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The discrimination between two unknown states can be perfbibyea universal programmable dis-
criminator, where the copies of the two possible states aredin two program systems respectively
and the copies of data, which we want to confirm, are providétemata system. In the present paper,
we propose a group-theretic approach to the multi-copy prograble state discrimination problem.
By equivalence of unknown pure states to known mixed statésnétih the representation theory of
U(n) group, we construct the Jordan basis to derive the andlygsalts for both the optimal un-
ambiguous discrimination and minimum-error discrimination. P¥/M operators for unambiguous
discrimination and orthogonal measurement operators for mimiauror discrimination are obtained.
We find that the optimal failure probability and minimum-erroolpability for the discrimination be-
tween the mean input mixd states are dependent on the dimerfdioa onknown qudit states. We
applied the approach to generalize the results of He andoBgi@hys. Rev. A75, 032316 (2007))
from qubit to qudit case, and we further solve the problemrofpammable dicriminators with arbi-
trary copies of unknown states in both program and datamsgste
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1 Introduction

As a recent development, the possibility of discriminati@tween quantum states can be potentially
useful for many applications in quantum communication amangum computation. In this problem,
a quantum state is chosen from a set of known states but wetdooe which and want to determine
the actual states. This is a nontrivial problem since thesteannot be successfully identified with
unit probability because of the non-cloning theoreth [Two basic strategies have been introduced
to achieve the state discrimination, one of which is the mimn-error discrimination?, 3, 4, 5,

6, 7] and the other is the unambiguous discrimination for liheardependent state8[9, 10, 11,

12, 13]. In the minimum-error discrimination, errors are permittand the optimal measurement is
required such that the probability of error is minimum, whih the unambiguous discrimination not
errors but inconclusive results are permitted, and in thin@ strategy the probability of failure
is a minimum. Recently, another approach for the linearlyemglent states was proposed with the
maximum confidence measuremeritd][

A universal device that can unambiguously discriminateveeh two unknown qubit states has
also been constructed by Bergou and Hillet$][ In their work, the system consists of two program
qubits A andC, and one data qubiB. It is assumed that the qubit and B are prepared in the states
|1)1) and|y,) respectively, and qubid is prepared in either);) or [1)2) with probabilitiesy; andns,
wheren; + 172 = 1, guaranteeing that the state in system B is always one ofsbestiates. Such a
device can measure the total input states

W1) = [Y)alv1)slYe)c,
|Wa) [v1) alb2) BlY2) C,s (1)

where the statelg); ) and|i)2) are both unknown,
Y1) = al0) +0[1), [t2) = c[0) +d[1), )

and the parameters b, ¢ andd are all arbitrary unknown complex variables satisfying tioemal-
ization conditiongla|? + |b|> = 1 and|c|? + |d|? = 1. This universal discriminator is known as
a sort of programmable quantum device, which has been stinliBoth theory and experiment re-
cently [16, 17, 18, 19, 20, 21, 22, 23].

The generalization and the experimental realization aspgdhe discriminator above have also
been introduced and widely discuss@d, |25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40.
The optimal schemes, where the multiple copies of prograshdata are used in the input states, have
been obtained fony = nc = n, ng = 1[25, 26, 28], for ny = nc = 1, ng = n [27), for
na = nc = n,np = m [31] and for arbitrary copies in both data and program syst&8s40]. The
unambiguous discrimination for qudit case has been coreideith single program and data copies
(na = ng = nc = 1) [39. The minimum-error discrimination for qudit case arhiyr&opies has
also been discussed(].

The most general problem is that there arg andnc copies of states in the program system
A andC respectively, andhp copies of states in the data systémand furthermore, the states are
n-dimensional ¢ > 2) qudit states rather than qubit states only. Then, the &k discriminate
between two input states,

|®1)
|®2)

61) 5" 01) 5" [d2) e

0103 |62) "7 [d2) & ©)



T. Zhou, J.-X. Cui, X.-H. Wu, and G.-L. Londg.019

where|¢;) and|¢2) are two unknown states i-dimensional Hilbert space.

In this paper, we study both the unambiguous discriminagioth minimum-error discrimination
between two unknown qudit states with the inputs preparéd avbitrary copies in program and data
systems as in Eq3]. Unlike the discrimination between two known states, wence only consider
this problem in the subspace spanned by the two statésind|¢,), and we should consider it in the
full n-dimensional space, as the two states are completely unktmws. By the the equivalence of
unknown pure states to known average mixed states as in R&f26, 27, 31, 38, 39 and with the
Jordan-basis method ], we obtain the optimal detection operators and the regoithe universal
discrimination between the mean states.

The rest of the present paper is organized as follows. Seca preliminary section where we
introduce some notations and discuss the average mixed $tathe inputs. In Se®, we will derive
the Jordan-basis for the average input states by the repatioa theory ofU(n) group. The inner
products and their multiplicities are given in Sdcwith the coupling theory of angular momenta.
The main results of this paper are shown in Seand Sec6 for optimal unambiguous discrimination
and minimume-error discrimination, respectively, and s@pecial examples are discussed in Sec.
Finally, we end this paper with a short summary in S&cSome basic concepts and methods about
the group representation theory that are used in this papejieen in the appendix part.

2 preiminary

In this section, we will discuss the equivalence of unknowrepstates to known mixed states. Since
the two states¢,) and|¢2) are two unknown states insadimensional Hilbert spac#, they can
change from preparation to preparation. It is only the peatn symmetry properties ¢#,) and
|®5) that is preserved and can be regarded as available infanmtgi distinguish|¢;) and |¢2).
Therefore, we introduce two averaged states

;o= / dpu(61)dpa(62) (67" 6577 ] (657 e

o2 / A1) dp(02) (641 al65" 5[0, (@)

wheredu(¢) is the ‘natural’ measure for the pure state induced by the Hesasure on the unitary
groupU (n) [42] with normalization conditionf du(¢) = 1. We use[¢] to denote|¢)(¢| as in the
Refs. B3, 38] and similarly (¢ - -] = [¢] @ [¢] @ --- = [9)(¢]| @ [¢)(¥] @ ---. Without loss of
generality, we assume thaly > ng, andn; =na +ng,ne =ng +ng, N =ny +ng +ng.

It should be noticed that there are schemes to discrimiredteden the original states in E®) put
with less efficiency than the averaged states in By.gnd generally, the discrimination between the
original input states is not completely equivalent to thettteen their averaged states. For instance,
the discrimination between the averaged input states gesvéin upper bound for the success of the
two original states8]. However, the discrimination of unknown pure states isaegrage, equivalent
to the discrimination between the known averaged mixe@stat

lemma: For a pure statg)) in n-dimensional Hilbert spac#,

[ antwiwem) = i

n+m-—1

wheredl™ = (
n—1

) is the dimension of the fully symmetric spagé™ and 1™ is the
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projector onto this space.

Proof: Since for any vectoj¥™l) ¢ H[™l, we have| du () [ &™]|wlm)) € #I™] and itis easy
to see thatf du(v)[y®™] satisfies the additivity and scalar multiplication, theisia linear operator
onH[™l. Supposd/[™! is an irreducible representation foi(n) on space!™l, and therefore

utml ( / du(lﬁ)[W’”]) = / () (U) (]) ™
/ dp(U)[(U]3)) 2™ T=™ = / AU

( [ dnt) W’"}) ytml,

where we have used the propetiy(Uvy) = du(vy) for Haar measure. According to the Schur’s

lemma B4, 45], we have| du(y)[p®™] = AI[™, where) is a constant. Moreovety ( [ du(v)[y®™]) =

[ du()Te([p®™]) = [du(y) = 1 andTr(1™) = dlml, soX = 1/d™), which accomplishes the

demonstration of the lemma. O
From the lemma above, one can obtain

o= di][nﬂ@][nC]’
1
1
b= g le ©

whered; = dl"™ldl"cl andd, = dl"1d["2] are the ranks fop; andp,, respectively. These two mixed
states are the ensembles of the two unknown pure statey@pdablem becomes the discrimination
betweerp; andp,. In the following sections, we will show how to apply the Jandbasis method to
solve this problem.

3 Jordan basisfor the average input states

Let us further discuss the structures of mixed stateandps in Eq. 6). Considerp, first, and it is
obvious thatl [} @ 1["c] is the identity operator on the tensor spa¢é! @ #H[*!, whose bases
[n4] [nc]
w1

respectively, and we have omitted the label andm because they can take only one value. The
spaceH ™ @ H[l is usually reducible undel/ (n)]®" [44, 45], and the two irreducible bases

[Zl] > and [ZC] > can be coupled together to give the irreducible bati$ [
C

o R

are . Here, thew; andw¢ correspond to the Weyl tableaux pf;| and[n¢],

V] _ [V]rw
Tlna)ma[nelme,w [ > Clmlior fncle

wiwce
(6)
WhereO[[;’l]jﬁ melwe @re the CG coefficients of the'(n) group,w = 1,2,--- ,dY, andr =
1,2, {[n1][nc][v]} is the multiplicity label. According to the Littlewood rulene has

[n1] ® [nc] = P mllnclv]}V], ™
(V]
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and it is easy to se€[n][n¢][v]} = 1 for all possible[v] since[n,] and[n¢] are both totally sym-
metric. With Young diagrams, Eq7) can be graphically expressed as

T Do (T O-00
o3 Do Do 35

(8)

The Eq. 8) above shows that besides the fully symmetric case, the ¢rdiagram(~] can take
some special cases with only two rows, suchMs— 1,1],[N — 2,2],--- ,[n1,n¢]. The new ir-

reducible basis in Eq6f have two label§v] andw, and hence can be denoted a%/}] > for sim-

plify. Now, we can see that the ba%iéz] > also form the complete orthogonal basis for the space

#H["] @ Hlncl. Thereforep, can also be expressed as
_ 1 V] V]
pL= dy Z w >< w

v]w
and if H*! is defined as the space spanned by the basis v%c Z;s> (w=1,2,---,d"), one has

; 9)

HIml g gylncl — @HM, (10)
[v]

where we uséd instead ofH because the basrs[z] > are not the standard basis.®f;. However,

’ [Z] > can be transformed to standard b%sir%[/l’/]w > by
‘ " >=;< " ‘M’ ol >’ W > (11)

where< [:1] '[1/], [:;l]gzg} > are the[v] | [n1] ® [ne] subduction coefficients (SDCs) 6fy [45].

Similar discussions can be carried on fgr and

; (12)

where

w, [Pallne] >‘ '] > (13)
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and
Hlinal @yl = @ H'. (14)

It should be noticed here that the possible cases for thegrdiagram[/] are not all the same
as those foffv] if na # nc. Sincenyg > ne, [V] can take no fewer cases than, which can be
displayed as follows

nA na N
0.0 O-0 O
N-—-1 N—-2 max(na,n2)

o Do Do 3-T3- 0.

(15)

For the last Young diagram on the right hand of the equatiov@fthe number of the cells for the first
row ismax(n4,ns). Itis easy to see thahax(na,n2) < n1, and therefore, we can conclude that the
Young diagramsv’] and[v] can take the same possible casesifgr= n¢, while forna > ne, [V/]
can take more cases besides thos/pfBased on this point, we can also know that< d».

Now, we can introduce some notations that will be useful eftilowing discussions. Leflr =
(HIm] @ HIel) | (HIa] @ HIm2), and this is the total space. For a Young diagrfainthat can
be taken for bott{v] and [v/], we defineH = @, HN, H' = @, H', Hy = HUH', and
HWN = HX|JH'™, Meanwhile, for a Young diagrarfu] that [v] cannot take bufv/] can, let
H* = @[u] H'lH . 1tis evident that these spaces have the following relatigys

H = H[m] g Hlnel H aH~* =HM g Hna2l
Ho— PHY,  Hr—HooH". (16)
(]

It has been well known that there exist the Jordan basis fonttmorthogonal Hilbert spaced],
and this can be used to the discrimination between two mitets if we can find their Jordan
bases 41]. The Jordan bases are defined as follows. The sets of omlbgod normalized basis
{f1)s 1f2), - | fr)} in spaceVy and{|g1), |g92)," - , |gr)} in spacelz form the Jordan bases when

(filgj) = dij cos by, (17)

wheref; are the so-called Jordan anglgs < 62 < --- < 6;). Since the support g5, has no
overlaps with the spadH/l, there is no doubt that we should consider the Jordan bagbg dfvo
nonorthogonal spacé§ andH’ in subspacél,. With the Egs. {1) and (L3), we obtain the overlap

VO = 2O T ) o B )t L)

m,m’

= Z< % ‘M» [Zjl]fzg] >< [z;] ‘[u’], [”m’ﬂ[m”z] >5[V1[V/]6W, (18)

m

/

/
which shows tha [Z] and [Z] have already been the Jordan bases of subsfiheesH' .

Next, we will consider how to calculate the inner productdailan bases and give their multiplicities.
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4 Inner productsof Joran basis and the multiplicities

/
Eqg. (18 has shown that the inner produr<s [Z} ‘ [Z,] are dependent on the SDCs only. If we

can calculate the SDCs, the inner products can easily bénebtaAs we know, it is not a simple
work to calculate the SDCs in this paper. However, in anotveey, the SDCs are connected with the
permutation group only, and they are independent on therdiioe of . This suggests that the inner
products for any: can be solved as soon as one can calculate those for a speé&iattunately, for

n = 2, the qubit cases, the irreducible basis are just the angudanentum basis of the total system
cosisting of A, B and C, and therefore, the inner productsheaoalculated by the coupling theory of
angular momentum, without calculating the exact valuesES

Forn = 2, each copy is a qubit state, and then can been viewed as d Apsystem with
j = 1/2. The program systems A and C, and data system B can be regasdmugular systems
with quantum numbergs = n4/2, jo = nc/2 andjp = np/2. The angular momentum basis
|(jajiB)jas,jc; JM) and|ja, (jjic)isc; J'M') are the irreducible basis fgr; and p,, respec-
tively. There is a a one-to-one relationship between thenua numbers/ or J' and the pos-
sible Young diagrams in the right hand of E®) ©r (15), and then the quantum numbersfor
p1 can take no more values thaf for p,. In p; the firstn; spins are couple in a symmetric
way, thereforejap = n1/2, and similarlyjzc = no/2 for the same reason. So we come to that
J=(n1—nec)/2,--- ,N/2andJ’ = |na —n2|/2,--- ,N/2. Now,

((jajB)ias,jc; IM|ja, (jBjc)ise; I M)
— (_1)jA+jB+jC+J\/(2jAB ¥ 1)(2jBC ¥+ 1)

x{ JA JB JAB }5JJ,5MM/

Jje J e
() (")
np np (19)
ny Nno
() ()

= Oyp0mm

where we have sef = N/2 —k (k = 0,1,--- ,n¢) and{ j.A JJB ;AB } are the Wigner's;
c BC
symbols B8, 47]. The overlaps are independent of the quantum numbeand therefore, the inner

V| V]

products of Jordan basis w | W ) e determined only by the Young diagram, which means

that the inner products are the invariantsléfn) group. For an inner product corresponding to a
Young diagranj)] (this diagram can be taken by bdth for p; and[v'] for p2), the multiplicity is the
dimensiond!!, the number of values that can takes. The inner products of Jordan basis and their
multiplicities are all listed in the following table:



1024 Multicopy programmable discriminators between two unkmowdit states with group-theoretic approach

J (n=2) | Young diagram§)] Inner productD, = O Multiplicity d* = d!*
N+n-—1
¥ [N] 1 (Mimeh)
nAT N—1)(n—1 N+n—2
¥-1 [N = 1,1] A R L )( n )

(nl—k )( ng — k )
npg np N,2k+1(N+n—k:—l>(n+k—2)

ny no N-k+1 n—1 n—2
ngp np
N

nalnglng!l(ng—ng)! ny—ng+1 ny+n-—1 n+nc —2
2 T ne [n1, nc] V T ratnelna—no)! ni+1 n—1 n—2

For the qubit casen(= 2), the inner products and multiplicities will reduce to teas Ref. B1],
if we further assumers = ne. In that paper, the authors found an inherent symmetry wystue
structures of the mean input states, which worksifgr= n¢.

With the Jordan basis above, the subsg#te can be further decomposed i = @ HL,
(A

Xk [N — k, k]

,w=1,2,--- . d*, and the indexes

whereHY) is the subspace spanned b)Li‘] > and
1 2
“1" and “2” are used to label the bases for andp,, respectively. In the overall ensemble, singe

occurs with probabilityy; and p, with 7, the probability of occurrence f#r [i:] > isn1/dy; and
1

that of [:\,] > is n2/ds. Therefore, the probability for the occurrence of a veatdiy) is
2
Ao 2 20
pw dl d2 ' ( )

The probability tha{ [U)J‘] > occurs conditioned on tha’) has occurred iaﬁ]l = nl/(dlp[j]) and
1

similarly 77312 = ng/(dgpﬂ,”). Finally, the problem to discriminate betwepnandp, is reduced to
deriving the optimal schemes for the unambiguous and thémwaim-error discrimination between
two pure states occurring with probabilitifsg\}1 andm[i]2 in each subspadHLA].

5 Optimal unambiguous discrimination

To discriminate betwee}ﬂ [i‘)] > and [:‘J > with thea priori probabilitiesznfj}1 andno[i]2 in space
1 2
H] unambiguously, we can introduce the POVM operators in theviing form [41, 31]
X 1—qg.
Hi71(Qk,1, Qr2) = k’gl |"/]kl7w>2<wtw|7
1-0;
k o 1—qro, | 1
Hw,2(qk,1a Qk,2) - 72|wk,w>1<wk,w|v
1-0;
Hi,o(%,h ar2) = 1F - Hfm - Hﬁ,z (21)

where we have useklto denote the Young diagrams listed in the table in Sey, ; or g » is the

Y o

failure probability for

M > in the unambiguous discrimination, the normalized vector
2
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|1/;k »)1(2) is orthogonal t# M > in the subspacHw , and1” is the unit operator il . The
1(2

parametergy, ; andg; o are independent @b because the inner products are independent dfhe
total failure probability for the unambiguous discrimiioat betweerp,; andps is

Q= deQ de 771% 1 772(;121<,2)7 (22)

with d* = dV =%kl the multiplicities for the inner products of Jordan basise ¥én find the the
optimal settings

1 if m < ¢k
G = B0, if ey <m < di (23)
Oy if mm >d

andgy?y = O} /q;"}, whereQ) attains its minimum,

%+%§Oz if m < cg
=0 2, /B0, if e < <dp . (24)
%O% + Z% if m =d
The boundaries, andd, are as follows

d,02 dy

= 25
dy +d,02" T dy + dyOF (25)

C =
Finally, the optimal failure probability for the unambigusdiscrimination betweem andp- is
QP = Z drQpr (26)

and the corresponding optimal POVM are

Hl = ZHw 1 qult’qu;)
M = ZHM an ) + I
I, = IT —1I; — Iy, (27)

wherelr is the identity operator on the spalg., and/+ is the projector onto the subspdde . The
projector/- appears ifl, because the occurrenceliit always means the input statepis(or |®-)).
We see from the equations above that both the POVM operatdrtha optimal failure probability of
unambiguous discrimination betwegn andp, are dependent on the dimensierand the numbers
of copies in data system and program systems, since the paansuch a®; andd* are dependent
on them.
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6 Minimum-error discrimination

For the minimum-error discrimination between the two mis&ates; andp,, the inconclusive results
do not occur, sa@l, = 0, and we require that the probability of errors in the disémation procedure
is a minimum. The error probability can be expressedhs [

Pg = mTr(pillz) + n2Tr(p2Ily) = m1 + Tr(AlLL), (28)

whereA = n2p2 — mip1 = Y, Ai|lwi) (wi], with A; the eigenvalue spectrum of the operator It
is obvious that the minimum of the error probability is obtd whenlI, is the projector onto the
space spanned by those eigenstatesthat belong to negative eigenvalugs The optimal detection
operators therefore read

I, = Z |wi) (wil, Tl = Z s ) {wil (29)
i<ig i>i
wherew; < 0for1 < i < i andw; > 0 fori > ig. Clearly, the minimum-error measurement for

discriminating between two quantum states is a von Neumarasarement. The resulting minimum-
error probability is

1
Pug = 5(1 — Tr|A]), (30)

where|A| = VATA.
With Eq. ) and Eqg. 12), the operato can be expressed as

A= st M (U (31)

Nw % (] w

DA

where the Young diagraf\] can be taken for both, andp2, while [] for p, only. The eigenvalues
of A% can be easily obtained as

with

AN Z T2
w d2

1
AL o= 5(0, + \/c%r — (& —c2)03),
1
Nl = gle - VA (& - 2)0)), (33)

with ¢y = n2/da£m /d1, and we have uséddto denote the Young diagrajv —k, k]. The eigenvalue
spectrum ofA[M¢ is therefore as follows,

AR = XL IS D OS+ AE IS -, (34)

where|\E | ) and|)\E ) are the eigenvectors corresponding to the eigenvalfies and \’, _, re-
spectively. By some algebra, one can easily kmﬁy\gr >0 and/\b’j,_ < 0, so we can get

1 mdi
k
Pue = 5 (711 + 4 kE d \/C%r —(d - 02_)01%>7

=0

(39)
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Fig. 1 (Color online) Graphs of the optimal failure probé#iilQ°Pt as a function of the dimension
nforna = np = ne = 1(dashed, redj (dotted-dashed, green) afidsolid, blue).

and the corresponding measurement operators read

ne
Hl - ZZ|)\£,—><)‘¢IZ,—|7

k=0 w
m o= Sy neaet.d x| (1] -
= (u],w 2

Obviously, Pg is also dependent on the dimensioand the numbers of copies in systersB and

C, and for the equad priori probabilitiesn; = n, = 0.5, the express in Eq.36) reproduces the
results in the Ref.40]. With Jordan basis approach, the geometric structureeoHitbert space are
shown, and it is more convenient to obtain these resultst,Nexwill give some special examples
to show the influence of the dimensianon both unambiguous discrimination and minimum-error
discrimination.

7 Some examples

In previous works, the authors have already given some ebesnip show the fact that more copies
in program and data systems will give lower inconclusivebaimlity and lower minimum-error prob-
ability for unambiguous discrimination and minimum-erdiscrimination between the mean input
statesp; andp,. The results also hold for qudit cases, and therefore we tifonos on this question
here. In this section, we mainly provide some examples tavghe relation between the dimension
n and the unambiguous discrimination and minimum-errorrdisoation betweerp; andp,. For
convenience sake, we 3gt= 7, = 0.5.

First, we consider the unambiguous discrimination betwgeand p,. If ny = ng, we have
d1 = do, and the inequality;, < n1 < di, always holds fob < k£ < ne. Therefore, the total POVM



1028 Multicopy programmable discriminators between two unkmowdit states with group-theoretic approach

is valid, and the the optimal inconclusive probability idueed to

opt __ 1 - k
QP = & ;d Or. (37)
For the cases 4 = np = n¢ = 1,3 and7, the numerical results of the failure probabil@/*t as a
function of the dimensiom are displayed in Figl. One can see that the optimal failure probability
decreases as the dimensioincreases. For large, there is a low bound fop°P*, and the low bound
can be obtained as

I'(na+1)(ng/2+1)
I'(na+np/2+1)

Qo = (38)
for arbitraryn, = n¢ andng whenn — oo. The results also show thg°rt decreased as the
number of the copies is added.

Next, we consider the minimum-error discrimination betwege and po. Whenn, = ng¢,

Eq. (35) becomes
1 1 & 2
PME_§(1_d7;)d \/1—02). (39)

We plot the minimume-error probability versus the dimensiofor the cases., = ng = n¢ = 3,7
and10 in Fig. 2. We see that the minimum-error probability also decreaséiseadimension increases,
and also decreases as the number of the copies is addedar§imihenn — oo, the low bound for
Pyr is obtained as

1 <L (N =2k + 1)ny!ne!
Py=—(1- \/1- 02
0 2( ];(N—k—s—l)k!(N—k)! Ok)

(40)

for arbitraryn 4, ng andnc.
For the case.4, = ng = nc, the low bounds fof)°Pt and Pyr as a function of. 4 are depicted
in Fig. 3. The bounds decrease as the copies are added and they batadipasn s — oo.

8 Conclusions

In summary, we investigate the universal discriminatiotwieen two unknown qudit states with arbi-
trary numbers of copies in both data system and programregsté/e demonstrate that the average
input states are the maximally mixed states in the tensarespeonsisting of two totally symmetric
spaces. The tensor spaces are reducible, and with the bédyoif U (n) group, it can be decomposed
into some irreducible subspaces denoted by the Young dregréhe Jordan bases of the mean input
states are just the irreducible basis of each irreduciliiegace. We also find that the inner products of
the Jordan bases are determined only by the correspondimggYtiagrams and thus are independent
on the dimensiom. By the coupling theory of angular momentum, the explicppressions of the
inner products are derived. The multiplicities of the inpevducts are just the the dimensions of the
irreducible subspaces, which can be given by the Robinsonuia.

Then, we apply the Jordan-basis method, and the problemdused to the discrimination between
two known pure states in each two-dimensional subs;ﬂrﬁé@ We give the optimal measurement
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Fig. 2 (Color online) Graphs of the minimum-error probagilPr as a function of the dimension
forna = ng = nc = 1(dashed, redB (dotted-dashed, green) afidsolid, blue).
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Fig. 3 (Color online) Graphs of the low boun@s (dashed, red) an#, (solid, blue) forn — oo as
a function ofn 4 for the caseiy = np = nc¢.
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operators for both unambiguous discrimination and minirarnor discrimination between the mixed
statesp; andps, where the optimal failure probability and the minimumeenprobability are obtained
in Eq. 26) and Eqg. 85), respectively. For the qubit case & 2), the results in the previous works
can be reproduced.

Finally, some special examples are given to show the reldt&ween the dimensiam and the
discrimination betweep; andp,. We find that both the optimal failure probability and the miom-
error probability of unambiguous discrimination and minim-error discrimination are decreased as
the dimensiom increases.
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Appendix A Partitions, Young diagrams and Young tableaux

A partition is a way of writing a positive integeras a sum of: (k < n) integers)\; satisfying
k
HZZ)\Z, A=A =2 A >0. (Al)
i=1

It can be pictured as a Young diagra®} = [A1 )2 - - - Ag], which consists of: cells arranged in left-
justified rows, with\; cells in theith row. Since a partition of. corresponds to a inequivalent and
irreducible representation of the permutation groiyp a Young diagram)\| can usually be used to
label an inequivalent and irreducible representatiof,of

A Young tableau is an arrangement of the numbegs- - - , n in a Young diagram. If the numbers
increase as one moves to the right and goes down, the Youlegtais a standard Young tableau. For
a given Young diagrarfi\], the number of standard Young tableatix! is equal to the dimension of
the irreducible representatign] of the permutation groug,,, and can be calculated by the formula

n!
B Hij 9ij
whereg;; is the hook length for the cell in th#h row andjth column of the Young diagram\]. A
hook of a cell consists of this given cell together with atigk to the right in the same row and lower

in the same column, and the number of cells in the hook isct#ttle hook length. The:-th standard
Young tableau can be denoted ﬁ%] for a given Young diagrarf\], wherem = 1,2, --- , fIl,

f™ (A.2)

Appendix B Representation theory of U(n) group

The tensor produdti®* is a faithfull representation of the-dimensional unitary group/(n) on
the tensor spac®*, and it is reducible. Therefore, it can be decomposed #p |

Ut = @ ul, (B.1)
[Alm

and correspondingly{®* can be decomposed into

HoE = @ HLY. (B.2)

[A],m

Here, UL is an irreducible representation &f(n) group on the subspadeiﬁ], corresponding to a
standard Young tabledli)), where the number of rows ii\] is no more tham. For[\] = [k] or
[A] = [1¥], m can take only one value, and we can omit the labéh these cases.

The irreducible subspacédﬁ] can be constructed via a standard way,

HO = oD 1ok, (B.3)

where the projector operataﬂ,[ﬁlm are the orthogonal units of the permutation graiyp For the
details of O, see Ref. 44. If {e;} ¢ = 1,2,--- ,n) form the complete orthogonal basis Hf
the complete orthogonal bases of the irreducible s@&ébcan be constructed hyLé]m and a basis
vector of Y can be obtained as

¢ — O eiriyin (B.4)

myi1to -ty
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wheree;,;,..i, = €, R e, @ -+ R e, (11,12, i = 1,2,--- ,n) are the complete orthogonal
basis ofH®*. However, the base@f%immik} are linearly dependent, and to give the independent

basis ofL, we should first introduce the concept of Weyl tableaux.
A Weyl tableau is a Young diagrapy] whose cells are filled with some of the numbers, - -- ;| n
under the restrictions that
(a) the numbers do not decrease in the row as one moves tglig ri
(b) the numbers increase in the column as one goes down.

If the indicesiy, is, - - - , ix, take the values in the Wely tableaufﬁ ;. are independent and

7;17;2-”1/

form a complete orthogonal basesmﬁ]. Thus, the dimension of subspaﬂé] is the number of the
Weyl tableaux fof\], which has been given by the Robinson formula

M =T] w (B.5)
ij 9ij

whereg;; is the hook length. For convenience sake, we an%)‘a > to denote thenormalized

)

basis vectors foﬂw, wherem andw correspond to the standard Young tableaux and Weyl tableaux

respectivelym = 1,2, , fMN w = 1,2, d. Furthermore n[j‘]w > are the standard basis

of S, and the irreducible basis &f(n) [45)].

Suppose/M and U are two irreducible representation for the unitary gréd), and the
tensor product/IM @ UM is also a representation &f(n), but usually reducible. With Littlewood
rule, UM @ UM can be decomposed into

UM o Ul = DN U™, (B.6)
(o]

)

with {{\][¢][¢]} the multiplicity for [s]. One should notice that he irreducible basseslf6# are
usually not the standard basis of permutation group.
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