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The discrimination between two unknown states can be performed by a universal programmable dis-
criminator, where the copies of the two possible states are stored in two program systems respectively
and the copies of data, which we want to confirm, are provided inthe data system. In the present paper,
we propose a group-theretic approach to the multi-copy programmable state discrimination problem.
By equivalence of unknown pure states to known mixed states and with the representation theory of
U(n) group, we construct the Jordan basis to derive the analytical results for both the optimal un-
ambiguous discrimination and minimum-error discrimination. ThePOVM operators for unambiguous
discrimination and orthogonal measurement operators for minimum-error discrimination are obtained.
We find that the optimal failure probability and minimum-error probability for the discrimination be-
tween the mean input mixd states are dependent on the dimension of the unknown qudit states. We
applied the approach to generalize the results of He and Bergou (Phys. Rev. A75, 032316 (2007))
from qubit to qudit case, and we further solve the problem of programmable dicriminators with arbi-
trary copies of unknown states in both program and data systems.
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1 Introduction

As a recent development, the possibility of discriminationbetween quantum states can be potentially
useful for many applications in quantum communication and quantum computation. In this problem,
a quantum state is chosen from a set of known states but we do not know which and want to determine
the actual states. This is a nontrivial problem since the states cannot be successfully identified with
unit probability because of the non-cloning theorem [1]. Two basic strategies have been introduced
to achieve the state discrimination, one of which is the minimum-error discrimination [2, 3, 4, 5,
6, 7] and the other is the unambiguous discrimination for linearly independent states [8, 9, 10, 11,
12, 13]. In the minimum-error discrimination, errors are permitted and the optimal measurement is
required such that the probability of error is minimum, while in the unambiguous discrimination not
errors but inconclusive results are permitted, and in the optimal strategy the probability of failure
is a minimum. Recently, another approach for the linearly dependent states was proposed with the
maximum confidence measurements [14].

A universal device that can unambiguously discriminate between two unknown qubit states has
also been constructed by Bergou and Hillery [15]. In their work, the system consists of two program
qubitsA andC, and one data qubitB. It is assumed that the qubitA andB are prepared in the states
|ψ1〉 and|ψ2〉 respectively, and qubitA is prepared in either|ψ1〉 or |ψ2〉 with probabilitiesη1 andη2,
whereη1 + η2 = 1, guaranteeing that the state in system B is always one of the two states. Such a
device can measure the total input states

|Ψ1〉 = |ψ1〉A|ψ1〉B |ψ2〉C ,
|Ψ2〉 = |ψ1〉A|ψ2〉B |ψ2〉C , (1)

where the states|ψ1〉 and|ψ2〉 are both unknown,

|ψ1〉 = a|0〉+ b|1〉, |ψ2〉 = c|0〉+ d|1〉, (2)

and the parametersa, b, c andd are all arbitrary unknown complex variables satisfying thenormal-
ization conditions|a|2 + |b|2 = 1 and |c|2 + |d|2 = 1. This universal discriminator is known as
a sort of programmable quantum device, which has been studied in both theory and experiment re-
cently [16, 17, 18, 19, 20, 21, 22, 23].

The generalization and the experimental realization aspects of the discriminator above have also
been introduced and widely discussed [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40].
The optimal schemes, where the multiple copies of program and data are used in the input states, have
been obtained fornA = nC = n, nB = 1 [25, 26, 28], for nA = nC = 1, nB = n [27], for
nA = nC = n, nB = m [31] and for arbitrary copies in both data and program systems [38, 40]. The
unambiguous discrimination for qudit case has been considered with single program and data copies
(nA = nB = nC = 1) [39]. The minimum-error discrimination for qudit case arbitrary copies has
also been discussed [40].

The most general problem is that there arenA andnC copies of states in the program system
A andC respectively, andnB copies of states in the data systemB, and furthermore, the states are
n-dimensional (n > 2) qudit states rather than qubit states only. Then, the task is to discriminate
between two input states,

|Φ1〉 = |φ1〉⊗nA

A |φ1〉⊗nB

B |φ2〉⊗nC

C ,

|Φ2〉 = |φ1〉⊗nA

A |φ2〉⊗nB

B |φ2〉⊗nC

C , (3)
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where|φ1〉 and|φ2〉 are two unknown states inn-dimensional Hilbert space.
In this paper, we study both the unambiguous discriminationand minimum-error discrimination

between two unknown qudit states with the inputs prepared with arbitrary copies in program and data
systems as in Eq. (3). Unlike the discrimination between two known states, we cannot only consider
this problem in the subspace spanned by the two states|φ1〉 and|φ2〉, and we should consider it in the
full n-dimensional space, as the two states are completely unknown to us. By the the equivalence of
unknown pure states to known average mixed states as in Refs.[25, 26, 27, 31, 38, 39] and with the
Jordan-basis method [41], we obtain the optimal detection operators and the resultsfor the universal
discrimination between the mean states.

The rest of the present paper is organized as follows. Sec.2 is a preliminary section where we
introduce some notations and discuss the average mixed states for the inputs. In Sec.3, we will derive
the Jordan-basis for the average input states by the representation theory ofU(n) group. The inner
products and their multiplicities are given in Sec.4 with the coupling theory of angular momenta.
The main results of this paper are shown in Sec.5 and Sec.6 for optimal unambiguous discrimination
and minimum-error discrimination, respectively, and somespecial examples are discussed in Sec.7.
Finally, we end this paper with a short summary in Sec.8. Some basic concepts and methods about
the group representation theory that are used in this paper are given in the appendix part.

2 preliminary

In this section, we will discuss the equivalence of unknown pure states to known mixed states. Since
the two states|φ1〉 and |φ2〉 are two unknown states in an-dimensional Hilbert spaceH, they can
change from preparation to preparation. It is only the permutation symmetry properties of|Φ1〉 and
|Φ2〉 that is preserved and can be regarded as available information to distinguish|φ1〉 and |φ2〉.
Therefore, we introduce two averaged states

ρ1 =

∫

dµ(φ1)dµ(φ2)[φ
⊗nA

1 ]A[φ
⊗nB

1 ]B [φ
⊗nC

2 ]C ,

ρ2 =

∫

dµ(φ1)dµ(φ2)[φ
⊗nA

1 ]A[φ
⊗nB

2 ]B [φ
⊗nC

2 ]C , (4)

wheredµ(φ) is the ‘natural’ measure for the pure state induced by the Haar measure on the unitary
groupU(n) [42] with normalization condition

∫
dµ(φ) = 1. We use[φ] to denote|φ〉〈φ| as in the

Refs. [43, 38] and similarly [φψ · · · ] = [φ] ⊗ [ψ] ⊗ · · · = |φ〉〈φ| ⊗ |ψ〉〈ψ| ⊗ · · · . Without loss of
generality, we assume thatnA > nC , andn1 = nA + nB , n2 = nB + nC , N = nA + nB + nC .

It should be noticed that there are schemes to discriminate between the original states in Eq. (3) but
with less efficiency than the averaged states in Eq. (4), and generally, the discrimination between the
original input states is not completely equivalent to that between their averaged states. For instance,
the discrimination between the averaged input states provides an upper bound for the success of the
two original states [28]. However, the discrimination of unknown pure states is, onaverage, equivalent
to the discrimination between the known averaged mixed states.

lemma: For a pure state|ψ〉 in n-dimensional Hilbert spaceH,
∫

dµ(ψ)[ψ⊗m] =
1

d[m]
I [m],

whered[m] =

(
n+m− 1
n− 1

)

is the dimension of the fully symmetric spaceH[m] andI [m] is the
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projector onto this space.
Proof: Since for any vector|Ψ[m]〉 ∈ H[m], we have

∫
dµ(ψ)[ψ⊗m]|Ψ[m]〉 ∈ H[m], and it is easy

to see that
∫
dµ(ψ)[ψ⊗m] satisfies the additivity and scalar multiplication, then itis a linear operator

onH[m]. SupposeU [m] is an irreducible representation forU(n) on spaceH[m], and therefore

U [m]

(∫

dµ(ψ)[ψ⊗m]

)

=

∫

dµ(ψ)
(
U |ψ〉〈ψ|

)⊗m

=

∫

dµ(Uψ)[(U |ψ〉)⊗m]U⊗m =

∫

dµ(ψ)[ψ⊗m]U⊗m

=

(∫

dµ(ψ)[ψ⊗m]

)

U [m],

where we have used the propertydµ(Uψ) = dµ(ψ) for Haar measure. According to the Schur’s
lemma [44, 45], we have

∫
dµ(ψ)[ψ⊗m] = λI [m], whereλ is a constant. Moreover,Tr

( ∫
dµ(ψ)[ψ⊗m]

)
=

∫
dµ(ψ)Tr([ψ⊗m]) =

∫
dµ(ψ) = 1 andTr(I [m]) = d[m], soλ = 1/d[m], which accomplishes the

demonstration of the lemma.
From the lemma above, one can obtain

ρ1 =
1

d1
I [n1] ⊗ I [nC ],

ρ2 =
1

d2
I [nA] ⊗ I [n2], (5)

whered1 = d[n1]d[nC ] andd2 = d[nA]d[n2] are the ranks forρ1 andρ2, respectively. These two mixed
states are the ensembles of the two unknown pure states, and the problem becomes the discrimination
betweenρ1 andρ2. In the following sections, we will show how to apply the Jordan-basis method to
solve this problem.

3 Jordan basis for the average input states

Let us further discuss the structures of mixed statesρ1 andρ2 in Eq. (5). Considerρ1 first, and it is
obvious that1[n1] ⊗ 1

[nC ] is the identity operator on the tensor spaceH[n1] ⊗ H[nc], whose bases

are

∣
∣
∣
∣

[n1]
ω1

〉

⊗
∣
∣
∣
∣

[nC ]
ωC

〉

. Here, theω1 andωC correspond to the Weyl tableaux of[n1] and [nC ],

respectively, and we have omitted the labelm1 andmC because they can take only one value. The
spaceH[n1] ⊗ H[nc] is usually reducible under[U(n)]⊗N [44, 45], and the two irreducible bases
∣
∣
∣
∣

[n1]
ω1

〉

and

∣
∣
∣
∣

[nC ]
ωC

〉

can be coupled together to give the irreducible basis [45]

∣
∣
∣
∣

[ν]
τ [n1]m1[nC ]m2, ω

〉

=
∑

ω1ωC

C
[ν]τ,ω
[n1]ω1,[nC ]ωC

∣
∣
∣
∣

[n1]
ω1

〉∣
∣
∣
∣

[nC ]
ωC

〉

,

(6)

whereC [ν]τ,ω
[n1]ω1,[nC ]ωC

are the CG coefficients of theU(n) group, ω = 1, 2, · · · , d[ν], and τ =

1, 2, · · · , {[n1][nC ][ν]} is the multiplicity label. According to the Littlewood rule, one has

[n1]⊗ [nC ] =
⊕

[ν]

{[n1][nC ][ν]}[ν], (7)
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and it is easy to see{[n1][nC ][ν]} = 1 for all possible[ν] since[n1] and[nC ] are both totally sym-
metric. With Young diagrams, Eq. (7) can be graphically expressed as

n1
︷ ︸︸ ︷

· · · ⊗

nC

︷ ︸︸ ︷

· · · =

N
︷ ︸︸ ︷

· · ·

⊕

N−1
︷ ︸︸ ︷

· · · ⊕

N−2
︷ ︸︸ ︷

· · · ⊕ · · · ⊕

n1
︷ ︸︸ ︷

· · · · · ·
· · ·

.

(8)

The Eq. (8) above shows that besides the fully symmetric case, the Young diagram[ν] can take
some special cases with only two rows, such as[N − 1, 1], [N − 2, 2], · · · , [n1, nC ]. The new ir-

reducible basis in Eq. (6) have two labels[ν] andω, and hence can be denoted as

∣
∣
∣
∣

[ν]
ω

〉

for sim-

plify. Now, we can see that the basis

∣
∣
∣
∣

[ν]
ω

〉

also form the complete orthogonal basis for the space

H[n1] ⊗H[nC ]. Therefore,ρ1 can also be expressed as

ρ1 =
1

d1

∑

[ν],ω

∣
∣
∣
∣

[ν]
ω

〉〈
[ν]
ω

∣
∣
∣
∣
, (9)

and ifH [ν] is defined as the space spanned by the basis vectors

∣
∣
∣
∣

[ν]
ω

〉

(ω = 1, 2, · · · , d[ν]), one has

H[n1] ⊗H[nC ] =
⊕

[ν]

H [ν], (10)

where we useH instead ofH because the basis

∣
∣
∣
∣

[ν]
ω

〉

are not the standard basis ofSN . However,
∣
∣
∣
∣

[ν]
ω

〉

can be transformed to standard basis

∣
∣
∣
∣

[ν]
m, ω

〉

by

∣
∣
∣
∣

[ν]
ω

〉

=
∑

m

〈
[ν]
m

∣
∣
∣
∣
[ν],

[n1][nC ]
m1mC

〉∣
∣
∣
∣

[ν]
m, ω

〉

, (11)

where

〈
[ν]
m

∣
∣
∣
∣
[ν],

[n1][nC ]
m1mC

〉

are the[ν] ↓ [n1]⊗ [nC ] subduction coefficients (SDCs) ofSN [45].

Similar discussions can be carried on forρ2, and

ρ2 =
1

d2

∑

[ν′],ω′

∣
∣
∣
∣

[ν′]
ω′

〉〈
[ν′]
ω′

∣
∣
∣
∣
, (12)

where
∣
∣
∣
∣

[ν′]
ω′

〉

=
∑

m′

〈
[ν′]
m′

∣
∣
∣
∣
[ν′],

[nA][n2]
mAm2

〉∣
∣
∣
∣

[ν′]
m′, ω′

〉

, (13)
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and

H[nA] ⊗H[n2] =
⊕

[ν′]

H ′[ν′]. (14)

It should be noticed here that the possible cases for the Young diagram[ν′] are not all the same
as those for[ν] if nA 6= nC . SincenA > nC , [ν′] can take no fewer cases than[ν], which can be
displayed as follows

nA

︷ ︸︸ ︷

· · · ⊗

n2
︷ ︸︸ ︷

· · · =

N
︷ ︸︸ ︷

· · ·

⊕

N−1
︷ ︸︸ ︷

· · · ⊕

N−2
︷ ︸︸ ︷

· · · ⊕ · · · ⊕

max(nA,n2)
︷ ︸︸ ︷

· · · · · ·
· · ·

.

(15)

For the last Young diagram on the right hand of the equation above, the number of the cells for the first
row ismax(nA, n2). It is easy to see thatmax(nA, n2) 6 n1, and therefore, we can conclude that the
Young diagrams[ν′] and[ν] can take the same possible cases fornA = nC , while fornA > nC , [ν′]
can take more cases besides those of[ν]. Based on this point, we can also know thatd1 6 d2.

Now, we can introduce some notations that will be useful in the following discussions. LetHT =
(
H[n1] ⊗ H[nC ]

)⋃ (
H[nA] ⊗ H[n2]

)
, and this is the total space. For a Young diagram[λ] that can

be taken for both[ν] and [ν′], we defineH =
⊕

[λ]H
[λ], H′ =

⊕

[λ]H
′[λ], H0 = H

⋃
H

′, and

H
[λ] = H [λ]

⋃
H ′[λ]. Meanwhile, for a Young diagram[µ] that [ν] cannot take but[ν′] can, let

H
′⊥ =

⊕

[µ]H
′[µ]. It is evident that these spaces have the following relationships

H = H[n1] ⊗H[nC ], H
′ ⊕H

′⊥ = H[nA] ⊗H[n2],

H0 =
⊕

[λ]

H
[λ], HT = H0 ⊕H

′⊥. (16)

It has been well known that there exist the Jordan basis for two nonorthogonal Hilbert spaces [46],
and this can be used to the discrimination between two mixed states if we can find their Jordan
bases [41]. The Jordan bases are defined as follows. The sets of orthogonal and normalized basis
{|f1〉, |f2〉, · · · , |fk〉} in spaceV1 and{|g1〉, |g2〉, · · · , |gk〉} in spaceV2 form the Jordan bases when

〈fi|gj〉 = δij cos θi, (17)

whereθi are the so-called Jordan angles(θ1 6 θ2 6 · · · 6 θk). Since the support ofρ1 has no
overlaps with the spaceH′⊥, there is no doubt that we should consider the Jordan bases ofthe two
nonorthogonal spacesH andH′ in subspaceH0. With the Eqs. (11) and (13), we obtain the overlap
〈

[ν]
ω

∣
∣
∣
∣

[ν′]
ω′

〉

=
∑

m,m′

〈
[ν]
m

∣
∣
∣
∣
[ν],

[n1][nC ]
m1mC

〉〈
[ν′]
m′

∣
∣
∣
∣
[ν′],

[nA][n2]
mAm2

〉〈
[ν]
m, ω

∣
∣
∣
∣

[ν′]
m′, ω′

〉

=
∑

m

〈
[ν]
m

∣
∣
∣
∣
[ν],

[n1][nC ]
m1mC

〉〈
[ν′]
m

∣
∣
∣
∣
[ν′],

[nA][n2]
mAm2

〉

δ[ν][ν′]δωω′ , (18)

which shows that

∣
∣
∣
∣

[ν]
ω

〉

and

∣
∣
∣
∣

[ν′]
ω′

〉

have already been the Jordan bases of subspacesH andH′ .

Next, we will consider how to calculate the inner products ofJordan bases and give their multiplicities.
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4 Inner products of Joran basis and the multiplicities

Eq. (18) has shown that the inner products

〈
[ν]
ω

∣
∣
∣
∣

[ν′]
ω′

〉

are dependent on the SDCs only. If we

can calculate the SDCs, the inner products can easily be obtained. As we know, it is not a simple
work to calculate the SDCs in this paper. However, in anotherway, the SDCs are connected with the
permutation group only, and they are independent on the dimension ofH. This suggests that the inner
products for anyn can be solved as soon as one can calculate those for a specialn. Fortunately, for
n = 2, the qubit cases, the irreducible basis are just the angularmomentum basis of the total system
cosisting of A, B and C, and therefore, the inner products canbe calculated by the coupling theory of
angular momentum, without calculating the exact values of SDCs.

For n = 2, each copy is a qubit state, and then can been viewed as a spin-1/2 system with
j = 1/2. The program systems A and C, and data system B can be regardedas angular systems
with quantum numbersjA = nA/2, jC = nC/2 andjB = nB/2. The angular momentum basis
|(jAjB)jAB , jC ; JM〉 and |jA, (jBjC)jBC ; J

′M ′〉 are the irreducible basis forρ1 andρ2, respec-
tively. There is a a one-to-one relationship between the quantum numbersJ or J ′ and the pos-
sible Young diagrams in the right hand of Eq. (8) or (15), and then the quantum numbersJ for
ρ1 can take no more values thanJ ′ for ρ2. In ρ1 the first n1 spins are couple in a symmetric
way, thereforejAB = n1/2, and similarlyjBC = n2/2 for the same reason. So we come to that
J = (n1 − nC)/2, · · · , N/2 andJ ′ = |nA − n2|/2, · · · , N/2. Now,

〈(jAjB)jAB , jC ; JM |jA, (jBjC)jBC ; J
′M ′〉

= (−1)jA+jB+jC+J
√

(2jAB + 1)(2jBC + 1)

×
{
jA jB jAB

jC J jBC

}

δJJ ′δMM ′

= δJJ ′δMM ′

√
√
√
√
√
√
√

(
n1 − k
nB

)(
n2 − k
nB

)

(
n1
nB

)(
n2
nB

) (19)

where we have setJ = N/2 − k (k = 0, 1, · · · , nC ) and

{
jA jB jAB

jC J jBC

}

are the Wigner’s6j

symbols [48, 47]. The overlaps are independent of the quantum numberM , and therefore, the inner

products of Jordan basis

〈
[ν]
ω

∣
∣
∣
∣

[ν′]
ω′

〉

are determined only by the Young diagram, which means

that the inner products are the invariants ofU(n) group. For an inner product corresponding to a
Young diagram[λ] (this diagram can be taken by both[ν] for ρ1 and[ν′] for ρ2), the multiplicity is the
dimensiond[λ], the number of values thatω can takes. The inner products of Jordan basis and their
multiplicities are all listed in the following table:
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J (n = 2) Young diagrams[λ] Inner productsOk = O[λ] Multiplicity dk = d[λ]

N

2 [N ] 1

(

N + n − 1
n − 1

)

N

2 − 1 [N − 1, 1]
√

nAnC

n1n2

(N−1)(n−1)
N

(

N + n − 2
n − 1

)

.

.

.
.
.
.

.

.

.
.
.
.

N

2 − k [N − k, k]

√

√

√

√

√

√

√

(

n1 − k
nB

)(

n2 − k
nB

)

(

n1

nB

)(

n2

nB

)

N−2k+1
N−k+1

(

N + n − k − 1
n − 1

)(

n + k − 2
n − 2

)

.

.

.
.
.
.

.

.

.
.
.
.

N

2 − nC [n1, nC ]

√

nA!nB !nC !(n1−nC )!

n1!n2!(nA−nC )!

n1−nC+1

n1+1

(

n1 + n − 1
n − 1

)(

n + nC − 2
n − 2

)

For the qubit case (n = 2), the inner products and multiplicities will reduce to those in Ref. [31],
if we further assumenA = nC . In that paper, the authors found an inherent symmetry to study the
structures of the mean input states, which works fornA = nC .

With the Jordan basis above, the subspaceH
[λ] can be further decomposed intoH[λ] =

⊕

ω H
[λ]
ω ,

whereH[λ]
ω is the subspace spanned by

∣
∣
∣
∣

[λ]
ω

〉

1

and

∣
∣
∣
∣

[λ]
ω

〉

2

, ω = 1, 2, · · · , d[λ], and the indexes

“1” and “2” are used to label the bases forρ1 andρ2, respectively. In the overall ensemble, sinceρ1

occurs with probabilityη1 andρ2 with η2, the probability of occurrence for

∣
∣
∣
∣

[λ]
ω

〉

1

is η1/d1 and

that of

∣
∣
∣
∣

[λ]
ω

〉

2

is η2/d2. Therefore, the probability for the occurrence of a vector inH
[λ]
ω is

p[λ]ω =
η1
d1

+
η2
d2
. (20)

The probability that

∣
∣
∣
∣

[λ]
ω

〉

1

occurs conditioned on thatH[λ]
ω has occurred isη[λ]ω,1 = η1/(d1p

[λ]
ω ) and

similarly η[λ]ω,2 = η2/(d2p
[λ]
ω ). Finally, the problem to discriminate betweenρ1 andρ2 is reduced to

deriving the optimal schemes for the unambiguous and the minimum-error discrimination between
two pure states occurring with probabilitiesη[λ]ω,1 andη[λ]ω,2 in each subspaceH[λ]

ω .

5 Optimal unambiguous discrimination

To discriminate between

∣
∣
∣
∣

[λ]
ω

〉

1

and

∣
∣
∣
∣

[λ]
ω

〉

2

with thea priori probabilitiesη[λ]ω,1 andη[λ]ω,2 in space

H
[H]
ω unambiguously, we can introduce the POVM operators in the following form [41, 31]

Πk
ω,1(qk,1, qk,2) =

1− qk,1
1−O2

k

|ψ⊥
k,ω〉2〈ψ⊥

k,ω|,

Πk
ω,2(qk,1, qk,2) =

1− qk,2
1−O2

k

|ψ⊥
k,ω〉1〈ψ⊥

k,ω|,

Πk
ω,0(qk,1, qk,2) = 1

k
ω −Πk

ω,1 −Πk
ω,2 (21)

where we have usedk to denote the Young diagrams listed in the table in Sec.4. qk,1 or qk,2 is the

failure probability for

∣
∣
∣
∣

[λ]
ω

〉

1

or

∣
∣
∣
∣

[λ]
ω

〉

2

in the unambiguous discrimination, the normalized vector
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|ψ⊥
k,ω〉1(2) is orthogonal to

∣
∣
∣
∣

[λ]
ω

〉

1(2)

in the subspaceH[λ]
ω , and1k

ω is the unit operator inH[λ]
ω . The

parametersqk,1 andqk,2 are independent ofω because the inner products are independent ofω. The
total failure probability for the unambiguous discrimination betweenρ1 andρ2 is

Q =

nC∑

k=0

dkQk =

nC∑

k=0

dk(
η1qk,1
d1

+
η2qk,2
d2

), (22)

with dk = d[N−k,k] the multiplicities for the inner products of Jordan basis. We can find the the
optimal settings

qoptk,1 =







1 if η1 < ck√
η2d1

η1d2
Ok if ck 6 η1 6 dk

Ok if η1 > dk

, (23)

andqoptk,2 = O2
k/q

opt
k,1 , whereQk attains its minimum,

Qopt
k =







η1

d1
+ η2

d2
O2

k if η1 < ck

2
√

η1η2

d1d2
Ok if ck 6 η1 6 dk

η1

d1
O2

k + η2

d2
if η1 > dk

. (24)

The boundariesck anddk are as follows

ck =
d1O

2
k

d2 + d1O2
k

, dk =
d1

d1 + d2O2
k

. (25)

Finally, the optimal failure probability for the unambiguous discrimination betweenρ1 andρ2 is

Qopt =

nC∑

k=0

dkQopt
k (26)

and the corresponding optimal POVM are

Π1 =
∑

k,ω

Πk
ω,1(q

opt
k,1 , q

opt
k,2 ),

Π2 =
∑

k,ω

Πk
ω,2(q

opt
k,1 , q

opt
k,2 ) + I⊥,

Π0 = IT −Π1 −Π2, (27)

whereIT is the identity operator on the spaceHT, andI⊥ is the projector onto the subspaceH
⊥. The

projectorI⊥ appears inΠ2 because the occurrence inH⊥ always means the input state isρ2 (or |Φ2〉).
We see from the equations above that both the POVM operators and the optimal failure probability of
unambiguous discrimination betweenρ1 andρ2 are dependent on the dimensionn and the numbers
of copies in data system and program systems, since the parameters such asOk anddk are dependent
on them.
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6 Minimum-error discrimination

For the minimum-error discrimination between the two mixedstatesρ1 andρ2, the inconclusive results
do not occur, soΠ0 = 0, and we require that the probability of errors in the discrimination procedure
is a minimum. The error probability can be expressed as [2]

PE = η1Tr(ρ1Π2) + η2Tr(ρ2Π1) = η1 +Tr(ΛΠ1), (28)

whereΛ = η2ρ2 − η1ρ1 =
∑

i λi|ωi〉〈ωi|, with λi the eigenvalue spectrum of the operatorΛ. It
is obvious that the minimum of the error probability is obtained whenΠ1 is the projector onto the
space spanned by those eigenstates|ωi〉 that belong to negative eigenvaluesλi. The optimal detection
operators therefore read

Π1 =
∑

i<i0

|ωi〉〈ωi|, Π2 =
∑

i>i0

|ωi〉〈ωi|, (29)

whereωi < 0 for 1 6 i 6 i0 andωi > 0 for i > i0. Clearly, the minimum-error measurement for
discriminating between two quantum states is a von Neumann measurement. The resulting minimum-
error probability is

PME =
1

2
(1− Tr|Λ|), (30)

where|Λ| =
√
Λ†Λ.

With Eq. (9) and Eq. (12), the operatorΛ can be expressed as

Λ =
∑

[λ],ω

Λ[λ]
ω +

η2
d2

∑

[µ],ω

∣
∣
∣
∣

[µ]
ω

〉

2

〈
[µ]
ω

∣
∣
∣
∣
, (31)

with

Λ[λ]
ω =

η2
d2

∣
∣
∣
∣

[λ]
ω

〉

2

〈
[λ]
ω

∣
∣
∣
∣
− η1
d1

∣
∣
∣
∣

[λ]
ω

〉

1

〈
[λ]
ω

∣
∣
∣
∣
, (32)

where the Young diagram[λ] can be taken for bothρ1 andρ2, while [µ] for ρ2 only. The eigenvalues
of Λ[λ],ω can be easily obtained as

λkω,+ =
1

2
(c− +

√

c2+ − (c2+ − c2−)O
2
k),

λkω,− =
1

2
(c− −

√

c2+ − (c2+ − c2−)O
2
k), (33)

with c± = η2/d2±η1/d1, and we have usedk to denote the Young diagram[N−k, k]. The eigenvalue
spectrum ofΛ[λ],ω is therefore as follows,

Λ[λ],ω = λkω,+|λkω,+〉〈λkω,+|+ λkω,−|λkω,−〉〈λkω,−|, (34)

where|λkω,+〉 and |λkω,−〉 are the eigenvectors corresponding to the eigenvaluesλkω,+ andλkω,−, re-
spectively. By some algebra, one can easily knowλkω,+ > 0 andλkω,− 6 0, so we can get

PME =
1

2

(

η1 +
η2d1
d2

−
nC∑

k=0

dk
√

c2+ − (c2+ − c2−)O
2
k

)

,

(35)
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Fig. 1 (Color online) Graphs of the optimal failure probability Qopt as a function of the dimension
n for nA = nB = nC = 1(dashed, red),3 (dotted-dashed, green) and7 (solid, blue).

and the corresponding measurement operators read

Π1 =

nC∑

k=0

∑

ω

|λkω,−〉〈λkω,−|,

Π2 =

nC∑

k=0

∑

ω

|λkω,+〉〈λkω,+|+
∑

[µ],ω

∣
∣
∣
∣

[µ]
ω

〉

2

〈
[µ]
ω

∣
∣
∣
∣
. (36)

Obviously,PE is also dependent on the dimensionn and the numbers of copies in systemsA, B and
C, and for the equala priori probabilitiesη1 = η2 = 0.5, the express in Eq. (35) reproduces the
results in the Ref. [40]. With Jordan basis approach, the geometric structure of the Hilbert space are
shown, and it is more convenient to obtain these results. Next, we will give some special examples
to show the influence of the dimensionn on both unambiguous discrimination and minimum-error
discrimination.

7 Some examples

In previous works, the authors have already given some examples to show the fact that more copies
in program and data systems will give lower inconclusive probability and lower minimum-error prob-
ability for unambiguous discrimination and minimum-errordiscrimination between the mean input
statesρ1 andρ2. The results also hold for qudit cases, and therefore we do not focus on this question
here. In this section, we mainly provide some examples to show the relation between the dimension
n and the unambiguous discrimination and minimum-error discrimination betweenρ1 andρ2. For
convenience sake, we setη1 = η2 = 0.5.

First, we consider the unambiguous discrimination betweenρ1 andρ2. If nA = nC , we have
d1 = d2, and the inequalityck 6 η1 6 dk always holds for0 6 k 6 nC . Therefore, the total POVM
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is valid, and the the optimal inconclusive probability is reduced to

Qopt =
1

d1

nC∑

k=0

dkOk. (37)

For the casesnA = nB = nC = 1, 3 and7, the numerical results of the failure probabilityQopt as a
function of the dimensionn are displayed in Fig.1. One can see that the optimal failure probability
decreases as the dimensionn increases. For largen, there is a low bound forQopt, and the low bound
can be obtained as

Q0 =
Γ(nA + 1)Γ(nB/2 + 1)

Γ(nA + nB/2 + 1)
(38)

for arbitrarynA = nC andnB whenn → ∞. The results also show thatQopt decreased as the
number of the copies is added.

Next, we consider the minimum-error discrimination between ρ1 and ρ2. WhennA = nC ,
Eq. (35) becomes

PME =
1

2
(1− 1

d1

nC∑

k=0

dk
√

1−O2
k). (39)

We plot the minimum-error probability versus the dimensionn for the casesnA = nB = nC = 3, 7

and10 in Fig.2. We see that the minimum-error probability also decreases as the dimension increases,
and also decreases as the number of the copies is added. Similarly, whenn → ∞, the low bound for
PME is obtained as

P0 =
1

2

(

1−
nC∑

k=0

(N − 2k + 1)n1!nC !

(N − k + 1)k!(N − k)!

√

1−O2
k

)

(40)

for arbitrarynA, nB andnC .
For the casenA = nB = nC , the low bounds forQopt andPME as a function ofnA are depicted

in Fig. 3. The bounds decrease as the copies are added and they both approach0 asnA → ∞.

8 Conclusions

In summary, we investigate the universal discrimination between two unknown qudit states with arbi-
trary numbers of copies in both data system and program systems. We demonstrate that the average
input states are the maximally mixed states in the tensor spaces consisting of two totally symmetric
spaces. The tensor spaces are reducible, and with the reducibility of U(n) group, it can be decomposed
into some irreducible subspaces denoted by the Young diagrams. The Jordan bases of the mean input
states are just the irreducible basis of each irreducible subspace. We also find that the inner products of
the Jordan bases are determined only by the corresponding Young diagrams and thus are independent
on the dimensionn. By the coupling theory of angular momentum, the explicit expressions of the
inner products are derived. The multiplicities of the innerproducts are just the the dimensions of the
irreducible subspaces, which can be given by the Robinson formula.

Then, we apply the Jordan-basis method, and the problem is reduced to the discrimination between
two known pure states in each two-dimensional subspaceH

[λ]
ω . We give the optimal measurement
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Fig. 2 (Color online) Graphs of the minimum-error probability PE as a function of the dimensionn
for nA = nB = nC = 1(dashed, red),3 (dotted-dashed, green) and7 (solid, blue).
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operators for both unambiguous discrimination and minimum-error discrimination between the mixed
statesρ1 andρ2, where the optimal failure probability and the minimum-error probability are obtained
in Eq. (26) and Eq. (35), respectively. For the qubit case (n = 2), the results in the previous works
can be reproduced.

Finally, some special examples are given to show the relation between the dimensionn and the
discrimination betweenρ1 andρ2. We find that both the optimal failure probability and the minimum-
error probability of unambiguous discrimination and minimum-error discrimination are decreased as
the dimensionn increases.
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20. J. Fiuŕǎsek, M. Dǔsek, and R. Filip,Universal Measurement Apparatus Controlled by Quantum Software,

Phys. Rev. Lett.89, 190401 (2002).



T. Zhou, J.-X. Cui, X.-H. Wu, and G.-L. Long1031
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Appendix A Partitions, Young diagrams and Young tableaux

A partition is a way of writing a positive integern as a sum ofk (k 6 n) integersλi satisfying

n =
k∑

i=1

λi, λ1 > λ2 > · · · > λk > 0. (A.1)

It can be pictured as a Young diagram[λ] = [λ1λ2 · · ·λk], which consists ofn cells arranged in left-
justified rows, withλi cells in theith row. Since a partition ofn corresponds to a inequivalent and
irreducible representation of the permutation groupSn, a Young diagram[λ] can usually be used to
label an inequivalent and irreducible representation ofSn.

A Young tableau is an arrangement of the numbers1, 2, · · · , n in a Young diagram. If the numbers
increase as one moves to the right and goes down, the Young tableau is a standard Young tableau. For
a given Young diagram[λ], the number of standard Young tableauxf [λ] is equal to the dimension of
the irreducible representation[λ] of the permutation groupSn, and can be calculated by the formula

f [λ] =
n!

∏

ij gij
, (A.2)

wheregij is the hook length for the cell in theith row andjth column of the Young diagram[λ]. A
hook of a cell consists of this given cell together with all those to the right in the same row and lower
in the same column, and the number of cells in the hook is called the hook length. Them-th standard
Young tableau can be denoted byT [λ]

m for a given Young diagram[λ], wherem = 1, 2, · · · , f [λ].

Appendix B Representation theory of U(n) group

The tensor productU⊗k is a faithfull representation of then-dimensional unitary groupU(n) on
the tensor spaceH⊗k, and it is reducible. Therefore, it can be decomposed into [44]

U⊗k =
⊕

[λ],m

U [λ]
m , (B.1)

and correspondingly,H⊗k can be decomposed into

H⊗k =
⊕

[λ],m

H[λ]
m . (B.2)

Here,U [λ]
m is an irreducible representation ofU(n) group on the subspaceH[λ]

m , corresponding to a
standard Young tableauT [λ]

m , where the number of rows in[λ] is no more thann. For [λ] = [k] or
[λ] = [1k],m can take only one value, and we can omit the labelm in these cases.

The irreducible subspacesH[λ]
m can be constructed via a standard way,

H[λ]
m = O[λ]

mmH⊗k, (B.3)

where the projector operatorO[λ]
mm are the orthogonal units of the permutation groupSk. For the

details ofO[λ]
mm, see Ref. [44]. If {ei} (i = 1, 2, · · · , n) form the complete orthogonal basis ofH,

the complete orthogonal bases of the irreducible spaceH[λ]
m can be constructed byO[λ]

mm, and a basis
vector ofH[λ]

m can be obtained as

ξ
[λ]
m,i1i2···ik

= O[λ]
mmei1i2···ik , (B.4)
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whereei1i2···ik = ei1 ⊗ ei2 ⊗ · · · ⊗ eik (i1, i2, · · · , ik = 1, 2, · · · , n) are the complete orthogonal

basis ofH⊗k. However, the bases{ξ[λ]m,i1i2···ik
} are linearly dependent, and to give the independent

basis ofH[λ]
m , we should first introduce the concept of Weyl tableaux.

A Weyl tableau is a Young diagram[λ] whose cells are filled with some of the numbers1, 2, · · · , n
under the restrictions that
(a) the numbers do not decrease in the row as one moves to the right;
(b) the numbers increase in the column as one goes down.

If the indicesi1, i2, · · · , ik take the values in the Wely tableaux,ξ[λ]m,i1i2···ik
are independent and

form a complete orthogonal bases ofH[λ]
m . Thus, the dimension of subspaceH[λ]

m is the number of the
Weyl tableaux for[λ], which has been given by the Robinson formula

d[λ] =
∏

ij

n− i+ j

gij
, (B.5)

wheregij is the hook length. For convenience sake, we use

∣
∣
∣
∣

[λ]
m,ω

〉

to denote thenormalized

basis vectors forH[λ]
m , wherem andω correspond to the standard Young tableaux and Weyl tableaux,

respectively,m = 1, 2, · · · , f [λ], ω = 1, 2, · · · , d[λ]. Furthermore,

∣
∣
∣
∣

[λ]
m,ω

〉

are the standard basis

of Sk and the irreducible basis ofU(n) [45].
SupposeU [λ] andU [µ] are two irreducible representation for the unitary groupU(n), and the

tensor productU [λ] ⊗ U [µ] is also a representation ofU(n), but usually reducible. With Littlewood
rule,U [λ] ⊗ U [µ] can be decomposed into

U [λ] ⊗ U [µ] =
⊕

[σ]

{[λ][µ][σ]}U [σ], (B.6)

with {[λ][µ][σ]} the multiplicity for [σ]. One should notice that he irreducible basses forU [σ] are
usually not the standard basis of permutation group.
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