the imprecision in this approximation does not affect the analysis.

We can also take advantage of sparsity if it is possible to compute the positions of nonzero

matrix elements. Specifically, suppose there are at most D nonzero elements in each row or

column. For Hamiltonian simulation, suppose that in addition to the black box OH , we are

given a black box OF acting as

OF |j, k〉 = |j, f(j, k)〉 (3)

for any j ∈ {1, 2, . . . ,M} and k ∈ {1, 2, . . . , D}, where the function f(j, k) gives the row index

of the kth nonzero element in column j (or the row index of any zero element when there are

fewer than k nonzero elements in column j).

Note that OF computes the row index in place. In contrast, some previous work on

simulating sparse Hamiltonians [9, 11] assumes that a single query only computes f(j, k)

given j and k, i.e., performs the isometry O′
F acting as O′

F |j, k〉 = |j, k, f(j, k)〉. The oracle

A. M. Childs and D. W. Berry 33

OF can be used to produce such an oracle in one query, simply by copying k to a third register

before calling OF . Therefore, all the upper bounds for the complexity in [9, 11] hold for the

oracle OF . Furthermore, the algorithms in [9, 11] do not depend on this aspect of the oracle,

so changing the oracle in those algorithms would not lead to improved upper bounds. Thus

our results may be directly compared with those of [9, 11].

To construct the oracle OF , it suffices to first compute f(j, k) for a given j, and then

compute k given j and f(j, k) in order to erase the register encoding k. In contrast, O′
F does

not uncompute k. For realistic cases such as the local Hamiltonians considered by Lloyd [6],

determining k given j and f(j, k) is not difficult, so OF is a realistic representation of the

resources used.

If desired, one can quantify the resources used by our simulations in terms of queries to

the black box O′
F instead of to OF . Even if k cannot be computed directly, one can implement

OF with O′
F using additional queries to uncompute k. If the function f provides the nonzero

elements in sorted order, one can find k by binary search, increasing the number of queries

by a factor of only logD. In general, one can use Grover’s algorithm to find k, increasing the

number of queries by a factor of O(
√
D).

Another model used by some papers on sparse Hamiltonian simulation is that for any

given j, a single query reveals all the nonzero entries in the jth column, i.e., the values

f(j, 1), . . . , f(j,D) [7, 2, 8]. With that model, the black box OF can be implemented using

two queries, whereas D calls to OF are required to compute all the values f(j, 1), . . . , f(j,D).

As Refs. [7, 2, 8] are primarily concerned with showing polynomial scaling in D, such a

difference is unimportant.

We emphasise that in the present work, we do not require D = poly(logM); our methods

apply for any D ≤ M . If the Hamiltonian is not sparse, or if it is sparse but the nonzero

elements are in unknown positions, then we can simply take D = M and let OF be the

identity operation. Thus, all the results of the paper hold for non-sparse cases, with D =M .

In particular, when considering the problem of unitary implementation, we do not assume

sparsity, so the black box OF is not required.

We assume that information about the Hamiltonian or unitary can only be obtained by

querying the oracle, so in particular we do not know the norms ofH or U (except for the trivial

fact that ‖U‖ = 1). However, we assume that we do have upper bounds on various norms: we

are given constants Λ,Λ1,Λmax satisfying Λ ≥ ‖H‖, Λ1 ≥ ‖H‖1, and Λmax ≥ ‖H‖max, where

‖H‖ denotes the spectral norm ofH, ‖H‖1 := maxj
∑M
k=1 |Hjk|, and ‖H‖max := maxj,k |Hjk|.

2.2 Results

Our first main result, proved in Sec. 4, is that a Hamiltonian can be simulated with scaling

linear in both ‖H‖t and D.

Theorem 1. For a given Hamiltonian H, let Λ ≥ ‖H‖ and Λmax ≥ ‖H‖max. Then the

evolution under H for time t can be simulated with error at most δ ∈ (0, 1] using

O

(

Λt√
δ
+DΛmaxt+ 1

)

(4)

queries to OH and OF .

This result is suitable for simulation of sparse Hamiltonians. The next main result, proved

in Sec. 7.3, gives improved scaling in D at the expense of worse scaling in ‖H‖t. This result

34 Black-box Hamiltonian simulation and unitary implementation

may be preferable for non-sparse Hamiltonians.

Theorem 2. Let Λ ≥ ‖H‖. The evolution under the Hamiltonian H for time t can be

simulated with error at most δ ∈ (0, 1] using

O
(

D2/3[(log logD)Λt]4/3δ−1/3
)

(5)

queries to OH and OF , provided δD > Λt >
√
δ.

Using the correspondence between Hamiltonian simulation and unitary implementation

described in Sec. 8, this easily implies our main result on the implementation of black-box

unitaries (see Sec. 8 for the proof).

Corollary 3. A black-box unitary operation U can be implemented with error at most δ ∈
(0, 1] using

O
(

N2/3(log logN)4/3δ−1/3
)

. (6)

queries to OU .

Although the above results are the best we are able to show for general non-sparse Hamil-

tonians and unitaries, we believe that our methods are typically more efficient. Theorem 2 and

Corollary 3 are based on a decomposition of the Hamiltonian into a sum of terms, where the

nonzero matrix elements of each term have comparable size. In the worst-case analysis of Sec.

7.3, we must take into account the possibility that in this decomposition, the spectral norms

of the individual terms could be much larger than the spectral norm of the total Hamiltonian.

Numerically, we find that this does not occur when selecting matrices at random, only when

matrices are specifically designed to cause this behaviour (see Sec. 7.2). Assuming that all

terms in the decomposition have comparable norms, we show in Sec. 7.1 that the number of

queries to simulate a Hamiltonian with ‖H‖ ≤ Λ is

O
(

(Λt)3/2
√

D/δ(logD)7/4
)

; (7)

correspondingly, a black-box unitary can be implemented using

O
(

√

N/δ(logN)7/4
)

(8)

queries.

3 Review of Hamiltonian simulation

In this section we summarise an approach to Hamiltonian simulation based on discrete-time

quantum walks [10]. Throughout, M denotes the dimension of the Hilbert space that a

black-box Hamiltonian acts on, and N the dimension of the space that a black-box unitary

transformation acts on. To construct a discrete-time quantum walk from a given Hamiltonian

H, the Hilbert space is expanded from C
M to C

M+1 ⊗ C
M+1. A step of the discrete-time

quantum walk is described by a unitary operator

V := iS(2TT † − 1). (9)

Here the operator S swaps the two registers, i.e., S|j, k〉 = |k, j〉 for all j, k ∈ {1, 2, . . . ,M+1}.
The operator T is the isometry

T :=

M
∑

j=1

|ηj〉〈j| (10)

A. M. Childs and D. W. Berry 35

mapping |j〉 to |ηj〉 := |j〉|ϕj〉, where

|ϕj〉 :=
√

ǫ

‖H‖1

M
∑

k=1

√

H∗
jk|k〉+

√

1− ǫσj
‖H‖1

|M + 1〉 (11)

with

σj :=

M
∑

k=1

|Hjk| (12)

(cf. Eq. (27) of Ref. [10]). Here ǫ ∈ (0, 1] is a parameter that can be made small to obtain a

lazy quantum walk, and ‖H‖1 := maxj
∑M
k=1 |Hjk|.

The state |ϕj〉 is chosen so that 〈ηj |S|ηk〉 is proportional to Hjk. We have

〈ηj |S|ηk〉 = 〈j|ϕk〉〈ϕj |k〉

=
ǫ

‖H‖1
√

H∗
kj

(√

H∗
jk

)∗

. (13)

Note that caution is needed when choosing the sign of the square root. Provided Hjk is not a

negative real number, it suffices to take the principal square root of both H∗
kj and H

∗
jk (i.e., if

z = reiθ for some r ≥ 0 and θ ∈ (−π, π), define √
z :=

√
reiθ/2, so that

√
z(
√
z∗)∗ = z). This

choice ensures that Eq. (13) gives ǫHjk/‖H‖1. However, if Hjk is a negative real number,

this choice does not suffice. Instead, for Hjk ∈ (−∞, 0) with j 6= k, we take

√

H∗
jk = sign(j − k) i

√

|Hjk|. (14)

By taking a different sign above and below the diagonal, we ensure that Eq. (13) is negative,

as required.

The above prescription does not handle the case where the Hamiltonian has negative

diagonal elements. To ensure that the diagonal entries are nonnegative, we simply add a

multiple of the identity: given an upper bound Λmax on ‖H‖max, we replaceH withH+Λmax1.

This only changes the Hamiltonian evolution for time t by a global phase of e−iΛmaxt, and the

relevant norms of H are increased by at most a factor of 2.

The eigenvalues and eigenvectors of V are closely related to those of H [21]. If we define

H̃ to be the operator with matrix elements

H̃jk := 〈ηj |S|ηk〉, (15)

then Eq. (13) gives

H̃ =
ǫH

‖H‖1
. (16)

The operators H and H̃ have common eigenstates |λ〉. The corresponding eigenvalues for H

and H̃ are denoted λ and λ̃, and are related by

λ̃ =
ǫλ

‖H‖1
. (17)

36 Black-box Hamiltonian simulation and unitary implementation

Each eigenstate |λ〉 corresponds to two eigenvectors of V ,

|µλ±〉 :=
1− e±i arcsin λ̃S
√

2(1− λ̃2)
T |λ〉, (18)

with eigenvalues

µλ± := ±e±i arcsin λ̃. (19)

Reference [10] describes simulations of H based on the quantum walk V . One approach

is to use phase estimation to (coherently) determine the value of λ̃. Introducing a phase of

exp(−iλt) = exp(−iλ̃t‖H‖1/ǫ) for each eigenvector |λ〉 simulates evolution under H for time

t. More specifically, a general initial state has the form

|ψ〉 =
∑

λ,k

ψλ,k|λ, k〉, (20)

where the index k accounts for degenerate eigenvalues of H. Applying the operation T yields

T |ψ〉 =
∑

λ,k

ψλ,kT |λ, k〉

=
∑

λ,k

ψλ,k
√

2(1− λ̃2)
[(1− λ̃e−i arccos λ̃)|µλ+, k〉+ (1− λ̃ei arccos λ̃)|µλ−, k〉], (21)

where the |µλ±, k〉 are eigenvectors of V , with the index k labeling an orthonormal basis for

each eigenspace. Applying the correct phase factor for each eigenspace gives

Te−iHt|ψ〉 =
∑

λ,k

e−iλtψλ,kT |λ, k〉. (22)

Applying T † then gives e−iHt|ψ〉, the desired time-evolved state.

Phase estimation can provide an estimate of µλ± with variance approximately (π/d)2 using

d applications of V . The variance in λ is then O(‖H‖21/ǫ2d2), which translates to an error in

the state of O(‖H‖1t/ǫd). If the allowed error is δ, then the simulation can be achieved with

d = O(‖H‖1t/δ) by taking ǫ = 1. (Note that the δ used here is the square root of that used

in Ref. [10], because that paper considered a lower bound on the fidelity of 1− δ, whereas we

take δ to be an upper bound on the trace distance.)

4 Sparse Hamiltonian simulation

The simulation scheme presented in Ref. [10] quantifies the complexity in terms of the number

of quantum walk steps. To simulate a black-box Hamiltonian, we require a method to perform

these steps. In this section we describe a simple approach to this problem, thereby providing

a Hamiltonian simulation method suitable for the sparse case.

The walk step is composed of two operators, the swap S and a reflection 2TT † − 1. The

operation S is easy to implement; the difficulty lies in implementing the reflection. It is given

explicitly by

2TT † − 1 =

M
∑

j=1

|j〉〈j| ⊗ (2|ϕj〉〈ϕj | − 1). (23)

A. M. Childs and D. W. Berry 37

That is, it is a reflection about |ϕj〉 conditional on the state |j〉 in the first register. To perform

this reflection, it suffices to give a procedure for preparing |ϕj〉 from the |0〉 state: by perform-

ing inverse state preparation, reflecting about |0〉, and then performing state preparation, we

effectively reflect about |ϕj〉.
Black-box preparation of anM -dimensional quantum state can clearly be performed inM

queries, but this would introduce an overall multiplicative factor ofM in the complexity of the

implementation. The overall query complexity of the simulation would then beO(M‖H‖1t/δ).
Taking advantage of sparsity reduces this to O(D‖H‖1t/δ), but Theorem 1 uses even fewer

queries.

Our improved simulation uses the following insight. We modify the state |ϕj〉 to

|φj〉 :=
√

ǫ

‖H‖1

M
∑

k=1

√

H∗
jk|k〉|0〉+

√

1− ǫσj
‖H‖1

|ζj〉|1〉, (24)

where |ζj〉 is some superposition of the |k〉. That is, we append an ancilla qubit, and replace

|M + 1〉 with |ζj〉|1〉. The second term of Eq. (24), flagged by a |1〉 state in the ancilla qubit,

takes the place of the |M + 1〉 state in Eq. (11). Thus the discrete-time quantum walk takes

place in C
2M ⊗C

2M , although it is effectively confined to a subspace of dimension (M + 1)2.

To take account of the fact that ‖H‖1 may not be known exactly, we replace ǫ with

ε = ǫΛ1/‖H‖1, where Λ1 is a known upper bound on ‖H‖1. Then we can alternatively

express the definition of |φj〉 as

|φj〉 :=
√

ε

Λ1

M
∑

k=1

√

H∗
jk|k〉|0〉+

√

1− εσj
Λ1

|ζj〉|1〉. (25)

Note that the restriction ǫ ≤ 1 implies that ε ≤ Λ1/‖H‖1. The relation between the eigen-

values λ and λ̃ can be expressed in terms of ε as

λ = λ̃Λ1/ε. (26)

Provided ε is sufficiently small, we can prepare this state using a constant number of

queries. In particular:

Lemma 4. The state |φj〉 in Eq. (25) can be prepared in O(1) calls to the oracles OH and

OF provided ε ∈ (0,Λ1/DΛmax], where Λmax ≥ ‖H‖max and Λ1 ≥ ‖H‖1.

Proof. First, prepare an equal superposition over |1〉 to |D〉 in the first register and initialise

the ancilla qubit to |0〉, giving
1√
D

D
∑

k=1

|k〉|0〉. (27)

Querying the black box OF changes this to

|φaj 〉 :=
1√
D

∑

k∈Fj

|k〉|0〉, (28)

where Fj is the set of indices given by OF on input j.

38 Black-box Hamiltonian simulation and unitary implementation

Next we transform |φaj 〉 to

1√
D

∑

k∈Fj

|k〉
[√

H∗
jk

X
|0〉+

√

1− |Hjk|
X

|1〉
]

(29)

where X = Λ1/εD. The most important requirement on X is that X ≥ Λmax, so X ≥ ‖H‖max

and the amplitude for the |0〉 state has magnitude at most 1. Because of the requirement

that ε ≤ Λ1/DΛmax, taking X = Λ1/εD ensures that X ≥ Λmax. In addition, for this value

of X, Eq. (29) has the form of |φj〉 for some choice of |ζj〉.
The state |φaj 〉 can be transformed to Eq. (29) by computing Hjk in an ancilla register with

the black box OH and using this value to perform a controlled rotation on the qubit. Applying

OH again uncomputes the ancilla storing Hjk. Note that the rotation can be performed with

error at most δ using poly(log 1
δ) operations [15, 16], but this factor is not included in the

analysis since we focus on the query complexity.

Next, we improve the Hamiltonian simulation method reviewed in Sec. 3 by combining a

lazy quantum walk with phase estimation.

Lemma 5. Let Λ1t/ε ∈ Z and ε ∈ (0, 1]. Evolution under H for time t can be simulated

using O(Λ1t/ε) steps of the quantum walk defined by the states |φj〉 from Eq. (25), with error

O(Λ2ε2/Λ2
1).

Proof. Given an arbitrary input state, first we (coherently) determine the sign ± of µλ± (recall

Eq. (19)). The phase of µλ+ is arcsin λ̃, whereas the phase of µλ− is π − arcsin λ̃. Performing

phase estimation with one bit of precision on V gives probabilities of measuring + or −, given

that the eigenvalue is µλ+ or µλ−, of

Pr(+|±) =
1±

√

1− λ̃2

2
, (30)

Pr(−|±) =
1∓

√

1− λ̃2

2
. (31)

The probability of error is therefore O(λ̃2). Since λ̃ = ελ/Λ1 and λ ≤ Λ, the error due to

misidentification of the sign is O(Λ2ε2/Λ2
1).

Having estimated the sign, we can apply a lazy quantum walk more accurately than in

Ref. [10]. If the sign of µλ± is −, we apply V d, where d = Λ1t/ε is an integer (chosen so that

λt = λ̃d), giving a phase factor of

(µλ−)
d = (−e−i arcsin λ̃)d = (−1)de−iλt +O(dλ̃3). (32)

(The sign can be corrected if d is odd.) Similarly, if the sign of µλ± is +, we apply (V †)d,

giving a phase factor

[(µλ+)
∗]d = (e−i arcsin λ̃)d = e−iλt +O(dλ̃3). (33)

In either case, the error in the final state is

O(dλ̃3) = O(λ3t(ε/Λ1)
2) ≤ O(Λ3t(ε/Λ1)

2), (34)

A. M. Childs and D. W. Berry 39

considerably less than that for the method given in Ref. [10, Theorem 2] for small ε.

We further reduce the error by using an estimate of λ̃ to correct the lazy quantum walk.

After the lazy quantum walk implements the phase factor e−id arcsin λ̃, the estimate of λ̃ is

used to correct the difference between λ̃ and arcsin λ̃. With d applications of V , we obtain

an estimate of arcsin λ̃ with standard deviation O(1/d) (see for example [10, Theorem 5]).

Since λ̃−arcsin λ̃ = O(λ̃3), this estimate only improves the accuracy if 1/d is small compared

to λ̃. If λ̃d < 1, we do not perform a correction. In that case the error is O(dλ̃3) ≤ O(λ̃2).

On the other hand, if λ̃d ≥ 1, then the standard deviation in the estimate of λ̃ − arcsin λ̃ is

O(λ̃2/d), and again the error in the final phase is O(λ̃2). So in both cases, the error in the

final state is O(λ̃2) ≤ O(Λ2ε2/Λ2
1). The overall number of steps of the quantum walk used is

O(d) = O(Λ1t/ε).

Combining the results of Lemmas 4 and 5 gives the improved Hamiltonian simulation

method described by Theorem 1.

Proof of Theorem 1. We apply the Hamiltonian simulation described in Lemma 5, with the

method described in Lemma 4 to perform the steps of the quantum walk.

Using

X =
1

Dt
max

{

⌈Λt/
√
δ⌉, ⌈ΛmaxDt⌉

}

, (35)

we take ε = Λ1/DX. This value of X satisfies X ≥ Λmax (as we always require for X), which

implies that the condition ε ≤ Λ1/DΛmax of Lemma 4 is satisfied. Thus, by Lemma 4, the

steps of the quantum walk can be performed using O(1) queries.

With this value of ε, Λ1t/ε = XDt is an integer, and we can use Lemma 5. Then the

error is

O(Λ2ε2/Λ2
1) = O(Λ2/D2X2) ≤ O(δ). (36)

The total number of oracle calls is O(Λ1t/ε) = O(XDt), and is therefore

O(⌈Λt/
√
δ⌉+ ⌈ΛmaxDt⌉) = O(Λt/

√
δ + ΛmaxDt+ 1) (37)

as claimed.

Comparing this to the simulation of sparse Hamiltonians using high-order integrators [9],

the scaling is better in terms of all parameters except δ. (We assume that the upper bounds

on norms of H have the same order as the norms themselves, so for example Λ = O(‖H‖).)
The number of queries is only linear in ‖H‖t, as opposed to slightly superlinear. The scaling is

particularly improved in terms of D, as it is only linear, whereas the scaling in Ref. [9] was as

D4. The scaling in δ is as 1/
√
δ, as opposed to an arbitrarily small power in Ref. [9]. However,

there is an advantage in that for δ = O(1/D2) there is no further explicit dependence on D.

This also improves over the method of Ref. [10], which uses O(‖H‖1t/δ) steps of the

quantum walk. Using a naive method for state preparation—simply querying all nonzero

elements—uses O(D‖H‖1t/δ) queries. Theorem 1 improves on this as ‖H‖1 is typically

larger than both ‖H‖max and ‖H‖, and because the scaling with δ is improved. In particular,

the bound ‖H‖1 ≤ D‖H‖max shows that D‖H‖1t/δ ≤ O(D2‖H‖maxt/δ), which is worse than

40 Black-box Hamiltonian simulation and unitary implementation

D‖H‖maxt, and the bound ‖H‖1 ≤
√
D‖H‖ shows that D‖H‖1t/δ ≤ O(D3/2‖H‖t/δ), which

is worse than ‖H‖t/
√
δ.

We conclude this section by describing in more detail how the isometry T is used in each

part of the simulation. It is used in three different ways:

1. At the beginning, to map the initial state from C
M into the tensor product space

C
2M ⊗ C

2M .

2. To implement each application of V .

3. At the end, to map the final state from C
2M ⊗ C

2M back to C
M .

For the first step, we can directly implement T as defined in Eq. (10). The initial state is

a superposition of states |j〉 for j ∈ {1, 2, . . . ,M} used to control the state preparation. We

simply introduce another register in which |φj〉 is prepared.
When T is used to implement V , we need to specify the action on the extra qubit in-

troduced in the state preparation procedure. We only require the correct eigenvalue and

eigenvector relations, namely, that

T †ST |λ〉 = λ̃|λ〉. (38)

On the expanded space, the isometry T should have the form

M
∑

j=1

[|j, 0〉|φj〉〈j, 0|+ |j, 1〉|Ωj〉〈j, 1|] (39)

for some states |Ωj〉. Because |λ〉 is orthogonal to |j, 1〉 (as the initial state has the qubit

initialised as |0〉),

T |λ〉 =
M
∑

j=1

|j, 0〉|φj〉〈j, 0|λ〉, (40)

giving

T †ST |λ〉 =
M
∑

j,k=1

[

〈j, 0|φk〉〈φj |k, 0〉|j, 0〉〈k, 0|λ〉+ 〈j, 1|φk〉〈Ωj |k, 0〉|j, 1〉〈k, 0|λ〉
]

. (41)

To obtain Eq. (38), we simply need the second term above to vanish. This can be ensured

by taking |Ωj〉 = |Ω, 1〉 for any state |Ω〉. Note that it is important to properly apply the

operator V to states where the ancilla qubit is in the state |1〉, since although the individual

T |λ〉 have the ancilla in the |0〉 state, the eigenstates |µλ±〉 of V have a component of ST |λ〉,
and therefore have a component with the ancilla in the |1〉 state.

For the final use of T , we wish to map the state |j, 0〉|φj〉 to |j, 0〉 for each j ∈ {1, 2, . . . ,M}.
In general, this can only be carried out approximately, because the final state will not be

exactly a superposition of states of the form |j, 0〉|φj〉. First, if the ancilla qubit is in the state

|1〉, this may be regarded as a failure, because the ideal final state has the ancilla in the state

|0〉. Otherwise, we perform inverse state preparation conditional on the index j. Starting

from |j, 0〉|φj〉, the second register should ideally be mapped to the initial state used for the

state preparation; any other state can be regarded as failure. In general, the total failure

probability is proportional to the error in the inverse state preparation procedure.

A. M. Childs and D. W. Berry 41

5 Improved state preparation

To further improve our simulations, especially in the non-sparse case, we consider state prepa-

ration techniques based on amplitude amplification [22, 23, 24].

Our techniques draw from work on black-box state preparation. In that problem, we are

given an oracle Oψ acting as

Oψ|j〉|z〉 = |j〉|z ⊕ ψj〉 (42)

for some quantum state |ψ〉 =∑M
j=1 ψj |j〉; the goal is to prepare a copy of |ψ〉. Grover showed

how to prepare a black-box quantum state with only O(
√
M) queries [12]. By the lower bound

for search [20], preparation of an M -dimensional black-box quantum state requires Ω(
√
M)

queries, so this state preparation scheme is optimal.

We can use Grover’s technique to prepare the states from Eq. (25) and thereby implement

the quantum walk. This is favorable for large D, in which case state preparation based

on Lemma 4 alone is suboptimal. By combining the approach of Lemma 4 with amplitude

amplification, we improve on both these approaches, as follows.

Lemma 6. Let Λ1 ≥ ‖H‖1, Λmax ≥ ‖H‖max, and ε ∈ (0, 1]. Then

|φj〉 =
√

ε

Λ1

M
∑

k=1

√

H∗
jk|k〉|0〉+

√

1− εσj
Λ1

|ζj〉|1〉 (43)

can be approximately prepared using

O

(

√

εΛmaxD

Λ1
+ 1

)

(44)

queries to OH and OF . The approximation has relative error in the weighting of the first term

of O(ε).

Proof. As in the proof of Lemma 4, we can prepare

|φbj〉 :=
1√
D

∑

k∈Fj

|k〉
[√

H∗
jk

X
|0〉+

√

1− |Hjk|
X

|1〉
]

(45)

using one query to OF and two queries to OH , where X is a real number satisfying X ≥
Λmax ≥ ‖H‖max. Let Bj denote a unitary operation that prepares |φbj〉 from |0〉|0〉.

We now use a form of amplitude amplification similar to that introduced by Grover [12].

We define two reflection operators. The first reflects about the |0〉 state for the ancilla qubit,

Rf := 1⊗ (1− 2|0〉〈0|), (46)

and the second reflects about the state |φbj〉,

Rbj := 2|φbj〉〈φbj | − 1. (47)

The latter reflection can be performed by applying B†
j , reflecting about |0〉|0〉, and then

applying Bj . Using an appropriate number of these reflections, we could obtain a final state

close to

|φfj 〉 :=
1

√
σj

M
∑

k=1

√

H∗
jk|k〉|0〉. (48)

42 Black-box Hamiltonian simulation and unitary implementation

However, the key point is that we do not rotate all the way towards this state, but instead

prepare

|φj〉 =
√

εσj
Λ1

|φfj 〉+Nj

∑

k∈Fj

√

1− |Hjk|
Xj

|k〉|1〉, (49)

where Nj is a normalisation constant. This expression corresponds to the definition of |φj〉
with

|ζj〉 ∝
∑

k∈Fj

√

1− |Hjk|
Xj

|k〉. (50)

According to Eq. (15), the normalised Hamiltonian corresponding to the discrete-time quan-

tum walk defined by these states is

H̃ =
εH

Λ1
. (51)

We prepare a state close to |φj〉 using amplitude amplification. Let

|φj(r)〉 := (RbjR
f)r|φbj〉 (52)

denote the state as a function of the number of steps, r. We have

|φj(r)〉 = sin[(2r + 1)θj]|φfj 〉+Nj cos[(2r + 1)θj]
∑

k∈Fj

√

1− |Hjk|
X

|k〉|1〉, (53)

where

sin θj = 〈φfj |φbj〉 =
√

σj
DX

. (54)

By Eqs. (48) and (49), 〈φfj |φj〉 =
√

εσj/Λ1, so the value of r that gives the desired outcome

is

roptj :=
1

2

(

1

θj
arcsin

√

εσj
Λ1

− 1

)

=
1

2





arcsin
√

εσj

Λ1

arcsin
√

σj

DX

− 1



 . (55)

There are several reasons why we cannot perform exactly roptj queries. This value may not

be an integer, and it is j-dependent. Furthermore, since σj is not known in general, the exact

value of roptj is unknown. However, if ε is small, then the arcsin function can be linearised,

and we can take

r ≈ 1

2

√

εXD

Λ1
− 1

2
. (56)

Specifically, we choose

r =

⌈

1

2

√

εΛmaxD

Λ1
− 1

2

⌉

(57)

and

X = (2r + 1)2
Λ1

εD
. (58)

A. M. Childs and D. W. Berry 43

Since the number of queries per step is O(1), the total number of queries is O(
√

εΛmaxD/Λ1+

1) as claimed.

Now we analyse the error incurred due to imperfect state preparation. First consider the

deviation of r from roptj . This deviation results from linearisation of both the numerator and

denominator of Eq. (55). The argument of the arcsin function in the denominator is smaller

than that in the numerator, so to determine the scaling of the error, it suffices to consider the

error in the linearisation of the numerator. The relative error is thus

|roptj − r|
r

= O(εσj/Λ1) ≤ O(ε) (59)

since σj ≤ Λ1 for all j.

The effect of the difference between r and roptj is a slightly incorrect weighting of |φfj 〉 in
the final state:

〈φfj |φj(r)〉 = sin[(2r + 1)θj]

=

√

εσj
Λ1

(1 + xj) (60)

where

xj :=

√

Λ1

εσj
sin[(2r + 1)θj]− 1

=

√

Λ1

εσj

{

sin[(2roptj + 1)θj] + 2θj cos[(2r
int
j + 1)θj](r − roptj)

}

− 1

=

√

Λ1

εσj
2θj cos[(2r

int
j + 1)θj](r − roptj) (61)

for some rintj ∈ [r, roptj], where in the second line we have used Taylor’s theorem. Hence

|xj | ≤
√

Λ1

εσj
2θj |r − roptj |

≤
√

Λ1

εσj
π

√

σj
DX

|r − roptj |

=
πr

2r + 1

|r − roptj |
r

= O(ε). (62)

In the next to last line, we have used Eq. (58). Hence the error in the weighting of the first

term in Eq. (43) is O(ε), as claimed.

The state preparation scheme described in Lemma 6 introduces additional error in the

Hamiltonian simulation, but this error is well bounded. In particular, we have the following.

Lemma 7. The error in the state preparation scheme of Lemma 6 results in an error in the

Hamiltonian simulation described in Sec. 3 of O(‖H‖tε).

44 Black-box Hamiltonian simulation and unitary implementation

Proof. The actual Hamiltonian being simulated, H̃ ′, has matrix elements

H̃ ′
jk = 〈j, 0|〈φj(r)|S|k, 0〉|φk(r)〉

= 〈φj(r)|k, 0〉〈j, 0|φk(r)〉

= sin[(2r + 1)θj] sin[(2r + 1)θk]
Hjk√
σjσk

=
εHjk

Λ1
(1 + xj)(1 + xk). (63)

Defining a diagonal matrix x := diag(x1, x2, . . . , xM), the error in the Hamiltonian is

‖H̃ ′ − H̃‖ =

∥

∥

∥

∥

ε

Λ1
(xH +Hx+ xHx)

∥

∥

∥

∥

≤ ε‖H‖
Λ1

(2xmax + x2max)

=
ε‖H‖
Λ1

O(ε), (64)

where xmax := maxj |xj |. In evolving the Hamiltonian over time t, we multiply this by a

factor of tΛ1/ε, so the resulting error is O(‖H‖tε).

6 Non-sparse Hamiltonians

Now we examine the overall performance of the Hamiltonian simulation algorithm with im-

proved state preparation. Multiplying the number of steps of the quantum walk by the number

of queries required to implement each step, we find the following.

Lemma 8. Given a black-box Hamiltonian H, let Λ ≥ ‖H‖, Λ1 ≥ ‖H‖1, and Λmax ≥ ‖H‖max.

Then H can be simulated for time t with error at most δ ∈ (0, 1] using

O

(

t3/2
√

ΛmaxDΛ1Λ

δ

)

(65)

queries to OH and OF , provided that

Λt ≥
√
δ, (66)

Λt ≥ Λ2

ΛmaxΛ1D
, and (67)

Λ ≤ Λ1. (68)

The restriction (68) simply means that Λ is not unnecessarily large. Because ‖H‖ ≤ ‖H‖1,
we can decrease any given Λ to be at most Λ1, provided (66) still holds. This Lemma provides

improved performance in cases whereD is large. This may mean thatD =M , but we continue

to perform the analysis in terms of the sparseness parameter D for generality.

Proof. We take

ε =
Λ1t

⌈Λ1Λt2/δ⌉
. (69)

A. M. Childs and D. W. Berry 45

This ensures that ε ≤ δ/Λt, so ‖H‖tε ≤ δ. The restriction (66) then ensures that ε ≤ 1. In

addition, (66) and (68) ensure that Λ1Λt
2/δ ≥ 1, so the ceiling function does not affect the

scaling, and

1/ε = O(Λt/δ). (70)

With this value of ε, Λ1t/ε is an integer, and therefore Lemma 5 shows that O(Λ1t/ε)

quantum walk steps suffice for the simulation. Then, using Lemma 6, the number of oracle

queries for each step of the quantum walk is O(
√

εΛmaxD/Λ1), unless this quantity is less

than 1, in which case the state preparation proceeds without amplitude amplification.

That case does not alter the result, because the total number of queries for the simulation

as given by Eq. (4) in Theorem 1 is less than Eq. (65) given the restrictions in Lemma 8. This

can be shown as follows. First, assuming
√

εΛmaxD/Λ1 = O(1), we have

DΛmaxt =

√
δDΛmaxt√

δ

= O

(√
εΛtDΛmaxt√

δ

)

≤ O

(

t3/2
√

ΛmaxDΛ1Λ

δ

)

. (71)

In the second line we have used Eq. (70), and in the third line we have used the condition

that
√

εΛmaxD/Λ1 = O(1). Next,

Λt√
δ
≤ t3/2

√

ΛmaxDΛ1Λ

δ
(72)

using the restriction (67). Finally, combining Eqs. (66) and (67) shows that the number of

queries in Eq. (65) is at least constant. Thus we find that Eq. (4) is less than Eq. (65), as

required.

For the case where state preparation proceeds via amplitude amplification, we multiply

the number of steps of the quantum walk (from Lemma 5) by the number of oracle calls for

each step (from Lemma 6). Thus the total number of queries is

O

(

t

√

ΛmaxDΛ1

ε

)

≤ O

(

t3/2
√

ΛmaxDΛ1Λ

δ

)

. (73)

where we have used Eq. (70).

Finally, we consider the error in the simulation. Because ε ≤ δ/Λt, Lemma 7 implies that

the error due to imperfect state preparation is O(δ). Using Lemma 5, the error due to the

quantum walk simulation is O(Λ2ε2/Λ2
1). Using ε ≤ δ/Λt and

√
δ ≤ Λt, this contribution to

the error is also O(δ).

The statement of the Lemma requires that the error is less than δ, rather than O(δ).

However, any multiplying factor for the error can be absorbed into the big-O notation of Eq.

(65).

46 Black-box Hamiltonian simulation and unitary implementation

We are interested in improving the scaling with D beyond the linear scaling in Theorem 1.

The number of queries in Lemma 8 contains
√
D, but also depends on several other quantities.

For simplicity, in this discussion we assume that Λ can be replaced with ‖H‖, and so forth.

In the worst case we can have ‖H‖max ∝ ‖H‖ and ‖H‖1 ∝ ‖H‖
√
D. This would yield overall

scaling of O((‖H‖t)3/2D3/4/
√
δ). However, it should be noted that this worst case arises from

two different factors.

1. To have ‖H‖max ∝ ‖H‖, the distribution of the magnitudes of the matrix elements

should have a sharp peak, so there is a row with most of the weight on one of the

elements.

2. To have ‖H‖1 ∝ ‖H‖
√
D, the magnitudes of the matrix elements should be relatively

evenly distributed.

If we could ensure that all the nonzero elements had magnitudes within some constant factor

(so there is no sharp peak), then we would obtain ‖H‖max ∝ ‖H‖/
√
D, giving a scaling of

O((‖H‖t)3/2
√

D/δ).

7 Breaking up the Hamiltonian

We now consider how the simulation can be improved by breaking up the Hamiltonian into a

sum of terms. Although the matrix elements of the Hamiltonian may differ over a wide range,

the Hamiltonian can be broken up into terms, each of which has matrix elements of similar

magnitude. By combining the evolution under these Hamiltonians via a Lie-Trotter-Suzuki

formula, we can expect scaling close to O((‖H‖t)3/2
√

D/δ). The only problem is that the

spectral norms of the individual Hamiltonians may be large. First we present a derivation

showing that, provided the norms of the individual terms are not large, then the expected

scaling is obtained. Next we present numerical results showing that typical spectral norms are

small, although there are pathological cases with large norms. Finally, we present a general

method using a number of queries roughly proportional to D2/3 even when the spectral norms

are large.

7.1 Small norms

In order to present our result, we define the function “break”, which quantifies how much the

norm can be increased by breaking up the Hamiltonian into parts. Let

break(H) := max
a,b∈R

‖Hab‖/‖H‖, (74)

where the matrix Hab is defined by

Hab
jk :=

{

Hjk if a < |Hjk| ≤ b,

0 if |Hjk| ≤ a or b < |Hjk|.
(75)

In this subsection we suppose that break(H) is small. We present numerical evidence in Sec.

7.2 that break(H) ≤ 1.5 in most cases. From the definition, it is clear that break(H) ≥ 1.

In addition, because ‖Hab‖ ≤ ‖Hab‖1 ≤ ‖H‖1 ≤ ‖H‖
√
D, we have break(H) ≤

√
D. If

break(H) can be upper bounded by a constant, we obtain a simulation with scaling close to√
D.

A. M. Childs and D. W. Berry 47

Theorem 9. Let Λ ≥ ‖H‖ and Υ ∈ [break(H),
√
D]. The evolution under the Hamiltonian

H for time t can be simulated with error at most δ ∈ (0, 1] using

O
(

√

ΥD/δ(logD)7/4(Λt)3/2
)

(76)

queries to OH and OF , provided δD > Λt >
√
δ.

Proof. We split the Hamiltonian into L terms, each with nonzero elements of approximately

the same magnitude:

H =

L
∑

ℓ=1

Hℓ. (77)

We take the Hamiltonians Hℓ to include elements with decreasing magnitudes: H1 contains

elements with the largest magnitudes, H2 contains elements with the next largest magnitudes,

and so forth. We denote the cutoff values Aℓ, so Hℓ = HAℓAℓ−1 for ℓ < L and HL = H0AL−1 .

We take A0 = Λ, AL = Λ/
√
D, and A0 > A1 > · · · > AL. In examining Hℓ, let Λ

(ℓ) denote

an upper bound on ‖Hℓ‖, Λ(ℓ)
1 an upper bound on ‖Hℓ‖1, Λ(ℓ)

max an upper bound on ‖Hℓ‖max,

and τℓ the time interval for simulation of Hℓ. We also let δℓ denote the error allowed for

simulating Hℓ over a time step of length τℓ.

Because |[Hℓ]jk| ≤ Aℓ−1, we can take Λ
(ℓ)
max = Aℓ−1. To choose a value of Λ

(ℓ)
1 for ℓ < L,

we use

‖Hℓ‖1 ≤ max
j

M
∑

k=1

|[Hℓ]jk|2/Aℓ

≤ max
j

M
∑

k=1

|Hjk|2/Aℓ

≤ ‖H‖2/Aℓ. (78)

Therefore we can take Λ
(ℓ)
1 = Λ2/Aℓ for ℓ < L. For ℓ = L, we have

‖Hℓ‖1 ≤ ‖H‖1 ≤ ‖H‖
√
D. (79)

Since we set AL = Λ/
√
D, we have Λ

(ℓ)
1 = Λ2/Aℓ for ℓ = L as well. This is why we define a

value for AL, even though it is not used to bound matrix elements.

The success of the simulation depends crucially on the scaling of the norms ‖Hℓ‖. By

assumption, Υ ≥ break(H), so ‖Hℓ‖ ≤ Υ‖H‖. Because ‖Hℓ‖ ≤ ‖Hℓ‖1, we can take Λ(ℓ) =

min{ΥΛ,Λ2/Aℓ}.
Using Lemma 8, the number of queries to simulate Hℓ for time τℓ is

O



τ
3/2
ℓ

√

Λ
(ℓ)
maxDΛ

(ℓ)
1 Λ(ℓ)

δℓ



 ≤ O

(

Λτ
3/2
ℓ

√

DΥΛAℓ−1

δℓAℓ

)

. (80)

In this proof we take τℓ and δℓ to be independent of ℓ. To ensure that the number of

queries is independent of ℓ (so no one term dominates the scaling), we take constant ratios

Aℓ−1/Aℓ. To satisfy A0 = Λ and AL = Λ/
√
D, we can take Aℓ = ΛD−ℓ/2L. Then Λ

(ℓ)
max =

48 Black-box Hamiltonian simulation and unitary implementation

Aℓ−1 = ΛD(1−ℓ)/2L, Λ
(ℓ)
1 = Λ2/Aℓ = ΛDℓ/2L, and the ratio between successive cutoffs is

Aℓ−1/Aℓ = D1/2L.

Next we ensure that the conditions of Lemma 8 hold. Condition (68) follows immediately

from Λ(ℓ) = min{ΥΛ,Λ2/Aℓ}. To satisfy conditions (66) and (67), τℓ cannot be too small,

but it must be small enough that the Trotter error is O(δ). To achieve this, we choose τℓ to

satisfy

τℓ ≥ max

{

δ

L3/2Λ2t
,

Υ

ΛD1+1/2L

}

. (81)

In addition, to apply the Trotter formula, t/τℓ must be an even integer. Thus we take

τℓ =
t

2
⌊

min
{

L3/2Λ2t2

2δ , ΛD
1+1/2Lt
2Υ

}⌋ . (82)

For this expression to be well-defined, the denominator must be nonzero. For the first

term of the minimum, we find that

L3/2Λ2t2

2δ
>
L3/2

2
> 1. (83)

The first inequality uses the condition Λt >
√
δ and the second uses L ≥ 2 (since otherwise

we are not breaking up the Hamiltonian at all). For the second term to be at least 1, we

require

ΛDt ≥ 2ΥD−1/2L. (84)

If this does not hold, then we perform the simulation with Theorem 1 instead of Lemma 8.

Since Λ ≥ ‖H‖max, we can take Λmax = Λ. The condition δD > Λt >
√
δ implies that Eq.

(4) is O(DΛt). Provided Eq. (84) is violated, we find that we can simulate the Hamiltonian

with O(D1/2L) queries. We will take L ∝ logD, so the simulation uses O(1) queries, which is

no more than Eq. (76). Thus, for the remainder of this proof, we assume that Eq. (84) holds,

so Eq. (82) is well-defined.

Using Eq. (82), we find that Eq. (81) is satisfied, and

Λ(ℓ)τℓ ≥ Λτℓ ≥ Λ
√
τℓ

√

δ

L3/2Λ2t
=

√

δτℓ
L3/2t

. (85)

The first inequality uses Λ(ℓ) ≥ Λ and the second uses Eq. (81). Taking

δℓ =
δτℓ
L3/2t

, (86)

we obtain Λ(ℓ)τℓ ≥
√
δℓ, so Eq. (66) is satisfied. Equation (67) follows from

Λ(ℓ)τℓ ≥ Λ(ℓ)Υ/ΛD1+1/2L ≥ (Λ(ℓ))2/Λ(ℓ)
maxΛ

(ℓ)
1 D. (87)

Here the first inequality holds due to the second term of the maximum in Eq. (81).

Now we use a Kth order Lie-Trotter-Suzuki integrator to combine the simulations of the

Hℓ into a simulation of H. The Strang splitting formula [26] corresponds to K = 1; larger

values of K correspond to higher-order Lie-Trotter-Suzuki formulae. In this proof we simply

A. M. Childs and D. W. Berry 49

take K = 1; in Section 7.3 we will consider the case K = 2. The simulation resulting from a

Kth order integrator is approximate, introducing error [27, 28, 9]

O

(

[

2L5K−1τ max
ℓ

Λ(ℓ)

]2K+1
t

τ

)

. (88)

Here τ is the time interval over which the integrator is repeated. That is, the time is broken

up into t/τ intervals, and the same integrator is used on each of those intervals. By Eq. (A2)

of Ref. [29], τℓ ≥ τ × (3/2)3−K . Thus, for a fixed value of K, τ = O(τℓ). Also, the number of

queries is increased by a factor of 5KL due to the number of terms in the integrator.

To bound the error, we need to take account of the error due to the individual simulations

and the error due to the Trotter formula. There are O(Lt/τ) terms in the Trotter formula for

K = 1, so the total error in performing the individual simulations (neglecting only the error

introduced by the Trotter formula) is O(δℓLt/τ). Because we take δℓ = δτℓ/L
3/2t, the total

error due to the simulations is O(δ/L1/2), which is O(δ).

With K = 1 and L ∝ logD, the Trotter error from Eq. (88) is O(L3Λ3τ2ℓ t). If δ/L
3/2Λt ≥

Υ/D1−1/2L, so that Eq. (82) gives τℓ = O(δ/L3/2Λ2t), then this Trotter error is O(δ2/Λt),

which is O(δ) because Λt > δ. Alternatively, if δ/L3/2Λt < Υ/D1+1/2L, then the Trotter

error is O(ΛtL3Υ2/D2+1/L), which is O(δL3Υ2/D1+1/L). With L ∝ logD and Υ ≤
√
D, the

Trotter error is O(δ).

The total number of queries is given by (80) multiplied by Lt/τ , so we obtain a simulation

using

O
(

L7/4(Λt)3/2D1/2+1/(4L)
√

Υ/δ
)

(89)

queries. Now taking L ∝ logD, D1/L = O(1), so the number of queries is as given in Eq.

(76). The condition δD > Λt >
√
δ ensures that this is at least 1.

This theorem holds regardless of whether the norms are small. In the worst case we can

have Υ =
√
D, in which case the D3/4 scaling is again obtained (as at the end of Sec. 6). On

the other hand, if breaking up the Hamiltonian does not significantly increase the norm, then

we obtain
√
D scaling.

7.2 Norms of components

Now we present numerical results suggesting that for typical matrices, the spectral norms

of the components are small, and break(H) can be upper bounded by a constant. If we

consider general Hamiltonians, then the norms of the components are almost always smaller

than the norm of the original Hamiltonian. (In this subsection, we use “norm” to mean the

spectral norm.) We tested general Hamiltonians by generating random Hermitian matrices

with normally distributed elements. In no case was break(H) more than 1.2, as shown in Fig.

1. For large dimension, break(H) approached 1.

We expect larger norms for the components when breaking up a Hamiltonian derived from

a unitary matrix as discussed in Sec. 8 below (see Eq. (123)). This is because unitaries can

have a large difference between the spectral norm and the 1-norm, and the spectral norms of

the individual components are bounded by the 1-norm ofH. To test this class of Hamiltonians,

we generated random unitaries according to the Haar measure. The values of break(H) were

50 Black-box Hamiltonian simulation and unitary implementation

10
0

10
1

10
2

10
3

0.9

1

1.1

1.2

1.3

1.4

1.5

M

br
ea

k(
H

)

Fig. 1. The function break(H) for random Hamiltonians. The plusses and squares are the maxi-
mum and mean values, respectively, obtained for 100 randomly generated Hermitian matrices. The
crosses and circles are the maximum and mean values, respectively, for sets of 100 Hamiltonians
composed of random unitaries.

10
1

10
2

10
3

10
4

10
0

10
1

10
2

M

br
ea

k(
H

)

Fig. 2. The function break(H) for a Hamiltonian composed of a matrix that has been produced

by perturbing a quantum Fourier transform. The solid line is
√
M for comparison.

larger than for random Hamiltonians, but were still no larger than 1.5, as also shown in Fig.

1.

One way to generate matrices that do have components with large norms is to perturb the

quantum Fourier transform. We considered increasing the magnitude of the elements with

positive real part by 0.01% and decreasing the rest by 0.01%. The value of break(H) (with

H constructed from this matrix as in Eq. (123)) was then proportional to
√
M (see Fig. 2).

Although this example yields large norms for one splitting, the norms of the components

are well-behaved with respect to other splittings. For example, a different threshold could be

used, or we could introduce a smooth transition between the two components (i.e., for values

in some transition region, part of the matrix element could go to one component and part to

the other). However, we suspect that for any particular splitting, one can find examples that

result in large norms for that splitting.

7.3 Large norms

In this subsection we establish the improved simulation described in Theorem 2, without

relying on the assumption that the spectral norms of components remain small. We begin

A. M. Childs and D. W. Berry 51

with an intuitive description of the method before giving the proof.

We again break the Hamiltonian into components Hℓ according to the magnitudes of the

matrix elements. In this case, the best available upper bound on the spectral norms of the

components is Λ2/Aℓ. Using Lemma 8, the number of queries to simulate each component

involves a ratio Aℓ−1/A
2
ℓ , in contrast to the corresponding ratio Aℓ−1/Aℓ when the norms are

assumed to be small (compare Eqs. (80) and (99)). As a result, the cutoff values should be

chosen to make Aℓ−1/A
2
ℓ constant, rather than to make Aℓ−1/Aℓ constant.

In addition, the simulation of HL should not be performed via Lemma 8, because that

would result in an overall scaling no better than that provided by Lemma 8. Instead, we use

Theorem 1 to simulate HL. By comparing the number of queries required to simulate HL

and HL−1, this means that (ignoring scaling in quantities other than D) we should have

√

DAL−2

A2
L−1

≈ DAL−1. (90)

Here the expression on the left comes from using Lemma 8 to simulate HL−1, and the ex-

pression on the right comes from using Theorem 1 for HL. This expression means that

AL−2 ≈ DA4
L−1. The restriction AL−2 > AL−1 then means that AL−1 ' D−1/3. Therefore

the number of queries is minimised for AL−1 ≈ AL−2 ≈ D−1/3. Then Aℓ−1/A
2
ℓ ≈ D1/3, and

the number of queries is roughly D2/3.

To ensure that A0 is independent of D, we must modify the above choices slightly. We

choose a small constant ξ, and take AL−1 ∝ Dξ−1/3 and Aℓ−1/A
2
ℓ ∝ D1/3+2ξ. Iterating gives

AL−2 ∝ D4ξ−1/3, AL−3 ∝ D10ξ−1/3, and so forth. The sequence needs to give A0 independent

of D, but because the coefficient of ξ increases exponentially, L need vary only logarithmically

in ξ.

This approach results in a number of queries to simulate each Hℓ proportional to D
2/3+ξ.

By choosing ξ ∝ 1/ logD, Dξ is O(1). In addition, L varies doubly logarithmically in D,

which gives a double-logarithmic factor in the overall scaling in Theorem 2. In the proof

below, scaling in all quantities is considered, so it is convenient to define a quantity ℵ that

includes D together with the other quantities we have omitted here. The scaling is then given

in terms of ℵ, rather than explicitly in terms of D.

In order to show the result rigorously, we need to carefully choose the time intervals,

because these are lower bounded by the conditions (66) and (67) of Lemma 8, and upper

bounded by the need to ensure that the error in the Trotter formula is sufficiently small.

This is challenging, because the bounds for the different components differ significantly. The

bounds on the Trotter error for Hℓ decrease with ℓ, so the lower bound on the time interval

for H1 is greater than the upper bound on the time interval for HL. Thus it is not possible to

combine these elements in the same Trotter formula while adequately bounding the error. To

overcome this problem, we use nested Trotter formulae. We use a higher-order Lie-Trotter-

Suzuki formula for H2 through HL, in order to obtain sufficiently small error despite the large

upper bound on the norm of HL. Then we use the Strang splitting to combine this product

formula with H1.

Proof of Theorem 2. The Hamiltonian H is again broken into L pieces as in Eq. (77), again

with Hℓ = HAℓAℓ−1 for ℓ < L and HL = H0AL−1 . For ℓ < L, the norms are upper bounded

52 Black-box Hamiltonian simulation and unitary implementation

as

‖Hℓ‖ ≤ ‖Hℓ‖1 ≤ ‖H‖2/Aℓ. (91)

The spectral norm of HL can be bounded more strongly:

‖HL‖ =

∥

∥

∥

∥

∥

H −
L−1
∑

ℓ=1

Hℓ

∥

∥

∥

∥

∥

≤ ‖H‖+ ‖H‖2/AL−1. (92)

Therefore, we can take Λ(ℓ) = Λ2/Aℓ for ℓ < L and Λ(L) = Λ + Λ2/AL−1. We can also take

Λ
(ℓ)
1 = Λ2/Aℓ for ℓ < L, but for ℓ = L the best available bound gives Λ

(L)
1 = Λ

√
D. We have

Λ
(ℓ)
max = Aℓ−1.

For k ≥ 1, let

AL−k = Λ/ℵ1/3−(3×2k−1−2)ξ (93)

where

ℵ :=
δD

LΛt
, (94)

ξ :=
1

6(3× 2L−2 − 1)
. (95)

With this choice, A0 = Λ and AL−1 = Λ/ℵ1/3−ξ; unlike in Section 7.1, the ratio between

successive cutoffs is not constant. We break H into

L :=

⌈

log2

[

2

9
log

(

δD

Λt

)

+
4

3

]⌉

(96)

pieces.

Note that if δD/Λt ≤ e3, then L = 1, and we do not break up the Hamiltonian; we

simply simulate H using Theorem 1. Recall that by assumption, δD > Λt >
√
δ. Therefore,

DΛt > Λt/
√
δ > 1. Since Λ ≥ ‖H‖max, this shows that Theorem 1 uses O(DΛt) queries.

Assuming δD/Λt ≤ e3, we have

DΛt ≤ DΛt

(

e3Λt

Dδ

)1/3

= eD2/3 (Λt)
4/3

δ1/3

= O(D2/3[(log logD)Λt]4/3δ−1/3). (97)

This establishes Theorem 2 when δD/Λt ≤ e3. In the remainder of the proof, we assume that

δD/Λt > e3, so L > 1. It can also be shown that this implies ℵ > 1.

For ℓ < L, Lemma 8 lets us simulate the Hamiltonian Hℓ for time τℓ using

O



τ
3/2
ℓ

√

Λ
(ℓ)
maxDΛ

(ℓ)
1 Λ(ℓ)

δℓ



 (98)

queries. Conditions (66) and (67) of Lemma 8 are satisfied provided τℓ is sufficiently small;

we verify this below when choosing τℓ in the analysis of the Trotter error. The condition (68)

A. M. Childs and D. W. Berry 53

is trivial for ℓ < L. We set δℓ = δτℓ/Lt to ensure that the contribution to the error from the

simulations is O(δ). Thus for ℓ < L, the number of queries used to simulate Hℓ for time τℓ is

O

(

Λ2τℓ

√

LDAℓ−1t

δA2
ℓ

)

. (99)

A simple calculation shows that

Aℓ−1/A
2
ℓ = ℵ1/3+2ξ/Λ. (100)

Thus the query complexity of simulating Hℓ for ℓ < L is

O

(

D2/3Λτℓℵξ
(

LΛt

δ

)1/3
)

. (101)

To simulate HL for time τL, we apply Theorem 1, at a cost of

O

(

Λ2
√
LtτL

AL−1

√
δ

+DAL−1τL + 1

)

(102)

queries. By a simple calculation,

DAL−1τL = D2/3ΛτLℵξ
(

LΛt

δ

)1/3

, (103)

so the query complexity of simulating HL is also given by (101) provided the second term of

Eq. (102) is dominant. We verify this after choosing τL below.

Now we analyze the Trotter error. We use a two-step process to combine the terms of H.

First we use a Trotter formula for the two components H1 and
∑L
ℓ=2Hℓ. Then we combine

the terms of
∑L
ℓ=2Hℓ using another Trotter formula. We do this because large time steps

are needed for H1, but its norm is small, whereas the time steps for the remaining Hℓ can be

smaller, but the norms are larger.

To combine H1 and
∑L
ℓ=2Hℓ, the minimum time step is set by the restrictions (66)

(Λ(ℓ)τℓ ≥
√
δℓ) and (67) (τℓ ≥ Λ(ℓ)/Λ

(ℓ)
maxΛ

(ℓ)
1 D) for H1. For general ℓ, using the choice

δℓ = δτℓ/Lt, we see that these restrictions are satisfied provided

τℓ ≥ max

{

δ

L(Λ(ℓ))2t
,

Λ(ℓ)

Λ
(ℓ)
maxΛ

(ℓ)
1 D

}

. (104)

For ℓ < L, a simple calculation shows that

Λ(ℓ)

Λ
(ℓ)
maxΛ

(ℓ)
1 D

=
1

Aℓ−1D

=
δ

LΛ2t
ℵ−2/3−(3×2L−ℓ−2)ξ

=
δ

L(Λ(ℓ))2t
ℵ−6(2L−ℓ−1)ξ, (105)

54 Black-box Hamiltonian simulation and unitary implementation

where in the third line we have used

Λ(ℓ)

Λ
=

Λ

Aℓ
= ℵ1/3−(3×2L−ℓ−1−2)ξ. (106)

Therefore, since ℵ > 1, the first term of Eq. (104) is larger than the second, and it suffices to

take

τℓ ≥
δ

L(Λ(ℓ))2t
=

δA2
ℓ

LΛ4t
. (107)

Since ℵ > 1 implies Aℓ < Aℓ−1, this lower bound decreases with increasing ℓ. Thus it

suffices to ensure that τ1 is sufficiently large. Here we use the K = 1 integrator, so the ratio

t/τ1 must be an even integer. We can achieve this, and ensure τ1 ≥ δA2
1/LΛ

4t, by taking

τ1 =
t

2
⌊

t2LΛ4

2δA2
1

⌋ . (108)

This expression is finite because

t2LΛ4

2δA2
1

=
(Λt)2Lℵ1/3+2ξ

2δ
>
Lℵ1/3+2ξ

2
> 1. (109)

The equality uses Eq. (100) to compute A1 in terms of A0 = Λ, the first inequality uses the

assumption Λt >
√
δ, and the last inequality uses ℵ > 1 and L ≥ 2.

The norms of the two components in the Trotter formula are bounded as

‖H1‖ ≤ ‖H‖2/A1 ≤ Λ2/A1, (110)
∥

∥

∥

∥

∥

L
∑

ℓ=2

Hℓ

∥

∥

∥

∥

∥

≤ ‖H‖+ ‖H‖2/A1 ≤ 2Λ2/A1, (111)

where the second line uses A1 ≤ A0 = Λ. Thus, by Eq. (88), the Trotter error for combining

H1 and
∑L
ℓ=2Hℓ with a K = 1 integrator is

O

(

τ21Λ
6t

A3
1

)

= O

(

δ2A1

L2Λ2t

)

≤ O

(

δ2

L2Λt

)

≤ O(δ), (112)

where in the last step we have used δ < Λt, which follows from
√
δ < Λt and δ ≤ 1.

Next we combine the Hℓ with ℓ > 1, giving a simulation for time τ1. We assume that

L ≥ 3 so there are at least two such terms to combine; then δD/Λt > e12. By Eq. (107) for

ℓ = 2, the conditions of Lemma 8 are satisfied if we use time intervals of at least δA2
2/LΛ

4t.

However, we must choose time intervals that are compatible with the form of the integrator.

In this case, we use the K = 2 integrator (see Section 7.1), which involves using two different

intervals denoted τ
(1)
2 and τ

(2)
2 . We use the same pair of intervals for all ℓ ≥ 2.

A. M. Childs and D. W. Berry 55

The integrator requires intervals of the form

τ
(1)
2 = p2τ1/2ν (113)

τ
(2)
2 = (4p2 − 1)τ1/2ν (114)

for some positive integer ν, where p2 := 1/(4 − 41/3). Since p2 < 4p2 − 1, τ
(2)
2 > τ

(1)
2 , so to

satisfy the conditions of Lemma 8, it suffices to ensure that τ
(1)
2 ≥ δA2

2/LΛ
4t. We enforce

this by choosing

ν :=

⌊

p2τ1LΛ
4t

2δA2
2

⌋

. (115)

This is a positive integer because

p2τ1LΛ
4t

2δA2
2

≥ p2A
2
1

2A2
2

=
ℵ1/6+ξ

2(4− 41/3)
> 1. (116)

The first inequality uses τ1 ≥ δA2
1/LΛ

4t. The final inequality holds since δD/Λt > e12, as

discussed above.

With this choice in hand, we can now verify that the second term of Eq. (102) is dom-

inant. Henceforth we omit the superscripts on the time intervals, as they only differ by a

multiplicative constant. Since A2 = Λ/ℵ1/4+3ξ/2, τL = τ2 = Θ(ℵ1/2−3ξ/DΛ), and the second

term of Eq. (102) is

DAL−1τL = Θ(AL−1ℵ1/2−3ξ/Λ) = Θ(ℵ1/6−2ξ). (117)

In comparison, the first term is

Λ2
√
LtτL

AL−1

√
δ

= Θ

(

Λℵ1/3−ξ 1√
Λℵ

√

ℵ1/2−3ξ

Λ

)

= Θ(ℵ1/12−5ξ/2), (118)

which is smaller than (117) since ℵ > 1. We claim that the third term of Eq. (102) can also

be neglected. To see this, first note that the choice of L in Eq. (96) ensures that ξ ≤ 1/ logℵ,
so ℵξ ≤ e. By Eq. (117), this implies that DAL−1τL = Θ(ℵ1/6−2ξ) = Ω(1). It follows that

Eq. (101) also gives an upper bound on the number of queries needed to simulate HL for time

τL.

Now we analyze the error in the Trotter formula for
∑L
ℓ=2Hℓ. The norm of the Hℓ for

ℓ ≥ 2 is largest for ℓ = L, in which case we have the bound

‖HL‖ ≤ ‖H‖+ ‖H‖2/AL−1

= O
(

Λℵ1/3−ξ
)

. (119)

56 Black-box Hamiltonian simulation and unitary implementation

By Eq. (88), the error in the K = 2 integrator is

O

(

[

Lτ2Λ
2

AL−1

]5
t

τ2

)

= O

(

Lδ4A8
2ℵ5/3−5ξ

Λ11t3

)

= O

(

δ4L

(Λt)3ℵ1/3+17ξ

)

≤ O

(

δ

[

δ

Λt

]8/3
L4/3

D1/3

)

≤ O(δ). (120)

In the last line we have used the assumption δ < Λt and Eq. (96) for L, which shows that

L = O(log logD).

So far we have only considered the number of queries to simulate the individual Hℓ. For

the complete simulation, there is an additional factor of L to take account of the integrators.

Therefore, the total number of queries is

O

(

D2/3(LΛt)4/3ℵξ
δ1/3

)

. (121)

As discussed above, ℵξ ≤ e, so this factor can be ignored. Overall, we find that

O

(

D2/3[(log logD)Λt]4/3

δ1/3

)

(122)

queries suffice for the simulation, as claimed.

8 Implementation of unitaries

Next we explain how to implement a unitary transformation using the results for simulation of

Hamiltonians. A simple way to implement a unitary transformation U , as proposed by Jordan

and Wocjan [19] (and independently observed by one of us), is to simulate the Hamiltonian

H =

[

0 U
U † 0

]

. (123)

The Hilbert space consists of a qubit tensored with the target space. Since H2 = 1, we have

e−iHt = cos(t)1− i sin(t)H, (124)

and applying this Hamiltonian for time t = π/2 yields the evolution

e−iHπ/2|1〉|ψ〉 = −i|0〉U |ψ〉, (125)

which is sufficient to implement U .

Properties of the unitary U and its associated Hamiltonian in Eq. (123) are closely related.

The dimension of the Hamiltonian, M , is simply twice the dimension of the unitary, N . In

addition, we have

‖H‖ = ‖U‖ = 1, (126)

‖H‖1 = max{‖U‖1, ‖U †‖1}, (127)

‖H‖max = ‖U‖max. (128)

A. M. Childs and D. W. Berry 57

We assume that the matrix elements of U are given by an oracle OU as in Eq. (2). This

oracle can trivially be used to construct an oracle OH for the Hamiltonian as in Eq. (1). Each

call to OH uses one call to OU , so black-box Hamiltonian simulation results can be applied

directly to black-box unitary implementation. However, for unitary implementation we can

take advantage of the fact that the eigenvalues of the Hamiltonian are restricted.

Lemma 10. Suppose H has eigenvalues ±1 and π/[2 arcsin(ε/Λ1)] is an odd integer, for

ε ∈ (0, 1]. Using a quantum walk with states |φj〉 as in Eq. (25), evolution for time π/2 can

be simulated exactly using O(Λ1/ε) queries.

Proof. Since the eigenvalues of H are λ = ±1, the relationship between arcsin λ̃ and λ̃ is

simple: taking

d =
π

2 arcsin(ε/Λ1)
, (129)

the eigenvalues of V d are +i for λ = 1 and −i for λ = −1. These eigenvalues are equivalent

(up to the minus sign) to evolution under the Hamiltonian H for time π/2.

This result can be used to exactly implement unitary operators via a quantum walk. The

scaling is as follows:

Theorem 11. Given a black-box unitary U , let Λmax ≥ ‖U‖max. Then U can be implemented

exactly with O (NΛmax) queries to OU .

Since we are primarily concerned with implementation of general unitaries, which are not

sparse, we express unitary implementation results in terms of the dimension N rather than

the sparseness parameter D.

Proof. This implementation proceeds by simulating the Hamiltonian given in Eq. (123) for

time π/2 using Lemma 10, with the steps of the quantum walk implemented using Lemma

4. The Hamiltonian has no more than N nonzero elements in any row of column, so we can

take D = N .

Take ε = Λ1/NX, where

X =
1

N sin[π/(2d)]
, (130)

d = 2

⌈

π

4 arcsin[1/(ΛmaxN)]
− 1

2

⌉

+ 1. (131)

It is easily shown that X ≥ Λmax, so ε ≤ Λ1/DΛmax ≤ 1. In addition, π/[2 arcsin(ε/Λ1)]

is an odd integer, so the conditions of Lemma 10 are satisfied. Then, using Lemma 10, the

Hamiltonian can be simulated for time π/2 using O(Λ1/ε) = O(NX) steps of the quantum

walk.

Because ε ≤ Λ1/DΛmax, we can use Lemma 4, and each step of the quantum walk can

be implemented using O(1) queries. Thus the total number of queries is O(NX). Because

Λmax ≥ ‖H‖max ≥ 1/
√
N , X ≤ 2Λmax, and the number of queries is O(NΛmax).

Our other results on Hamiltonian simulation can also be used to implement unitaries,

although in these cases there are other sources of error, so the simulation can no longer be

performed exactly. In each case we take t = π/2, ‖H‖ = 1, and D = N . Lemma 8 yields the

following corollary for unitary implementation.

58 Black-box Hamiltonian simulation and unitary implementation

Corollary 12. Given a black-box unitary U, let Λ1 ≥ max{‖U‖1, ‖U †‖1} and Λmax ≥
‖U‖max. Then U can be implemented with error at most δ ∈ (0, 1] using

O
(

√

ΛmaxNΛ1/δ
)

(132)

queries to OU .

Proof. We apply Lemma 8 together with the norm bounds in Eqs. (126) to (128). We use

t = π/2 and ‖H‖ = 1 to obtain Eq. (132). We omit conditions (66) to (68) of Lemma 8 as

they are automatically satisfied. First, the condition (66) holds because δ ≤ 1. Second, (67)

holds because Λmax ≥ 1/
√
N and Λ1 ≥ ‖U‖1 ≥ 1. Third, (68) holds because Λ1 ≥ 1 = Λ.

Similarly, Theorem 9 yields the following.

Corollary 13. Let Υ ∈ [break(U),
√
N]. The unitary operation U can be implemented with

error at most δ ∈ (0, 1] using

O
(

√

ΥN/δ(logN)7/4
)

(133)

queries to OH and OF , provided δN > π/2.

Proof. We use Theorem 9 with Λ = ‖H‖ = 1, t = π/2, and D = N . Then the number of

queries is as in Eq. (133). Since ‖H‖t = π/2, the condition δD > Λt >
√
δ in Theorem 9

becomes δN > π/2 >
√
δ, and since δ ≤ 1, the latter inequality is trivial.

Finally, Theorem 2 yields Corollary 3, which can be proven as follows.

Proof of Corollary 3. For unitaries, Λ = ‖H‖ = 1, t = π/2, and D = N , so Eq. (5) gives an

upper bound of

O
(

N2/3(log logN)4/3δ−1/3
)

(134)

queries, as claimed. The condition δD > Λt >
√
δ becomes δN > π/2 for the same reason as

in the proof of Corollary 13 above. If δN ≤ π/2, then we instead implement the unitary using

Theorem 11. This takes O(N) queries, which is smaller than the claimed upper bound.

In the worst case, Corollary 12 yields query complexity of O(N3/4/
√
δ). This is because

Λmax could be as large as 1 and Λ1 could be as large as
√
N . On the other hand, if the nonzero

matrix elements are of similar magnitude, then Λmax ∝ 1/Λ1, so the scaling will be O(
√

N/δ).

Alternatively, if it is possible to break the unitary into components without otaining large

spectral norms, then break(U) = O(1), and Corollary 13 yields scaling of Õ(
√

N/δ). Those

results are not sufficient to prove this scaling for all unitaries, because break(U) may be large.

However, in general we can use Corollary 3 to implement any unitary with Õ(N2/3δ−1/3)

queries.

A. M. Childs and D. W. Berry 59

9 Examples

We now consider some simple examples of unitaries and discuss the query complexity of

implementing them by the methods of the previous section.

First, consider the unitary with matrix elements Ujk = g(j + k mod N), where g is

a black-box function for a search problem with a unique marked item j⋆. The function

g : {1, 2, . . . , N} → {0, 1} satisfies g(j⋆) = 1 and g(j) = 0 for j 6= j⋆. Since U |0〉 = |j⋆〉,
implementing U solves the search problem; thus it requires Ω(

√
N) queries [20]. This unitary

has ‖U‖max = 1 and ‖U‖1 = 1, so Corollary 12 gives a complexity of O(
√

N/δ), which is

optimal. In fact, simply implementing the isometry T solves the search problem, because it

can prepare the state T |0〉 = |0〉|j⋆〉. The implementation of T in this case is in fact equivalent

to the standard Grover search algorithm [25].

In this case, σj is known, so the implementation can be performed exactly. Using Lemma

10, unitaries may be implemented exactly using a quantum walk, so the only remaining source

of error is in performing the steps of the quantum walk. From the proof of Lemma 6, the

steps of the quantum walk may be performed exactly if roptj from Eq. (55) is a known integer.

Because we have σj = ε = Λ1 = 1, we can easily adjust X to ensure that this is the case,

and therefore that the simulation is performed exactly. More generally, whenever U is a

permutation matrix, it can be implemented in only O(
√
N) queries in a similar fashion.

Another simple example is the quantum Fourier transform, the unitary with Ujk =

e2πijk/N/
√
N . For this unitary, ‖U‖max = 1/

√
N and ‖U‖1 =

√
N . Therefore, Corollary 12

again gives a complexity of O(
√

N/δ). In fact, for this case we can take ε = 1, σj = Λ1 =
√
N

and X = 1/
√
N , so Eq. (55) gives roptj = 0. Therefore no amplitude amplification is required,

and the implementation is again exact.

These two examples illustrate the two extremal cases where Corollary 12 gives scaling of√
N . First, if all the weight is on one matrix element in each row, then ‖U‖1 = 1. At the other

extreme, if the weight is evenly distributed between the matrix elements, then ‖U‖1 =
√
N ,

but ‖U‖max = 1/
√
N . These correspond to the two points listed at the end of Sec. 6. In

either case, the nonzero matrix elements have the same magnitude.

Note that to take advantage of sparsity, the locations of the nonzero elements must be

known (or more precisely, their locations must be accessible via the oracle OF). Effectively,

the quantity D measures how many matrix elements are not known to be zero. For the

search problem, the locations of the nonzero elements are not known in advance (finding

those positions would in itself solve the search problem), so D = N . In contrast, for the

norms, it does not matter if the nonzero elements are in known positions. If there are m

nonzero matrix elements, then ‖U‖1 ≤ √
m regardless of the positions of those elements.

For Corollary 12 to yield scaling worse than
√
N , the distribution of magnitudes of matrix

elements of U must have a sharp peak in combination with a relatively broad distribution

for the remaining elements. As a natural example of this, consider the unitary given by

U = exp(−iπJx/2), where Jx is the x-rotation operator for a spin-J system, with dimension

N = 2J + 1, and we use the basis of Jz eigenstates. The first column of exp(−iπJx/2) has a
relatively narrow peak, whereas for columns towards the middle the elements are more spread

out (see Fig. 3). The maximum element of U has absolute value
√

(2⌈J⌉)!/2⌈J⌉⌈J⌉!, which is

O(J−1/4) by Stirling’s formula. Since ‖U‖1 = O(
√
J), Corollary 12 yields an overall number

of black-box queries of O(N5/8/δ1/2).

60 Black-box Hamiltonian simulation and unitary implementation

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

j

|〈
j

U|
|0

〉|,
 |

〈j
U

J
|

|
〉|

Fig. 3. The matrix elements of U = exp(−iπJx/2) in the basis of Jz eigenstates for J = 100. The

separate points are |〈j|U |0〉|, and the solid curve is |〈j|U |J〉|.

Thus Corollary 12 does not provide
√
N scaling in this case, though the scaling is better

than the worst-case N3/4 scaling. Using Corollary 3 would not yield improved scaling in this

example, because 2/3 > 5/8. However, numerical testing indicates that breaking this unitary

into components does not increase the spectral norms, so using the approach given in Sec. 7.1

would yield
√
N scaling. In this example, calculating the matrix elements of U is nontrivial,

and consequently the overall complexity of the algorithm in terms of elementary gates would

be greater than
√
N .

We emphasise that the motivation to implement unitaries is not as a shortcut to simulation

of Hamiltonians via U = e−iHt. In general, calculating the matrix elements of U = e−iHt

given the matrix elements of H may be difficult. Rather, the motivation for implementing

unitaries is to provide a tool to develop other algorithms. As discussed above, the search

problem may be encoded as a unitary operation. The algorithm for implementing unitaries

may be regarded as a new generalisation of the Grover algorithm.

10 Conclusion

We have shown how to use quantum walks to simulate black-box Hamiltonians. In particular,

we showed that these techniques can be used to implement an arbitrary N × N unitary

transformation using Õ(N2/3/δ1/3) queries to a black box for its matrix elements, with error

at most δ as quantified by the trace distance.

Our approach is based on simulating Hamiltonian dynamics via discrete-time quantum

walk [10], combined with state preparation via amplitude amplification [12] and integrators

to break up the Hamiltonian. In many cases the implementation can be performed even

faster, with Õ(
√

N/δ) black-box calls. This scaling can be achieved except when breaking the

Hamiltonian into a sum of terms yields components with large spectral norms, and numerical

testing suggests that such cases are rare.

For many applications, our work provides the best known simulation of sparse Hamiltoni-

ans. The number of queries is strictly linear in ‖H‖t, rather than slightly superlinear, as when

higher-order integrators are used [9, 8]. In addition, the scaling in the sparseness parameter

D is at worst linear, in contrast with the O(D4) scaling of Ref. [9].

The best lower bound we know for black-box unitary implementation is Ω(
√
N) queries,

because implementing an N ×N unitary suffices to solve unstructured search with N items.

A. M. Childs and D. W. Berry 61

It remains an open problem to determine whether it is possible to perform the simulation

using O(
√
N) queries in general.

Our results also apply to more general Hamiltonian simulation problems. It might be

interesting to investigate the extent to which the general black-box Hamiltonian simulation

described by Theorem 2 can be improved. Simulations using O(‖Ht‖) queries are not possible
in general [30], but the tradeoff between quantities such as D, ‖Ht‖, ‖Ht‖1, ‖Ht‖max, and δ

is poorly understood.

Acknowledgements

We thank Richard Cleve, Aram Harrow, Stephen Jordan, Robin Kothari, and John Watrous

for helpful discussions. DWB is funded by an Australian Research Council Future Fellowship

(FT100100761). AMC received support from MITACS, NSERC, the Ontario Ministry of

Research and Innovation, QuantumWorks, and the US ARO/DTO.

References

1. R. P. Feynman, Simulating physics with computers, International Journal of Theoretical Physics
21, 467 (1982).

2. A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, Exponential

algorithmic speedup by quantum walk, in Proceedings of the 35th ACM Symposium on Theory of

Computing (ACM, New York, 2003), pp. 59–68; arXiv:quant-ph/0209131.
3. E. Farhi, J. Goldstone, and S. Gutmann, A quantum algorithm for the Hamiltonian NAND tree,

Theory of Computing 4, 169 (2008); arXiv:quant-ph/0702144.
4. A. M. Childs, R. Cleve, S. P. Jordan, and D. Yonge-Mallo, Discrete-query quantum algorithm for

NAND trees, Theory of Computing 5, 119 (2009); quant-ph/0702160.
5. A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations,

Phys. Rev. Lett. 103, 150502 (2009).
6. S. Lloyd, Universal quantum simulators, Science 273 1073 (1996).
7. D. Aharonov and A. Ta-Shma, Adiabatic quantum state generation and statistical zero knowledge,

in Proceedings of the 35th ACM Symposium on Theory of Computing, 2003 (ACM, New York,
2003), pp. 20–29; arXiv:quant-ph/0301023.

8. A. M. Childs, Quantum information processing in continuous time, Ph.D. thesis, Massachusetts
Institute of Technology, 2004.

9. D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, Efficient quantum algorithms for simulating

sparse Hamiltonians, Commun. Math. Phys. 270, 359 (2007); arXiv:quant-ph/0508139.
10. A. M. Childs, On the relationship between continuous- and discrete-time quantum walk, Commun.

Math. Phys. 294, 581 (2009); arXiv:0810.0312.
11. A. M. Childs and R. Kothari, Simulating sparse Hamiltonians with star decompositions, Theory

of Quantum Computation, Communication, and Cryptography (TQC 2010), Lecture Notes in
Computer Science 6519, 94 (2011); arXiv:1003.3683.

12. L. K. Grover, Synthesis of quantum superpositions by quantum computation, Phys. Rev. Lett. 85,
1334 (2000).

13. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Experimental realization of any discrete

unitary operator, Phys. Rev. Lett. 73, 58 (1994).
14. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.

Smolin, and H. Weinfurter, Elementary gates for quantum computation, Phys. Rev. A 52, 3457
(1995); quant-ph/9503016.

15. A. Y. Kitaev, Quantum computations: Algorithms and error correction, Russ. Math. Surveys 52,
1191 (1997).

62 Black-box Hamiltonian simulation and unitary implementation

16. A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and Quantum Computation, Graduate
Studies in Mathematics Vol. 47 (American Mathematical Society, Providence, RI, 2002).

17. A. W. Harrow, B. Recht, and I. L. Chuang, Efficient discrete approximations of quantum gates,
J. Math. Phys. 43, 4445 (2002).

18. E. Knill, Approximation by quantum circuits, Technical Report LAUR-95-2225, Los Alamos Na-
tional Laboratory, 1995; arXiv:quant-ph/9508006.

19. S. P. Jordan and P. Wocjan, Efficient quantum circuits for arbitrary sparse unitaries, Phys. Rev.
A 80, 062301 (2009); arXiv:0904.2211.

20. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of quantum

computing, SIAM J. Comput. 26, 1510 (1997); arXiv:quant-ph/9701001.
21. M. Szegedy, Quantum speed-up of Markov chain based algorithms, Proceedings of the 45th IEEE

Symposium on Foundations of Computer Science (IEEE, Los Alamitos, CA, 2004), pp. 32–41;
arXiv:quant-ph/0401053.

22. G. Brassard and P. Høyer, An exact quantum polynomial-time algorithm for Simon’s problem, in
Proceedings of Fifth Israeli Symposium on Theory of Computing and Systems (IEEE, Los Alamitos,
CA, 1997), pp. 12–23; arXiv:quant-ph/9704027.

23. G. Brassard, P. Høyer, M. Mosca, and A. Tapp, in Quantum Computation and Information, edited
by S. J. Lomonaco and H. E. Brandt (AMS, Providence, 2002); arXiv:quant-ph/0005055.

24. L. K. Grover, Quantum computers can search rapidly by using almost any transformation, Phys.
Rev. Lett. 80, 4329 (1998).

25. L. K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the

28th Annual ACM Symposium on Theory of Computing (ACM, New York, 1996), pp. 212–219;
arXiv:quant-ph/9605043.

26. G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5,
506 (1968).

27. M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories

and Monte Carlo simulations, Phys. Lett. A 146, 319 (1990).
28. M. Suzuki, General theory of fractal path integrals with applications to many-body theories and

statistical physics, J. Math. Phys. 32, 400 (1991).
29. N. Wiebe, D. W. Berry, P. Høyer, and B. C. Sanders, Higher order decompositions of ordered

operator exponentials, J. Phys. A: Math. Theor. 43, 065203 (2010); arXiv:0812.0562.
30. A. M. Childs and R. Kothari, Limitations on the simulation of non-sparse Hamiltonians, Quantum

Inform. Comput. 10, 669 (2010); arXiv:0908.4398.

	Introduction
	Model and results
	Model
	Results

	Review of Hamiltonian simulation
	Sparse Hamiltonian simulation
	Improved state preparation
	Non-sparse Hamiltonians
	Breaking up the Hamiltonian
	Small norms
	Norms of components
	Large norms

	Implementation of unitaries
	Examples
	Conclusion

