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We propose a mathematical model of quantum transistor in which bandgap engineering

corresponds to the tuning of Dirac potential in the complex four-vector form. The tran-
sistor consists of n-relativistic spin qubits moving in classical external electromagnetic
fields. It is shown that the tuning of the direction of the external electromagnetic fields

generates perturbation on the potential temporally and spatially, determining the type
of quantum logic gates. The theory underlying of this scheme is on the proposal of
the intertwining operator for Darboux transfomations on one-dimensional Dirac equa-
tion amalgamating the vector-quantum gates duality of Pauli matrices. Simultaneous

transformation of qubit and energy can be accomplished by setting the {control, cyclic}-
operators attached on the coupling between one-qubit quantum gate: the chose of cyclic-
operator swaps the qubit and energy simultaneously, while control-operator ensures the
energy conservation.
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1 Introduction

There is an assertion that classical electromagnetic fields can be used to control the quantum

behavior[1, 2]. It has the justification from recent experimental works showing that classical

fields can be used to excite the population of atom[3] or to extremely accelerate the neutral

atoms[4]. In this paper, we show that the generation of quantum logic gates is necessary due

to the presence of classical electromagnetic fields on a moving n-relativistic spin quantum

bits. The proposal leads to the possibility to open the definition of quantum transistor since

the generation of quantum gate is related to the certain bandgap opening.

Bandgap engineering is playing crucial role in classical information theory[5]. To generate

the classical bits in a transistor, the potential should be tuned by step functions determining

the conductivity of the gate in transistor: if the potential exceeds threshold of bandgap,

the transistor in conductive state meaning generates "ON“ state, while if it is less than the
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bandgap threshold, the transistor is in a non-conducting state representing "OFF“ state.

Conventionally, these two states are implemented by constant functions. Here, we present

that the notion of Dirac four-potential can be exploited to emerge the concept of band gap

in a quantum transistor: a device used to generate quantum gates due to the presence of

electromagnetic fields on the relativistic spin qubit in which the perturbation is represented by

Lorentz force on the Dirac Hamiltonian. Contrarily with the classical transistor, the proposed

quantum transistor has dependencies of the space-time structures in the Dirac potential.

Following Moore’s Law, the present efforts attempt to minimize the size and increase the

capabilities of transistor. However, physical complications, for instance quantum effects such

as the Kondo effect [6] and quantum interference [7], are increasing due to the miniaturization.

Several theoretical and experimental frontier efforts have been proposed, in addition to single-

electron transistor[8], lateral quantum dot[9], single-photon transistor[10], and single-molecule

optical transistor [10], nevertheless the science and technology for a transistor performing

quantum computation is still unclear [11] .

The strength of quantum computation for solving problem of computation have been

known in the recent years [12]. Recently, there are several attempts to establish an appropriate

theory to encode qubit and to implement quantum computation in realistic physical systems

along with measurement-based quantum computing [13] and adiabatic quantum computing

[14]. However, theory of how to implement it into the physical system involving the concept

of quantum transistor considering the relativistic effect is still poorly comprehended. To date,

we only find that only Ref. [15] is related to quantum transistor in which can potentially

implement quantum computation operation for one qubit.

Recent works on quantum computation are constructed based upon Schrödinger Hamil-

tonian at which the potential is scalar. Thus, the perturbations of the potential due to the

presence of external forces, such as Zeeman and Stark effects, are expressed in the scalar

form. Lately, following the successful application of two-dimensional Dirac equation describ-

ing the massless Dirac fermions in graphene[16], there is a resurgence of interest, so-called

supersymmetry quantum mechanics, to solve the problem in quantum mechanics in the one-

dimensional Dirac equation as though in ion trapped [17] and cavity quantum electrodynamics

[2]. In this scheme, the Dirac potential is a complex four-vector in which the bases repre-

sented in Pauli matrices. Therefore, the perturbation under this scheme is also represented

in a vector. Specifically, we are interested to study a Dirac equation possessing its potential

in the Lorentz force form as following (for ~ = 1)

(−iγµ∂µ +

Dirac potential
︷ ︸︸ ︷

q( ~E + ~v × ~B))|ψ〉 = ε|ψ〉. (1)

Since the study of quantum computation under the Dirac Hamiltonian is still poorly un-

derstood, here we propose the novel technique of the generation of quantum gates by Dirac

potential tuning in which it may be used as bandgap engineering for quantum computation.

The change of potential and state in Dirac equation in Eq. (1) obeys Darboux transfor-

mations implemented by intertwining operations on the Hamiltonian[18, 19]. An important

difference from other transforms such as Fourier and Laplace transforms, Darboux transforms

creates the new potential and state without changing their domains. Darboux transformations

has wide range applications in physics such as to find exact solutions of non-linear Schrödinger,
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sine-Gordon, and Korteweg-de Vries equations[20]. Darboux transformations for Dirac equa-

tions developed in this paper is so-called Bagrov, Baldiotti, Gitman, and Shamshutdinova

(BBGS)- Darboux transformations[2, 21] in which the Darboux transform has an input of a

unitary matrix.

In this paper, as depicted in Fig. (1), we show how to generate the elementary quan-

tum gates by the tunings of the quantum transistor potential. To do so, the transistor is

mathematically expressed by a Dirac Hamiltonian and the tunings are done by varying the

operator input, initial potential, and potential differences. In particular, one-dimensional

Dirac equation is considered. In graphene, hexagonal stacks of carbon, one-dimensional Dirac

equation represents the excitation of massless Dirac-fermions which are subjected to a uniform

magnetic field perpendicular to graphene. Here, the plane wave in two-dimensional space is

chosen for the solution of (2+1)-dimensional Dirac equation to reduce the problem into one

dimension. Mathematical properties underlying this scheme is given in Section (2). The tun-

ings cause perturbation over spatial and temporal regimes of Dirac potential Bloch sphere.

Consequently, the generation of unitary gates can be performed by controlling the potential

differences. The exposition about this is provided in Section (3).

We outline several new results of this paper: first, n-relativistic spin qubits moving in

the external electromagnetic fields can be exploited for the generation of quantum logic gates.

Mathematically, the quantum system is represented by a Dirac equation in which its potential

is a Lorentz force in a complex four-vector form and the perturbation obeys Darboux trans-

formation. Second, our method suggests a new paradigm of quantum gates: the mathematical

expression for perturbing any qubit in the system and the coupling between two gates are

well-defined. {σ±
co} is the coupling operator for controlling a qubit, {σ±

cy} is the operator for

cyclely transforming a qubit, and ασ0 + (V (t)− β(t))Ui is the operator for the target qubit.

Moreover, the new type of quantum gates are proposed : U-Cyclic gate which can transform

the qubits cyclely.

It is conjectured that the proposal may fit with the novel dual-gate graphene field-effect

transistor in which the bandgap is tuned by electrical field[22].

Fig. 1. The proposal of voltage bias of one-qubit quantum gate generation. The figure shows
the motivation of this paper which is to propose a novel technique of quantum computation
transforming the qubits |initial〉 → |final〉 by tuning the Hamiltonian potential V → V +∆V in
which the V is a complex four-vector representing the bandgap and ∆V is related to the excitation

energy. The transformation is performed by Bagrov, Baldiotti, Gitman, and Shamshutdinova
(BBGS)-Darboux transformation[21] changing {V, |initial〉} → {V +∆V, |final〉}.
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2 Mathematical Properties

Conventionally, the perturbation theory of a quantum system is described by the approxima-

tion methods on Schrödinger equation [23]. In this work, we propose that Darboux transfor-

mations on one-dimensional Dirac equations can be used to describe the theory.

This section consists of three subsections: first, Subsection (2.1) describes the current

problem of so-called the vector-quantum gate duality of Pauli matrices. Second, the notion of

massless Dirac-fermion in graphene is briefly introduced in Subsection (2.2). Third, Subsection

(2.3) provides the mathematical foundations of Darboux transformations on Dirac equations

for multiple qubits. Fourth, Subsection (2.4) concerns about the mathematical tools for

coupling of two quantum bits.

2.1 Vector-quantum gates duality of Pauli matrices

In this subsection, the duality of vector and quantum gate of Pauli matrices is discussed. As

widely known, the Pauli matrices, {σi|i = 0, 1, 2, 3}, are the elementary quantum gates in

the field of quantum computation[12]. Every quantum gates for one qubit operations can be

decomposed into the superposition of Pauli matrices as following

U(g) =

3∑

i=0

aiσi, (2)

where U(g)={g| Identity, Hadamard, Pauli-{X,Y, Z}, Phase, π
8 } is a unitary matrix, ai is a

coefficient of σi in which it has to fulfill the normalization condition
∑

i

|ai|2 = 1.

On the other side, Pauli matrices can be used as resources for bases of a vector as mentioned

in Ref. [24, 25, 26]. The work in this paper follows the conventions as mentioned in Ref. [26]

considering the simplicity and the concept is easily understood for wider audiences. The

so-called complex-four vector is a vector composed by Pauli matrices as the basis vector

~v =

3∑

i=0

viσi, (3)

where vi is the coefficient and σi is the basis vector. The basis of complex four-vector,

{σ0, σ1, σ2, σ3}, obey the exterior algebra [27]

σκ ∧ σκ = σ0 (4a)

σκ ∧ σγ = −σγ ∧ σκ, (4b)

for {κ, γ} = 1, 2, and 3, since the basis can be divided into the scalar part, {σ0}, and the

vector part, {σ1, σ2, σ3}.
The vector conjugate is

(~v)∗ = v0σ0 −
3∑

i=1

viσi, (5)

therefore the Lorentz-scalar product easily reads

~v.(~v)∗ = vµgµνv
ν = (v0)

2 −
3∑

i=1

(vi)
2, (6)
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where gµν is a Minkowski tensor. The algebraic product of two complex-four vectors is

~a.(~b)∗ = aµgµνb
νσ0 + ((aγb0 − bγa0)− iεαβγaαbβ)σγ , (7)

where εαβγ is Levi-Civita permutation symbol.

Eq. (7) has remarkable features: if the two vectors have same directions, the result is a

scalar (or in the direction of σ0); while, if they have different directions, the result is a complex-

four vector. Our model shows that one vector represents the physical system and another one

represents the perturbation from environment, thus Eq. (7) expresses the interaction between

the physical system and environment. The outcomes of the interaction can result a scalar; it

may be related to the perturbation due to the presence of Zeeman or Stark effect. Otherwise,

it produces a vector, such as found if the perturbation is Lorentz force.

In order to circumvent this discrepancy, we argue that the type of quantum gates in Eq.

(2) is related to the direction of basis vector in Eq. (3). The correspondence can be emerged

in the presence of the Lorentz force on the qubits. The observation of these aspects is provided

in the following sections.

2.2 Massless Dirac-fermions in a uniform magnetic field

Massless Dirac-fermions, massless particles which obey Dirac’s (relativistic) equation, can be

found on unbound electrons in graphene’s honeycomb lattice[16]. The lattice is composed of

two inequivalent sublattices labeled A and B, therefore there are two inequivalent corners K

and K’ in the graphene Brillouin zone. These two points are called Dirac points, since the

structure of low-energy band at the points corresponds to Dirac cones[28].

The wave function of electron which is close to K, ψ(~r), is governed by a two dimensional

Dirac equation

−ivF~σ · ~∇ψ(~r) = εψ(~r), (8)

where vF is Fermi velocity[29] which has the value vF ≃ 1× 106 m s−1 and ~σ = (σx, σy) are

Pauli matrices. The emergence of Dirac cones around Dirac points corresponding to symmetry

breaking of energy band in Eq. (8), ε, can be explained by representing the Hamiltonian in

momentum space

vF~σ · ~kψ(~k) = εψ(~k). (9)

If the massless Dirac-fermions in graphene are subjected to a uniform magnetic field, there

are degeneracy breaking of energy levels into Landau levels, which are responsible for the

half-integer quantum Hall effect [28]. Conventionally, a uniform magnetic field B which is

perpendicularly applied to the plane of graphene is represented by Landau gauge ~A=B (−y, 0).
Hence, replacing −i~∇ in Eq. (8) by −i~∇+ e ~A

c
and for the wave function in the form ψ(x, y) =

eikxφ(y), we can obtain

vF

(

σy∂y −
(

k − eBy

c

)

σx

)

φ(y) = εφ(y). (10)

Eigenvalues corresponding to Landau levels in Eq. (10) can be obtained by changing its form

into the same form of atom-field interaction Hamiltonian in Jaynes-Cummings model[30]

(
Oσ+ +O†σ−

)
φ(ξ) = ε1φ(ξ), (11)
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where B =
√

c
eB

is the magnetic length, ωc =
√
2 vF

B
is the cyclotron frequency of the

Dirac-fermions, ε1 = 2ε
ωc

, ξ = y

B
− Bk, and one-dimensional harmonic-oscillator operators

O =
1√
2
(∂ξ + ξ) , (12a)

O† =
1√
2
(−∂ξ + ξ) . (12b)

According to Ref.[28], the N -solutions of Eq. (10) can be generated from the zero energy.

Therefore, the eigenvectors and their eigenvalues are

φN,±(ξ) = ψN−1 (ξ)⊗ |↑〉 ± ψN (ξ)⊗ |↓〉 , (13a)

ε± (N) = ±ωc

√
N. (13b)

where N = 0, 1, 2, ... and ψN is the one-dimensional harmonic oscillator solution. The zero

energy state of Landau levels, N = 0, can only occur if quantum relativistic is taken into

account. This particular state is useful to explain the anomalies in the quantum Hall effect.

The above exposition shows how a particular perturbation on massless Dirac-fermions in

graphene can explain the anomalies in the quantum Hall effect. In this paper, we introduce

an approach in the case of the massless Dirac-fermions are subjected to any directions of an

external electromagnetic field to perform quantum computation in graphene.

2.3 Darboux transformations on quantum state and Dirac four-potential

Darboux transformations for one-dimensional Dirac equation was suggested by Bagrov et al.[21]

and Nieto et al.[19]. Samsonov and Shamshutdinova developed the method to show that it

is possible to control the qubit state by the use of an external field[31]. Moreover, it was

developed in Ref. [2] to show the correlation between atomic inversion and Dirac potential in

cavity quantum electrodynamics.

Suppose that it is possible to change the potential and the state of a physical system

obeying a Dirac equation without changing the energy of the system. Mathematically, the

action of D(Ui) on a set of potential and state of a Hamiltonian is defined by D(Ui)[N ] {V,Ψ}
= {V [N ],Ψ[N ]} transforming the old Hamiltonian ĥ(V )Ψ = ε0Ψ → ĥ(V [1])Ψ[1] = ε1Ψ[1]

→ ... → ĥ(V [N ])Ψ[N ] = εNΨ[N ]. In the context of quantum physics, it is possible to

explain the perturbation phenomena of a quantum system due to the presence of classical

effects using Darboux transformations: the action Darboux transformations on a quantum

system represented by a set of potential and state, {V,Ψ}, cause a new set of potential and

state of the system, {V +∆V,Ψ+∆Ψ}. This transformation is called by Bagrov, Baldiotti,

Gitman, and Shamshutdinova (BBGS)- Darboux transformations[2, 21]. Here, we modify the

transformation by substituting σi by an unitary matrix, Ui, where for one qubit, Ui can

represent a vector or Ui ∈ {U0= Identity gate, U{1,2,3}= Pauli-{X, Y, and Z} gates, U4=

Hadamard gate, and U5= Phase shift gates}.
We also modify the potential in this paper: it consists of temporal (scalar) and spatial

(vector) terms, thus it is called Dirac four-potential. Therefore, it is mathematically de-

fined by VN (t) =
∑3

j=0 σj(fN (t))j . This is a complex four-vector, as defined in Eq. (3), in

Minkowskian Bloch sphere and its magnitude is |VN (t)| = ηjl(fN (t))j(fN (t))l, where ηjl is

the metric tensor.
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Because the potential is a complex four-vector, the perturbation also follows to the exterior

product or generalized cross product for arbitrary dimensions, instead of dot product. It

means that the Dirac potential perturbation has not only magnitude, but also direction,

which is quiet different with perturbation in Schrödinger potential consisting the magnitude

only. The consequences of this choice are shown in the next section.

One can consider to use the generalized Pauli-Dirac matrices,

n×n

︷︸︸︷

θj = {

2×2

︷︸︸︷

σj ,

4×4

︷︸︸︷

γj ,

8×8

︷︸︸︷

πj ,

16×16

︷︸︸︷

ρj , ...},

where the overbraces denote the dimensions of the matrix, as given in Ref. [32], if the

space-time dimensions are higher than 4 and also to expand the Dirac equation operating on

n-qubits.

The nature of a Dirac equation admits the simulation for two qubits. As shown in Ref. [33],

by assuming that the particle is massivec, m 6= 0, and in the rest frame of particle, kµ = (m,0),

the Dirac equation implies that the set of a quantum bit {|00〉, |01〉} is belonged to the positive

energy, ψ(+), and the set of quantum state {|10〉, |11〉} corresponds to the negative energy,

ψ(−), if the solutions of the Dirac equation are plane wave, ψ(±) = e∓ikµxµu±(k). In this

work, we generalize the notion into n-qubits and also the potential is modified into higher

dimensions. Therefore, a modified Dirac equation representing from one qubit, |({0, 1}1)〉, to

n-qubits, |({0, 1}n)〉, is

(−iσµ∂µ +

V
︷ ︸︸ ︷

3∑

l=0

flσl)|({0, 1}1)〉 = ε|({0, 1}1)〉

↓ ↓

(−iγµ∂µ +

V
︷ ︸︸ ︷

3∑

l=0

flγl)|({0, 1}2)〉 = ε|({0, 1}2)〉

↓ ↓

(−iπµ∂µ +

V
︷ ︸︸ ︷

3∑

l=0

flπl)|({0, 1}3)〉 = ε|({0, 1}3)〉

↓ ↓

(−iρµ∂µ +

V
︷ ︸︸ ︷

3∑

l=0

flρl)|({0, 1}4)〉 = ε|({0, 1}4)〉

↓ ↓
... ...

(−iθµ∂µ +

V
︷ ︸︸ ︷

3∑

l=0

flθl)|({0, 1}n)〉 = ε|({0, 1}n)〉

(14)

Eq. (14) has several possibilities of interpretations. According to the original Dirac theory,

n-qubits would need n
2 Dirac-fermions. However, in conformity with the model of massless

cIn other words, the Dirac potential is −Im. I is an Identity matrix.
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Dirac-fermions in graphene as shown in Subsection (2.2), n-qubits correspond to n-massless

Dirac-fermions.

Due to the perturbation, it changes the potential V0(t) =
∑

j σj(f0(t))j → V1(t) =
∑

j σj(f1(t))j → ...→ VN (t) =
∑

j σj(fN (t))j obeying the intertwining operation

L̂(Ui)ĥ(V0) = ĥ(V1)L̂(Ui) → L̂(Ui)ĥ(V1) = ĥ(V2)L̂(Ui) → ...→ L̂(Ui)ĥ(VN−1) = ĥ(VN )L̂(Ui).

(15)

The chain of relations in Eq. (15) means that the new potential, from V1 to VN , can be

generated under intertwining operations from the initial potential (V0). The intertwining

operator is

L̂(Ui) =
d

dt
+ B̂(Ui), (16)

where

B̂(Ui) = αi(t)σ0 + (VN−1(t)− βi(t))Ui. (17)

In Eq. (17), Ui is a vector represented in matrix form. These also lead the linear transfor-

mation of state[21], for one qubit, Ψ → Ψ[1] = L̂(Ui)Ψ → Ψ[1] = L̂(Ui)Ψ[1] → ...→ Ψ[N ] =

L̂(Ui)Ψ[N − 1].

It is clear that the terms {αi, βi} represent the perturbation terms. To conclude about this

method, in other words, the change of Dirac potential under BBGS-Darboux transformation

obeys intertwining operations, while the change of state follows linear transformations [19].

2.4 Control operators

Control and cyclic operators

In this subsection, we introduce the two operators which will be extensively used in con-

structing quantum circuit. These operators satisfy idempotent operation, A2 = A. First,

control operators, {σ(±)
(0,3) = σ

(±)
(co) = σ0±σ3

2 }. Second, cyclic operators, {σ(±)
(1,2) = σ

(±)
(cy) =

σ1±iσ2

2 }, which are widely known as matrix representations of the raising and lowering oper-

ators [23]. Let us define:

A
⊕

co{±}

B = σ
(+)
(co) ⊗A+ σ

(−)
(co) ⊗ B, (18a)

A
⊕

cy{±}

B = A⊗ σ
(+)
(cy) + B ⊗ σ

(−)
(cy). (18b)

It is shown below that these formalisms are useful to construct any unitary matrices and to

reduce a lot of space to write multiple qubit operations. From these operators, one can obtain

the following gates for two qubits:

1. SWAP-gate = σ
(+)
(co) ⊗ σ

(+)
(co) + σ

(−)
(co) ⊗ σ

(−)
(co) + σ

(+)
(cy) ⊗ σ

(−)
(cy) + σ

(−)
(cy) ⊗ σ

(+)
(cy)

= σ
(+)
(co)

⊕

co{±}

σ
(−)
(co) + σ

(−)
(cy)

⊕

cy{±}

σ
(+)
(cy)

=







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






.
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2. Full SWAP-gate = σ
(+)
(cy) ⊗ σ

(+)
(cy) + σ

(−)
(cy) ⊗ σ

(−)
(cy) + σ

(+)
(cy) ⊗ σ

(−)
(co) + σ

(−)
(cy) ⊗ σ

(+)
(co)

= σ
(−)
(co)

⊕

cy{±}

σ
(+)
(co) + σ

(+)
(cy)

⊕

cy{±}

σ
(−)
(cy)

=







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0






.

It is named by Full SWAP-gate, because it transforms |00〉 ↔ |11〉 and |01〉 ↔ |10〉.

Let us consider the use of control- and cyclic-operators for constructing the quantum gates.

1.

Controlled-U gate = σ
(+)
(co) ⊗ σ0 + σ

(−)
(co) ⊗ Ui

= σ0
⊕

co{±}

Ui. (19)

=







1 0
0 1

0 0
0 0

0 0
0 0

Ui







.

2.

U-Cyclic gate = σ0 ⊗ σ
(±)
(cy) + Ui ⊗ σ

(∓)
(cy)

= σ0
⊕

cy{±,∓}

Ui. (20)

If Ui is σ1 and by choosing Eq. (20) in the form σ0⊗σ(−)
(cy)+Ui⊗σ(+)

(cy) = σ0
⊕

cy{∓} Ui,

the gate is called clockwise-cyclic-gate (CC-gate), because it has the form







0 0
1 0

0 1
0 0

0 1
0 0

0 0
1 0







(21)

and it transforms

|00〉 → |01〉
|01〉 → |10〉
|10〉 → |11〉
|11〉 → |00〉 .

(22)

The counterclockwise-cyclic-gate (CCC-gate) can be performed by the substitution of

Ui by σ1 and Eq. (20) in the form σ0 ⊗ σ
(+)
(cy) + Ui ⊗ σ

(−)
(cy) = σ0

⊕

cy{±}

Ui. It has the
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form as following






0 1
0 0

0 0
1 0

0 0
1 0

0 1
0 0







(23)

and it changes

|00〉 → |11〉
|11〉 → |10〉
|10〉 → |01〉
|01〉 → |00〉 .

(24)

(a) Illustration for clockwise-cyclic

operations of two qubits.
(b) Illustration for
counterclockwise-cyclic opera-
tions of two qubits.

Fig. 2. The illustration of how the use of U-Cyclic for quantum computation is. If Ui is σ1, one

can obtain clockwise-cyclic and counterclockwise-cyclic operations of two qubits.

In other words, (CC)
4
= (CCC)

4
= 1 is to perform one round rotation as shown in Fig. (2).

Interestingly, one can also find the following relations

(CC) = (CCC)
†
= (CCC)

−1
, (25a)

(CCC) = (CC)
†
= (CC)

−1
, (25b)

which are the properties of unitary matrices, besides the facts that |det(CC)|=|det(CCC)|=1.

The definitions in Eq. (18) can also be used to represent the standard sets of universal

gates of one qubits

Hadamard gate =
1√
2

(

σ
(+)
(co) − σ

(−)
(co) + σ

(+)
(cy) + σ

(−)
(cy)

)

, (26a)

Phase gate = σ
(+)
(co) + iσ

(−)
(co), (26b)

π

4
gate = σ

(+)
(co) + ei

π
4 σ

(−)
(co), (26c)

and for two qubits

Controlled-NOT gate =

Controlled
︷︸︸︷
σ0

⊕

co(±)

NOT
︷︸︸︷
σ1 . (27)

The application of the approach in this Subsection to the rest of discussion is given in Sub-

section (3.4).
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3 Quantum gates generation by a quantum transistor

The relativistic electron theory of Dirac successfully explains the quantum phenomena such as

the g factor and the proper fine structure of Zeeman effect correctly [34]. Several efforts have

been achieved for a better understanding of Dirac theory by modifying the equation. The

famous one was presented by Foldy and Wouthuysen which was called by Foldy-Wouthuysen

transformation afterwards [35]; they showed a kind of canonical transformation in which can

connect between Dirac (or relativistic quantum) and Pauli (non-relativistic quantum) theory

and to generate Zitterbewegung. Nevertheless, it is still elusive what kind of transformation on

Dirac equation can be used to implement quantum computation on Dirac theory. Motivated

by supersymmetric quantum mechanics, we shall present the technique to exploit the one-

dimensional Dirac equation into the field of quantum computation.

Suppose that it is necessary to transform a Dirac equation possessing a classical pertur-

bation as following

ĥ0(V )
︷ ︸︸ ︷

(−iθµ∂µ + V ) |{0, 1}n〉i = ε0|{0, 1}n〉i →
ĥ1(V+∆V )

︷ ︸︸ ︷

(−iθµ∂µ + V +∆V ) |{0, 1}n〉f = ε1|{0, 1}n〉f (28)

where {V, |{0, 1}n〉i} is a initial set of potential and qubit and {V +∆V, |{0, 1}n〉f} is a final set

of potential and qubit. The matrix θµ is a generalized form of Pauli-Dirac matrix as explained

in Ref. [32], θµ = {σµ, γµ, ρµ, ...}. Therefore, Eq. (28) provides a correlation between

Dirac potential and n-qubits quantum computation if one-fold Darboux transformation on

the equation is necessary to be defined.

Below, we present that this kind of transformation can be realized by the action of BBGS-

Darboux transformation as introduced in Subsection (2.3) on the equation possessing the

complex four-vector potential. It is shown below that quantum gates can be generated due to

the perturbation of the potential of n-relativistic spin qubit moving on classical electromag-

netic field. The exposition for a single qubit, two qubits, and followed by a generalization to

multi-qubit systems are given; also, another way to construct a quantum circuit, i.e., in the

case of coupling one relativistic qubit, is presented.

3.1

In this scheme, initially the particle is at rest and has the Dirac potential V0 and in quantum

state |{0, 1}1〉i. This set of Dirac potential and state, {V0, |{0, 1}1〉i}, belongs to the following

one-dimensional stationary Dirac equation

ĥ0|{0, 1}1〉i = ε0|{0, 1}1〉i, (29)

where ĥ0 = (iσz
d
dt

+V0(t)), V0(t) =
∑

j σj(f0(t))j , and ε0 is a constant.

The unitary transformation on the initial quantum state resulting the new quantum state

is achieved if the relativistic qubit moves in the external electromagnetic fields so that the

system has a set of new potential and state, {V0 +∆V, |{0, 1}1〉f}, which belongs to the new

Dirac Hamiltonian

ĥ1|{0, 1}1〉f = ε1|{0, 1}1〉f , (30)

where ĥ1 = (iσz
d
dt

+Vf (t)), V1(t)=V0 +∆V=
∑

j σj(f1(t))j , and ε1 is a constant.
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Let us assume that the potential perturbation, ∆V , is related to a relativistic qubit with

charge in external electromagnetic fields, hence the new potential is in the following form

V1 = V0 +∆V

= V0 +
~̇p

|~̇ |p
, (31a)

where ~̇p =
3∑

α=0
(ṗ)ασα reads[34]

(ṗ)α = qvβF
αβ

= qvβ(∂
αAβ − ∂βAα) (32a)

and where q= charge of the qubit, vβ = (v0,−v1,−v2,−v3) is the four-velocity of the qubit,

Aβ = (A0, A1, A2, A3) is the four-potential of the external electromagnetic fields, and Fαβ

is the antisymmetric field-strength tensor. In the complex-four vector representation, the

Lorentz force is in the following form[26, 25]

~̇p = −q
(
~v. ~A+ ~A.~v

2

)

= Re(~v. ~A) (33a)

Therefore, the representation of Eq. (1) in a complex four-vector form is

(−iθµ∂µ +

3∑

k=0

fkθk)|{0, 1}n〉i = ε0|{0, 1}n〉i. (34)

For the case of a single qubit, the perturbation is represented by the exterior product

between two complex four-vector represented by 2× 2 matrix as following,

∆V = −i ~σz ∧ ~Ui, (35)

where the ~σz belongs to the direction of relativistic spin qubit and ~Ui is related to the

direction of external electromagnetic fields. Therefore, the direction of external classical

electromagnetic fields is an input of the perturbing potential.

The proposed scheme covers potential initialization and switching. In the context of

dual-gate graphene field-effect transistor, the initial Dirac potential may be related to the

perpendicular electric field generating the bandgap[22] and the switching Dirac potential cor-

responds to the energy transition of the electrons needed for the excitation from the valence

band to the conduction band. It is shown in the theorem below that the process of potential

initialization and switching is unique for every quantum gate generation. Following exposes

the detailed explanation of the scheme.

Theorem 1. Suppose the initial potential is V0(t) =
∑

i σi(f0(t))i. The one fold BBGS-

Darboux transformations on the equation (29) at which the final potential is V1(t) = V0(t) +
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∆V,where ∆V = −i ~σz∧ ~Ui, is a suffice condition for L̂({Ui}) = {Ui}. (V0(t))0 and (V1(t))0
are the vector variables.

Proof. Consider

L̂(Ui)ĥ0Ψ = ĥ1L̂(Ui)Ψ. (36)

One can find

σ0(V0(t)− V0(t)) + i[Ui, σz](V0(t)− βi(t)− 1) = 0 (37a)

iσzUi(β̇i(t)− V̇0(t)− αi) + αiσ0(V0(t)− V0(t)) + (V0(t)− β0(t))(V0(t)− (V0(t)Ui

+iσz((β0(t)− V0(t)− α̇i(t)) + σ0V̇0(t).
(37b)

Let us examine the constraints of how to generate Ui gate. By setting αi up to 1, the

resume for Ui can be obtained as shown in Tabs. (4), (5), (6), and (7), respectively.

The illustrations show the initial potential preparations (blue dashed line) followed by

the tuning of final potential (red dashed line) to generate a certain quantum gates. The

tunings can be accomplished by several manners: first, temporal displacement of the initial

potential, second, displacement on the potential magnitude, and, third, by changing the form

of the initial potential function. Under the scheme, some light is cast on the question of how

a quantum transistor achieves quantum computation by an examination of the correlation

between Dirac potentials and quantum gate generation.

a b

Gated Quantum operation

Fig. 3. The illustration of the possibility for the implementation in novel dual-gate graphene

FETs[22]: a, A non-zero bandgap ∆ and a the Fermi energy shift, EF , are induced by the electric
fields. b, The perturbation on Dirac potential, ∆V , excites the electron from the valence band to
the conduction band and performs the quantum computation.

As shown in Tab. (4), the IDENTITY-gate can be realized by preparing the initial po-

tential in the magnitude of parabolic form. The structure of potential function is transformed

from time-dependency to space-time dependencies due to the magnitude displacement of the

potential. It is similar to the case of quantum state transition due to carrier-photon scattering
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event in intraband of semiconductor[36]: the relativistic spin qubit absorbs the light during

the moving. By assuming the photon momentum to be zero, the transition on the band

diagrams are always vertical. As illustrated in Fig. (3), in the case of dual-gate graphene

field-effect transistor, the parabolic Dirac potential yields the bandgap, then the electron is

excited to the conduction band due to the tuning of electromagnetic field.

The NOT-gate in z-basis can be performed by temporal displacement of the initial to the

final potential in the parabolic form. The resume of this scheme is given in Tab. (5).

Tab. (6) provides the scheme to generate σy-Pauli matrix. It can be realized by sharpen-

ing the initial parabolic potential followed by temporal and magnitude displacements of the

potential.

Furthermore, the σz-Pauli matrix which is NOT-gate of phase state can be accomplished

by setting the initial potential up in constant function, followed by tuning the final potential

in parabolic form.

The other type of quantum gates can be determined by similar manners.

Potential dynamics

Quantum gate Input Initial potential Final potential

U0 σ0 V0(t) = i3tσ0 V1(t) = i3tσ0 − iσz

Fig. 4. Resume of U0 .
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Potential dynamics

Quantum gate Input Initial potential Final potential

U1 σ1 V0(t) V1(t)
= t(σ2 − iσ3) = (t+ 1)σ2 − itσ3

Fig. 5. Resume of U1 .

3.2 Multiple qubit quantum gates generation by a quantum transistor

Multiple qubit quantum gates generation by a quantum transistor

Remarkable fact about γ-matrices is they have similar mathematical structures with Pauli

matrices [32]. Quantum gates for two qubits can also be decomposed into γ-matrices [37].

To demonstrate how the proposed principle works in the case of two qubits, one can use

the γ-matrix[33] to describe the complex-four vector as following

/a =
3∑

µ=0

aµγ
µ, (38)

where /a is a complex-four vector represented in γ-matrix and symbolized by Feynman slash

notation.

It is also clear that the product of two vectors, aµb
µ, in the representation of γ-matrix

obeys complex four-vector since the γ-matrices satisfy Clifford algebra

{γµ, γν} = γµγν + γνγµ = 2ηµν . (39)

The initial one-dimensional Dirac equation of two relativistic spin qubits at rest is repre-

sented by
(

iγ3
d

dt
+ V0

)

|{0, 1}1〉i = ε0|{0, 1}1〉i, (40)

where {V0, |{0, 1}1〉i} is a set of initial potential and quantum state of the system consisting

two qubits.
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Potential dynamics

Quantum gate Input Initial potential Final potential

U2 σ2 V0(t) V1(t)
= −t(σ1 + iσ3) = −(t+ 1)σ1 − itσ3

Fig. 6. Resume of U2 .

The perturbation on the system occurs if the two relativistic spin qubits moving in classical

electromagnetic field, therefore the quantum system obeys the new one-dimensional Dirac

equation
(

iγ3
d

dt
+ V0 +∆V

)

|{0, 1}2〉f = ε1|{0, 1}2〉f , (41)

where {V0+∆V, |{0, 1}2〉f} is a set of final potential and quantum state of the system. Similar

to in the case of one qubit in Eq. (31), here the perturbation term corresponds to Lorentz

force, therefore q represents the effective charge of the two relativistic spin qubits.

The change of potential and state in the case of two qubits follows the Theorem 1, never-

theless the intertwining operator in Eq. (17) is substituted by

B̂({C(Ui),SWAP}) = αi(t)γ
0 + (VN−1(t)− βi(t)){C(Ui),SWAP}, (42)

where C(Ui) is Controlled-Ui gate, and the perturbation on Dirac Hamiltonian is defined

by

∆V = −i ~γ3 ∧ { ~C(Ui), ~SWAP}. (43)

Similar to the case of a single qubit, the term { ~C(Ui), ~SWAP} in Eq. (43) corresponds

to the direction of an external perturbation, while ~γ3 belongs to the direction of the two

relativistic spin qubits. This method converts the “vector basis” aspect as found in Eq. (43)

into “quantum gates” aspect of γ-matrices, since the initial Dirac potential is vanished by the

perturbation term due to the transformation. The scheme of this method is illustrated in Fig.

(8).
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Potential dynamics

Quantum gate Input Initial potential Final potential

U3 σ3 V0(t) V1(t)
= −it(σ0 + σ3) = −i(t+ 1)σ0 − itσ3

Fig. 7. Resume of U3 .

By similar manner, one can obtain for n-qubits, since the vector basis and quantum gates

are easily acquired by Pauli-Dirac matrix generator [32]. The multiple qubits quantum com-

putation on Dirac equation by utilizing Lorentz force can be realized by simply substitution

of Pauli matrices in the Theorem 1 by θµ-matrices.

To generalize our proposal, the following set of equations show the multiple qubits quantum

computation on Dirac equations utilizing Lorentz force which is transforming the initial set

of Dirac equations as given in Eq. (14) into the final set of new Dirac equations

3.3 Coupling of quantum gates

According to the previous sections, for instances, the ControlledN -NOT can be obtained

by the following expressions

Controlled1-NOT = CNOT = U0

⊕

co{±}

U1 (45a)

Controlled2-NOT = TOFFOLI = U0

⊕

co{±}

U0

⊕

co{±}

U1 (45b)

ControlledN -NOT =

N−1
︷ ︸︸ ︷

U0

⊕

co{±}

...U0

⊕

co{±}

U1 (45c)

Then, for NOT-CyclicN , one can find that



1006 Dirac four-potential tunings-based quantum transistor utilizing the Lorentz force

Fig. 8. The scheme of methods for two qubits. The calculation inside the red box repre-
sents the main method: Darboux transformations on one-dimensional Dirac equation causes the

transformation a set of potential and state from the old into the new one, {V0, |{0, 1}2〉i} →
{V0+∆V, |{0, 1}2〉f}. However, if the potential perturbation term is fixed in a certain formulation
related to Lorentz force form, as written inside the yellow box, the transformation operator of the
quantum state is changed into the form of quantum gates.

(44)

NOT-Cyclic1 = U1

⊕

cy{±}

U0 (46a)

NOT-Cyclic2 = U1

⊕

cy{±}

U0

⊕

cy{±}

U0 (46b)

NOT-CyclicN = U1

⊕

cy{±}

N−1
︷ ︸︸ ︷

U0

⊕

cy{±}

...U0 (46c)

3.4 Physical interpretation of control-, cyclic-, and target-operators

In this section, we present a new interpretation of the control-, cyclic-, and target-operators

in quantum gates based upon the explanation in the previous sections. The illustrations are
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•

!"#$%&'(

(a) Illustration for Controlled-NOT.

U1

CY

(b) Illustration for NOT-Cyclic.

Fig. 9. The illustration of our mathematical proposal for describing the process of quantum
computation due to the perturbation of the target qubit by an external force. The target qubit
performs Unitary gate due to the perturbation. One can realize Controlled-NOT by setting the

control operator, while for NOT-Cyclic by cyclic operator on the coupling.

given in Fig. (9) for the quantum gates of two qubits.

Under this scheme, target operator acts on each qubit and is coupled by {control, cyclic}-
operators for constructing n-qubits quantum gates.

It is shown in Fig. (9(a)) that when the control operator is turned on, the circuit is in

Controlled-NOT form and it is mathematically expressed by Eq. (19).

As can be seen in Fig. (9(b)) that the coupling operator is changeable, then, the turning

cyclic operator on causes the gate in NOT-Cyclic form where it is represented by Eq. (20).

Another interesting feature of this scheme is that, for a single qubit, both positive and

negative energy, {ψ(+), ψ(−)}, can be used one-qubit quantum computation. As has been

discussed in Sec. (2), the degeneracy is broken for the case of multiple qubits: the positive

(negative) energy, ψ(+) (ψ(−)), is the signature of |0〉 (|1〉) state of the first qubit. Therefore,

swapping the quantum state of multiple qubits is simultaneously interchange the energy of

the system under the action of {SWAP, Full SWAP} gate which is realized by the setting

of cyclic-operator on the coupling, while the chose of control -operator ensures the energy

conservation.
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4 Conclusion

In this paper, we propose a modification form of a Dirac equation by allowing the potential in

complex four-vector form representing the classical perturbation on a quantum system. The

notion of this work is similar as proposed in Ref. [38]: the modified Schrödinger equation

form can be used to represent nonlinear phenomena of a classical system such as water wave,

by allowing the potential and also its perturbation are in the classical form.

We have shown that n-relativistic spin qubit in external classical electromagnetic fields

can be used for resource of quantum transistor. The mathematical explanation behind the

proposal is on the action of Darboux transformation on one-dimensional Dirac equation at

which the potential is a complex Dirac four-potential utilizing the Lorentz force as perturbing

potential. These mathematical methods take advantage of the vector-quantum gates duality

of Pauli matrices.

It is also shown that our proposal can closely describe the resources of quantum transistor

required for implementing quantum computation: every n-qubits require n-quantum transis-

tors. In this scheme, the transistor is prepared with certain initial potential function, Vinitial,

then the final potential function, Vfinal, is obtained to generate certain quantum gate.

However, the proposed scheme as presented is aimed as a primitive approach of a quantum

transistor based upon Dirac equations. The next challenge is how to implement it into a more

specific and complex physical system. The correlation between a specific physical quantity, as

though quantum Rabi oscillations in cavity quantum electrodynamics and bandgap in various

types of graphene transistor, and the change of qubit state due to the tuning of the direction

of the external electromagnetic field, shall be explored.

The proposal may be also very useful for explaining the quantum system used not only

the magnitude but also direction of a physical quantity to encode the qubits, as found in

superconducting flux qubits, where the two distinguishable configurations are obtained by

induced clockwise or anti clockwise current [39].

The proposed formalism opens the possibility to involve the relativity into the further

study of quantum computation and information, coincidentally with an emerging assertion

that closed timelike curve can solve classical problems in computation such as NP-complete

problems [40, 41, 42, 43].

For the next work, it is also very interesting to consider if quantum circuit is constructed

under the Dirac equations for n-qubits instead of conventional way in Schrödinger represen-

tations. The similar evaluation as provided in Ref. [44] may give noteworthy results since

this kind of construction may influence the depth and space resource of a quantum circuit. In

this work, we assume that intertwining operation runs only the potential of relativistic spin

qubits. The computation of a qubit still runs under linear transformation. If the intertwining

operation runs both on the transformation of potential and qubit, this may contribute into

the theory of the topological quantum computing[45] on a massless Dirac-fermion.
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